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Abstract

A new technique, based on convolution, has been developed for
the time domain simulation of uniform RC lines. In contrast to
existing techniques which approximate the line'’s responses, this
technique is exact, requiring no simplification of the line's inter-
nal mechanism. It is shown that though the impulse responses of
uniform RC lines are ill-behaved and unsuitable for direct numer-
ical implementation, the use of a convolution formula obtained
by generalizing the trapezoidal integration method leads to well-
behaved analytic forms that canbe directly implemented. Although
the new technique involves more computation than segmentation
based techniques, it makes no approximation to the uniform distri-
bution of resistance and capacitance. Experimental resuils using
industrial IC interconnectdemonstrate the efficacy of the new tech-
nique.

1 Introduction

The accurate simulation of uniform RC lines is important in the
design and verification of VLSI circuits, in which the interconnec-
tions are usually modelled to have uniformly distributed resistance
and capacitance. RC charging effects are primarily responsible for
gate-to-gate delays in digital ICs, and with the continuous improve-
ment in the intrinsic switching speeds of semiconductor devices,
these delays are becoming the primary factor limiting system per-
formance.

So far, all existing methods for the transient simulation of uni-
form RC lines have, to our knowledge, involved reduced order
models (lumped approximations) approximate the uniform distri-
bution of resistance and capacitance (see Section 2 for a brief
review). In this paper, an exact analytic formulation for transient
simulation is presented. The method is based on convolving the
impulse responses of the uniform RC line with the voltages and

currents applied to its ends’. The novelty and exactness of the new
technique stem from the fact that although the impulse responses
are shown to be themselves unsuitable for numerical implementa-
tion (for they possess singularities at zero), the use of a technique
for numerical convolution [1] leads to functions that are not only
well-behaved but are also expressible in analytic closed form. It is
to be noted that the analytic forms are not a special case of the RLC
formulation [1], for which the non-zero nature of the inductance
L is a fundamental requirement. In addition to removing the need
for dealing with the ill-behaved impulse responses, the formula-
tion provides O(h?) accuracy for time-step 4. Experimental results
demonstrate that the accuracy of the analytic technique compares
favourably with uniform segmentation.

In Section 2, previous work is briefly reviewed. In Section
3, the analytic technique is presented. In Section 4, experimental
results for industrial circuits are presented, followed by comments
in Section 5.

*This research was supported by AT&T Bell Laboratories, IBM, Raytheon, and
the California State MICRO program.

{Convolution has been applied previously to simulating RLC transmission lines;
see Section 2.
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2 Previous Work

A well-known set of methods for the simulation of uniform RC
lines is that of dividing the line into a number of segments and
representing each segment using lumped resistors and capacitors.
Variants range from single-section to nonuniform multiple-section
models. Rajput [2] has proposed a single-section model based on
an approximation of the first three terms of the voltage transfer
function and the open-circuit input impedance of the uniform RC
line. This model is asymmetric with respect to the two ends,
however, and its range of validity is limited in frequency. Gupta
et al [3] proposed a different single section model based on an
approximation of the first two terms of the transfer function, while
using an exact expression for other terms. This model, while being
symmetric, is still limited in frequency and contains a negative
capacitance that can lead to stability problems.

The uniform multiple-section model, in which the line is split
into a number of uniform segments, is the most commonly used
model today. Asymmetric versions of this model are widely used,
and symmetric versions are also available [4, 5]. This technique
has the advantage of conceptual simplicity and convenience, since
no changeneeds to be made to an existing simulator for it to be able
to accept the model. On the other hand, the number of segments
needed for adequate accuracy can vary from application to appli-
cation. Gopal et al [6] have developed a formula for the optimal
number of segments to use, uzing moment-matching methods. An
estimate of the approximate bandwidth of the signals in the circuit
is required as input to this formula.

A nonuniform segmentation model, proposed by Gerizberg
[7], has the advantage of requiring fewer sections than uniform
segmentation for a given accuracy. {7] also contains a formula to
estimate the number of sections to use. This formula, however,
requires the use of a nonuniformity constant K, which again needs
to be decided by experimentation or prior experience.

The present work exploits the well-known convolution prop-
erty of all linear systems (the uniform RC line being linear), i.e.,
the outputs of a linear system can be obtained by convolving the
inputs with functions characteristic to the linear system, called im-
pulse responses. Djordjevié et al were apparently first to use this
method [8] in connection with circuit simulation, applying it to
RLC wransmission lines. In previous work [1], the present authors
extended the convolution technique by proposing an improved nu-
merical convolution formula and by identifying analytic forms for
the impulse responses of RLC lines. As brought out below, the
results of the present work are not a direct consequence of the RLC
line formulation.

3 Analytic Formulation

The transient behaviour of a uniform RC line with resistance R
and capacitance C per unit length is described by the following
partial differential equations (the Telegrapher Equations [9] with
zero inductance and parallel conductance):
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The above equations hold for x varying between 0 and /, the



length of the uniform RC line. v(x,?) and i(x, 1) are the voltage
and current at the point x in the line at time ¢, respectively. It is
assumed that the simulation starts from time 0. It is also assumed
that at time ¢ = 0, the circuit is at its quiescent, or DC, state.

The inputs to the transmission line are the port variables v,(f) =
v(0,1), iy (t) = i(0,1), v2(t) = v(l,¢) and izgl);’ = —i(l,). These
fmzlr 2port variables specify the boundary conditions of Equations 1
and 2.

Laplace transforms are taken (in ) of Equations 1 and 2 to
aniyc;,) 1at ordinary differential equations in x and s, the Laplace
varjable:
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V. Iteferto V(x,s) andI(x, s), the Laplace transforms of v(x, t)
and i(x, t).

To uncouple the above equations, a basis change is performed
from the variables V and / to new (““scattering parameter”) variables
p and g, defined as follows:

V(x,s) + Z(s)I(x,s)

plx,s) : "
q(x,s) Y&}Z(JM ©

Z(s) is the frequency-domain characteristic impedance of the
line:

R

2s) = sC
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Equations 5 and 6 are rewritten to express V and / in terms of
p and q; using these, Equations 3 and 4 are rewritten in terms of p
and q. Two decoupled linear first-order ODEs in x are obtained by
adding and subtracting Equations 3 and 4:

9p

% +As)p = 0 8)
94

Foi AMs)g = 0 €))
A(s) is the frequency-domain propagation constant of the line:
A(s) = VsCR (10)

The general solution of any first-order ordinary differential
equation of the type

9y

-a;-tP(x)y—O (11)
is

y= Cre~ P (12)

Equation 12 is applied to Equations 8 and 9 to obtain the
solutions for p and g (abbreviating A(s) by A):

—Ax

plx,s) = Ae (13)

q(x,5) = Be™* (14)

The boundary condition at x = 0 is applied to Equation 13,
and that at x = / to Equation 14, to determine the constants A and
B. These are substituted into Equations 13 and 14 to obtain:

p(x,s) —e ™p(0,5) =0 (15)
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—A(l—x)

q(l,s)e —q(x,5) =0 (16)

Now p and ¢q are written in terms of V and I (using Equations
5 and 7), and the resulting equations divided by Z(s) to obtain:

[V(x,5) Y(s) +1(x,8)] =™ [V(0,5) Y(s) +1(0,5)] =0 (17)
[V(l,s) Y(s) - I(1, s)] e M= [V(x,s) Y(s) - I(x,s)] =0 (18)
where

Ao
Z(s) ~

sC

Y(s) = n 19

and noting that V(0,s) = V;(s), 1(0,s) = Ii(s), V(l,s) = Va(s)
and I(l,s) = L(s), where V;, V2, I; and I, denote the Laplace
transforms of the port variables v,(t), v2(t), ir(t) and iz2(¢), the
following frequency domain constitutive equations are obtained:

[Va(s) Y () + I(s)] —e™ [Vils) Y(s) +1i(s)] =0

By subslimtinix = lin Equation 17 and x = 0 in Equation 18,

(20)

[Va(s) Y(s) — I2(s)] €™ = [Vi(s) Y(s) = Li(s)] = 0 @1

Let hy, h», and hxy denote the inverse Laplace transforms of

Y(s), e" 9 and Y(s)e~**)? respectively. Equations 20 and 21
are Laplace inverted to obtain the time domain formulation:

[Vz(l) * hy(t) — iz(t)] - [V[(l) * hay(t) + (1) * h)\(t)] =0 (22)
[Vz(l) * hay (1) + i2(f) * h,\(!)] - [vl(t) *hy(t) — i)(!)] =0 (23)

In Equations 22 and 23, * denotes the convolution operator
(see next paragraph for a definition). %y, Ax and Ay are the three
impuise responses of the uniform RC line. It is shown later in this
section that Ay possesses a singularity at zero. Next, convolution
of the port variables v;, vy, iy and iz with these is considered.

The convolution operation between two functions is defined as

follows:
!
/ x(r)h(t —T)dT
0

In Equation 24, x(t) represents any of the port variables v, vz,
i; and iz, while h(t) represents any of the impulse responses Ay,
ha, hyy. In order to perform the above computation numericall
in a simulator, one is constrained to dealing with samples of x(¢
at discrete points on the time axis. Assume that the simulator is at
the time-point #,, having already stepped from #, = 0 through 1,
13, .. ., ta—1. Denote the samples of x(2) atty, ..., 4 by xo, . . ., Xa.

In previous work [1], a numerical formula was developed that
computes Equation 24 from the samples x;, using a function related
to h(t). The formula, reproduced below, is a generalization of the
well-known trapezoidal integration technique for ordinary differ-
ential equations and is exact if x(¢) is piecewise linear between its
sample points.

x(t) = h(t) 24)

. F(h ity —tay)

[l PE
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In Equation 25, F(h, 1) is defined as follows:

F(h, )2 /0 ' /0 ’ h(r')dr' dr

Note that the first argument of F(-, -) in Equation 26 is a func-
tion and not a single real number. If the assumption that x(1) is
piecewise linear is not strictly valid, the integration formula in
Equation 25 has an error term. It can be shown [10] that this error
is proportional to the second derivative of x(t).

In Equation 25, it is to be noted that nowhere is the impulse
response h(t) itself used, so long as its twice repeated integral,
F(h,1), is available. It is shown next that analytic expressions
existfor F(hy,t), F(hx,t) and F(hay,t). In doing so, the following
elementary property of Laplace transforms is used (let £ denote
the Laplace transform operator):

(26)

1 T
L{F(h,t)} = E{/ / h(r')dr'dr} = % @n
o Jo
Using Equation 27, note that:
L{F(hy,0)} = \/g s (28)
o~ VsRCP
C e-—\/:RCF
C{F(hAYyl)} = R 30)
52
(No. | F(s) ] Fi0) ]
I [ % v
2 —’{e_ﬁ 2\/§e_:-7 ~ VTerfc (%)
3 J—’;e_‘/ﬁ (g +t) erfc (W‘ﬁ:) - %e“%

Table 1: Laplace Transform Pairs (Fodor[11])

From Table 1, expressions are obtained for F(hy,t), F(hax,t),
and F(hay, 1):

Flhy,1) =2 x% 31
2
Flka1) = (¢ + RCE) erfc( th’ ) - \/gxe‘“ﬁi 32)

RCI2
4t

F(hay,1) = \/g [2\/;"“51& — VRCPerfc ( )] 33)

In the above, erfc(-) denotes the complementary error function
{12}, defined by:

oo
/ e_'2 di
X

erfc(x) = ﬁ (34)
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Using the expressions for F(-, -) from Equations 31, 32 and 33 in
Equation 25, the convolution operations in Equations 22 and 23
can be implemented numerically.

In order to obtain expressions for Ay, hx, and h»y, the corre-
sponding expressions for F(-, 1) need only be differentiated twice.
For hy(t), the expression obtained is immediately seen to have a
singularity at zero:

1 /C
hy(l) = F”(h)’,l) = —5 W

Thus it is impossible to use the values of Ay directly to compute the
convolution; instead, the above formulation using F(hy, ¢) must be
used.

4 Experimental Results

The formulae of the preceding section were implemented in an
experimental version of the circuit simulator SPICE version 3el.
Results on two practical circuits are presented in this section.
On-chip interconnect parameters for the first circuit, denoted
by ibm, were taken from the paper by Cottrell et al [13]. The
interconnect uses 1um technology of thickness about 1um. For
aluminium interconnect, the resistance was calculated to be 20m-
ohm pm~ or 20ohm mm™’. The capacitance, taken from [13],

was 0.3fF um~’ or 0.3pF mm™’. The length of the line was
assumed to be the edge dimension of a large chip, 1cm. The circuit
consists of a logic gate (inverter) driving a uniform RC line left
open at the far end.

Fig. 1 displays the waveforms at the receiving end of the
line. Waveforms produced by using the analytic technique of this
paper, as well as by simple segmentation using 1, 2, 3, 4, 5 and
10 segments, are shown. Fig. 2 zooms in on part of Fig. 1. The
improvement in accuracy with the use of more segments, as well
as the accuracy of the analytic technique, is easily seen. Execution
times for segmentation using 1, 2, 3, 4, 5 and 10 segments were
1.79, 1.99, 2.04, 2.07, 1.97 and 2.04 seconds, respectively, on a
DEC 5500 computer running ULTRIX 4.2. The execution time
using the analytic technique was 2.18 seconds.
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Figure 1: Far-end voltage, ibm

The second circuit (denoted by ucb) uses 3um technology
from (14]. This translates to a capacitance value of 1fF pm~! or
1pF mm™, and a resistance value (assuming Al) of 6.6667m-ohm
pm~! or 6.6667ohm mm . The length was again assumed to be
1cm. The circuit in this case consists of a voltage source driving a
nonlinear diode load through the uniform RC line.
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Figure 2: Far-end voltage (detail), ibm

Fig. 3 displays the waveforms at the load end of the line, while
Fig. 4 zooms in on Fig. 3. Execution times for segmentation using
1,2,3, 4,5 and 10 segments were 0.26, 0.31, 0.33, 0.37, 0.34 and
0.42 seconds, respectively. The execution time using the analytic
technique was 0.66 seconds.
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Figure 3: Load voltage, uch

5 Comments

In this work, a new technique for the simulation of uniform RC
lines has been formulated. It has been shown that though the im-
pulse responses for the RC line are not well-behaved, convolution
is possible through a numerical formula developed in previous
work. Further, exact analytic forms more useful than the im-
pulse responses themselves have been presented. Although more
expensive computationally than uniform segmentation, the new
technique makes no approximation to the uniform RC distribution,
a feature lacking in previous techniques. Experimental results for
practical circuits testify to the accuracy of the new technique.
Because the technique is based on convolution, it has the dis-
advantage of being quadratic time, i.e., the computation required
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Figure 4: Load voltage (detail), uch

for a simulation of duration T increases as T7. This is a fandamen-
tal property of simulation by direct convolution. It has been shown
[15] that in the case of uniform RLC lines, an alternative technique
exists that is as accurate as convolution while being linear time.
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