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Abstract

In this paper, a linear time-complexity algorithm for lossy
transmission line simulation within arbitrary nonlinear cir-

cuits is presented. The method operates by storing infor-
mation about the state of the line at dynamically selected
internal points and using an analytical formulation based

on impulse responses to predict the line’s future behaviour
accurately. Previous approaches using impulse responses
(based on time-domain convolution) possess quadratic time-
complexity, which can lead to long computation times for
simulations with many time-points. In the proposed method,

integration over space with fixed limits replaces time-domain
convolution, eliminating the quadratic time-complexity. The
method does not require rational or other approximations of
transfer-functions to achieve linear time-complexity nor does
it increase the size of the simulator’s matrix by more than 2
for each transmission line. Experimental results on indus-
trial circuits indicate that for equivalent or superior accu-

racy, the state-based method can be faster for simulations of
one or more clock or data pulses, with speedups of more than
10 and 50 over the convolution and lumped-RLC methods for
the longer simulations.

1 Introduction

Simulating lossy transmission lines within nonlinear cir-
cuits is important in the computer-aided design of high-
performance systems, particularly of multi-chip modules
(MCMs) [1]. In these high-speed digital circuits, fast switch-
ing speeds combined with long, lossy interconnections give

rise to the need for transmission line models. Fast and accu-
rate simulation techniques are needed during the design and

verification stages to ensure that transmission line effects do
not affect correct operation. The fact that interconnect in
MCMs and ICs are lossy makes their simulation a difficult
problem, in contrast to lossless lines for which satisfactory
techniques exist [2].

The most common existing technique for lossy line sim-
ulation is the lumped-RLC approach [3}], in which a line is
represented by segments each consisting of lumped R, L and
C elements. A variant of this approach, the pseudo-lumped
approach [4], uses segments of lossless lines and series re-
sistors. In another technique [5], the irrational transfer func-
tions of the lossy line are approximated by rational functions
to obtain a reduced-order model that can be represented by
lumped elements. The waveform relaxation based method
[6] solves the line’s equations in the frequency domain and
uses the FFT to switch to and from the time domain. In the
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convolution method [7, 8, 9], the linearity of the lossy line
is exploited by using its impulse-responses for time-domain
simulation. Though the convolution technique is accurate
and does not use approximations to transfer functions, the
execution time of the method rises quadratically with the
number of simulation time-points.

In this paper, a simulation technique with linear time-
complexity' is presented. The technique is currently ap-
plicable only to “simple lossy lines” (uniform transmission
lines with constant (frequency-independent) resistance, ca-
pacitance, inductance and conductance (R, L, C and G) per
unit length)2. The technique is referred to as the “state-

based” method because it utilizes information about the in-
ternal state of the transmission line at a given time to solve

for the next time-point. As in the convolution technique
[9], analytically known impulse responses are used. A key
difference is that convolution is eliminated, replaced by an
integral in space with fixed limits involving the state of the
line. Knowledge of the entire waveforms at the ends of
the line is not used as in the convolution technique. The
location and number of the sample points used to store the
internal state of the line are varied during the simulation to
track propagating waves, ensuring accuracy and computa-
tional efficiency.

Section 2 contains the formulation of the state-based
method and a comparison of its features with those of other

methods. Results on sample circuits are presented in Sec-
tion 3, followed by conclusions in Section 4.

2 State-based Method

2.1 Formulation

The development of the state-based method starts from the
Telegrapher Equations [8]:

éf = (L?%—Rz)

Y (D

IThe exponent to which the total number of simulation time-points is
raised to obtain the execution time, within a constant proportionality factor.

ZMore accurate and complex models (“frequency-varying models™)
have R, L, C and G varying as functions of frequency to model different
effects, such as skin-cffect [10] and dielectric dispersion [5]. While the
simulation of frequency-varying models is an important problem, Deutsch
et. al. [10} have shown that simple lossy line models are adequate for
most practical applications today.
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The parallel conductance G is assumed to be zero for
simplicity; all of what follows continues to hold with minor
modifications for nonzero G. The above equations hold for
x varying between 0 and /, the length of the transmission
line. v(x,¢) and i(x,¢) are the voltage and current at the
point x in the line at time 1, respectively. Without loss of
generality (because Equations 1 and 2 are time-invariant),
the assumptions are made that the simulation starts from
time O and that the next time-point is ¢+ Note that in a
simulator, ¢ is actually \s, the incremental time-step. The
inputs to the transmission line come from the port variables
vi(e) = v(0,¢), ir(t) = i(0,1), v2(1) = v(L, 1) and ip(t) =
—iil,t). These four port variables specify the boundary
conditions of Equations 1 and 2.

In addition to the boundary conditions which represent
the inputs to the line from the external circuit, the inter-
nal state of the transmission line also determines the future
behaviour of the line. This internal state is stored in the
energy-storing distributed inductance and capacitance and
is specified by the voltages and currents in the line’s inte-
rior at time 0, vo(x) = v(x,0) and #(x) = i(x,0). vp(x) and
io{x) are the initial conditions for Equations 1 and 2. The
combination of the Telegrapher Equations and the boundary
and initial conditions specify the future behaviour of the line
uniquely. The state-based method uses the available initial
and boundary conditions at time 0 to find the values of the
port variables as well as the new intemal state of the line at
the next time-point 7. The procedure is then repeated using
the newly calculated line-state (“resetting” time to 0, so to
speak). This is continued until the end of the simulation.

Laplace transforms are taken (in #) of Equations 1 and
2 to arrive at ordinary differential equations in x and s, the
Laplace variable:
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V and[ referto V (x,s) and I(x,s), the Laplace transformed

variables. . . .
For brevity, the mathematical details of the formulation

from this point till the final result are omitted, and only a
description of the steps involved is given®. V and [ are re-
placed by scattering parameter variables through a change
of basis, and the resulting equations algebraically manipu-
lated to obtain first-order nonhomogeneous ordinary differ-
ential equations. These are solved analytically, boundary
conditions are applied, and the scattering parameter vari-
ables replaced by voltage and current variables. Following
this, integrals over space (that arise during the nonhomo-
geneous ODE solution) are evaluated analytically, using a
piecewise-constant approximation for vo(x) and io(x). Fi-
nally, the inverse Laplace transform is applied to obtain the
following time-domain constitutive relations:

[Yovix, ) « hy (£) + i(x, 1)]
~ [Yov(0.0) * hyy (x,1) +i(0,1) + hyix, 1)]

3for the details, see [i}
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= Z Vioj [syr (x—xj, t)~hsyy (x—x;-1, )]
j=1

+Yo voj [hsylx—xj, t)~hsfx—xj1,1)] | (5)
Yov(lt) « hyy (I—x,t) —i(L, 1) * h{l-x,¢)
y A
— [Yov(x, £) « hy (£) — i(x, )]
= Z {ioj [hsyr (xi1—x, t)—hs,y (xj—x, 1)]
j=ny
—Yo VOj [hSy(Xj—]_xv t)“hS}'(-xj—x' t)] } (6)

In the above, the spatial interval [0, /] is partitioned into
segments between the points xo, x1, - - -, X,,, with xo = 0 and
Xn, = l. Samples (at x;) of the initial voltage and current
states of the line are represented by vo; and ip;. The index
ny is defined by the relation x,, = y for any y € [0,1]. «

denotes the convolution operator; Y is defined to be %,
and hy, hyy, hy, hsyy and hs, are defined as follows:
hy (1) = e P [8(1) + B{L(Bt) — Io(B1)}] 0]
hy(x,t) = e P [8(t - pox)
+u(t—}m)Tmbx——zh(ﬂ\/t2—(}bx)2) ®)
£ — (px)

hyy (x,8) = e P [8(t — yox) + ult — wx) B~

—/—t————zll(ﬁ\/ 2 - (}OX)Z) ~ (B¢ - (}()X)z)}
V= (%)

hsyx, 1) = u(t — px) e P I(B\/ 2 — (px)%) (10)
hsyy (x, ) = u(t — px) e~ {e'ﬂ“'w"
t Iy <,3 72— ()bXJ2>
+B}()x/ e~ dr| (11
7 x \/ 72 (}ﬁ/\’}2

In the above, 8= £, 3 = VIC, & and u are the delta
and unit functions, and /o and /; are the modified Bessel
functions of zeroth and first orders respectively.

Equations 5 and 6 are time-domain constitutive relation-
ships for the lossy transmission line at any x. It is impor-
tant to note that the convolution operation in the LHS of the
equations is performed over only one time-step, from 0 to t
and does not extend over the past history of the simulation.
The RHS of the equations depend only on the (known) ini-
tial line-state; v(x, t) and i(x, ¢) can be determined from the
initial line-state and the values of the port variables at the



current time-point . In particular, v(x,?) and i(x, ¢) at any
x are independent of v(y, ) and i(y,¢) for any y # x in the
interior of the line; this implies that a system of simultane-
ous equations does not have to be solved to determine the

line-state at ¢. . .
To solve for the port variables at time ¢, the two equa-

tions obtained by substituting x = / in Equation 5 and x = 0
in Equation 6 are used to load the circuit-simulator matrix
and the right-hand-side vector of excitations. The circuit is
then solved by the simulator and the port variables deter-
mined at 1. For each x chosen to sample the new internal
state of the line, Equations 5 and 6 are then used to obtain
the voltage and current at time ¢.

2.2 Features

While the concept of using the internal state of the line is
reminiscent of the segmenting approaches, there are three
important differences. First, analytical solutions available
for delta-function excitations (the impulse responses) are
utilized in the state-based method, leading to improved ac-
curacy for all values of the line’s electrical parameters. Sec-
ond, the points at which the internal line-state is sampled
are varied dynamically; they are chosen densely in regions
where waveforms are fast-varying and sparsely in regions
where waveforms vary slowly. Since dynamic variation is
impossible in the segmentation techniques, all the sample
points have to be densely chosen, i.e., many segments need
to be used. Third, segmentation techniques increase the size
of the circuit matrix; the interdependence between the un-
known interal variables at the present time-point requires
their simultaneous solution. This is not the case in the state-
based method, where the new state at any internal point is
calculated individually and explicitly.

It is instructive to compare the convolution and state-
based methods from the aspect of time-complexity, since
both use impulse responses. Physically speaking, a trans-
mission line has no mechanism for storing the entire past
history of its port variables; instead, at any given time, the
internal currents and voltages (the state) are maintained by
the distributed inductance and capacitance of the line and

this state dictates the future behaviour of the line. The
convolution method stores only a history of its port vari-
ables. In a sense, the convolution method wastes com-
putation attempting to recreate information more directly

available from the intemal state.
The main computational effort in the state-based method

is the calculation of the line-state at every time-point. The
computation involved is however approximately indepen-
dent of time, depending only on the number of internal sam-
ples of the line*; hence the linear time-complexity, which
implies that for simulation lengths generating more than
some N,,;, time-points, the state-based method is faster than
the convolution method. The crucial question is, of course,
whether N, is achieved and exceeded in practical simula-
tions. Examples in Section 3 show that this is indeed so in
real-life circuits being simulated for one or more clock or
data pulses.

4the number of internal samples needed is proportional to the number
of sharp edges in the line’s internal waveforms; in most circuits, there will
be no more than two or three such edges at a given time

3 Experimental Results

Waveform and computation speed comparisons with the
lumped-RLC and convolution methods for four circuits are
presented in this section.

The first three circuits use digital BJT drivers with out-
put rise-times of 500ps-2ns, connected by lossy intercon-
nect to diode receivers or other BJT drivers. raytheonl
has one fan-out, raytheon2 has branching interconnect to
three fan-outs and raytheon3 has a 2-wire multiconductor
line; all three use identical interconnect parameters>. mo-
saic is a single lossy line driven by a voltage source with
series resistance and terminated by clamping diodes; inter-
connect parameters for mosaic were taken from [1]. For
the lumped-RLC method, 10 segments per inch were used
for the first three circuits, and 4 segments per cm for meo-
saic. Table 1 compares execution times and Fig. 1 depicts
a sample output waveform. Figure 2 shows the variation of
execution time vs. simulation length for the three methods.
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Figure 2: modified mosaic: execution-time vs simulation
length

From Table 1 and Figure 2, it is observed that the state-
based method can speed up simulations by factors of more
than 10 and 50 over the convolution and lumped-RLC meth-
ods respectively.

SThese circuits were provided by Raytheon Co.



Circuit Simulation Length Execution Time?
Tumped-RLC | Convolution | State-Based |
raytheonl | 60 ns 739 s 1943 s 20s
120 ns 1550s 62.31s 41.3s
180 ns 2237 s 131.32 s 60 s
240 ns 3002 s 220s 78s
raytheon2 | 60 ns 336.35 s 37s 28.7 s
120 ns 668.3 s I10's 5Z2s
180 ns 1027 s 239s 78.7s
240 ns 1372's 380 s 99.6 s
1000 ns 5646 s 6301 s 428's
raytheon3 | 60 ns 885s 40s 28 s
120 ns 1791 s 141 s S7s
180 ns 2700 s 52941 s 953 s
mosaic 10 ns 4444’ s 09 s 2s
20 ns 93.18s 3.6s 2s
40 ns I81.3s 129s 35s
80 ns 37Ts 4935s 6s

“CPU times on a DEC 5000/200 running Ultrix 4.1

Table 1: Comparison of Execution Times

4 Conclusion

An accurate and efficient linear time-complexity method
for lossy transmission line simulation has been presented.
Experimental results indicate that the new technique can
be significantly faster than other methods for long simula-
tions. The method is currently being extended to apply to
frequency-varying transmission line models[12].
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