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Algorithms for the Transient
Simulation of Lossy Interconnect

Jaijeet S. Roychowdhury, A. Richard Newton, Fellow, IEEE, and Donald O. Pederson, Life Fellow, IEEE

Abstract— In this paper, a new linear-time technique is
described for the simulation of lossy lines with frequency-
independent R, L, C and G. Exact analytic forms are shown to
exist for the frequency-independént lossy line, with application
in both the new technique and the conventional convolution
method. Numerical convolution formulae that exploit the analytic
forms are presented. Experimental results for industrial circuits
indicate that the new technique can be 10 and 50 times faster
than the convolution and lumped-RLC methods, respectively,
for long simulations.

I. INTRODUCTION

HE PROBLEM of simulating lossy transmission lines

within nonlinear circuits has recently come into promi-
nence, in large part due to the increasing importance of multi-
chip modules (MCM’s) in state-of-the-art high-performance
designs. At the high speeds of MCM’s, chip-to-chip inter-
connections behave as lossy transmission lines, effects due
to which can seriously impair signal quality. Accurate and
efficient simulation techniques are needed during design and
verification to ensure that transmission line effects do not affect
correct operation.

In this work, a new technique featuring linear time-
complexity is presented for the simulation of lossy trans-
mission lines with electrical parameters (R, L, C, G) invariant
with frequency! (“simple lossy” lines). Exact analytic forms
for impulse responses and related functions are given, with
application in the new technique as well as in conventional
convolution (described later in this section). Formulae
which are especially suited for numerical convolution with
these analytic forms are developed. Experimental results
for industrial circuits and interconnect confirm the linear
complexity of the new method and indicate significant speed
advantage over the convolution and lumped-RLC methods.

Many techniques exist for the simulation of lossy transmis-
sion lines. Simulation in the frequency domain is especially
convenient for entirely linear circuits [1], [2] and is also pos-
sible by using the waveform relaxation methodology [3], [4]
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li.e., not applicable to “frequency-varying” models (described later in this
section).

coupled with numerical Fourier techniques [5]-[7]. In the time
domain, segmentation using lumped R, L, C and G elements
to represent each segment (the “lumped-RLC” method) [8]
is widely used. A variant in which individual segments are
represented by a lossless line and lumped loss elements has
also been proposed [9]. Padé approximation in the form of
Asymptotic Waveform Evaluation (AWE) [10], [11] has been
applied to lossy line simulation by several authors [12]-[14].
An optimization-based approach for determining a reduced-
order model has been proposed [15].

Simulation based on time-domain convolution with the
impulse responses of the lossy line has been proposed by
several authors [16], [17]. A limitation of convolution is that
the computation required increases as the square of the number
of time-points in the simulation (“quadratic complexity”). The
impulse responses of the lossy line have been determined
by numerical inversion of frequency-domain formulae in the
previous work on convolution.

For most lossy line simulations today, the constant-
parameter simple lossy line model is adequate [18], but in
very high-speed applications, it may be necessary to model R,
L, C and G as varying with frequency (“frequency-varying”
models) to account for skin effect, dielectric dispersion and
other high-frequency physical phenomena. The techniques
presented in this paper exploit properties of the simple lossy
line and are not applicable to frequency-varying models.

The new technique achieves linear complexity by utilizing
the internal state of the line, and for this reason is referred
to as the state-based technique. The internal state of the line
is captured as a spatial distribution of instantaneous voltages
and currents, which are sampled at appropriate locations
throughout the line. A feature of particular note about the new
technique is that dynamic variation of these sample points is
possible from time-point to time-point during the simulation
(see Section IV for further details). This makes the exploitation
of latency convenient.

In Section II, the state-based method and the analytic
forms are presented. In Section III, the numerical formulae
for convolution are given. Section IV contains an evaluation
of the state-based method with reference to the convolution
and lumped-RLC methods, while Section V deals with im-
plementation issues. In Section VI, experimental results are
presented.

II. STATE-BASED TECHNIQUE

The development of the state-based method starts from the
Telegrapher Equations [17], partial differential equations in
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time and space that describe the transient behaviour of the
lossy line:

v o0t )

== —(LE + Rz) (1)
di v

6::: = ‘—(Ca + G’U) (2)

The above hold for  varying between 0 and { (the length of
the transmission line). v(z,t) and i(x,t) are the voltage and
current at the point z in the line at time ¢, respectively. Without
loss of generality (because (1) and (2) are time-invariant), it
is assumed that the simulation starts from time 0.

The inputs to the transmission line are the port variables
v1(t) = v(0,1), #1(t) = i(0,t), va(t) = v(l,t) and ia(t) =
—1i(l,t). These four port variables specify the boundary con-
ditions of (1) and (2).

In addition to the boundary conditions which represent the
inputs to the line from the external circuit, the internal state
of the transmission line also determines the future behaviour
of the line. This internal state is stored in the energy-storing
distributed inductance and capacitance and is specified by
the voltages and currents in the line’s interior at time 0:
vo(z) = v(z,0) and ig(z) = i(x,0), the initial conditions
- for (1) and (2). The combination of the Telegrapher Equations
and the boundary and initial conditions specify the future
behaviour of the line uniquely.

While similar to D’Alembert’s procedure [19] for solving
the wave equation, the following derivation contains several
differences that lead to analytic forms and the state-based
method. Laplace transforms are taken (in ¢) of (1) and (2)
to arrive at ordinary differential equations in z and s, the
Laplace variable:

v |
5o = ~(sL+ R)I + Lio(2) @
g_i = —(sC + G)V + Cuo(s) “

V and I refer to V(z, 3) and I(z, s), the Laplace transformed
variables.

To uncouple the above equations, a basis change is per--
formed from the variables V' and I to new (“scattering
parameter”) variables p and ¢, defined as follows:

V(z,s)+ Z(s)I(z,s)

p(l‘, 3) = 2 (5)
oo, ) = LB = 20,9 ©
Z(s) is the frequency domain characteristic impedance of
the line:
sL+R
20 =y eva @

Equations (5) and (6) are rewritten to express V and I in
terms of p and g; using these, (3) and (4) are rewritten in terms
of p and ¢g. Two decoupled linear first-order ODEs in z are
obtained by adding and subtracting (3) and (4):

_ Lig(x) + Z(38)Cuo(z)

i)
e+ As)p = .

oz

®

% - Ms)g= Lio(z) - 22 (8)Cwo(z)

A(s) is the frequency-domain propagation constant of the line:
A(s) = V(sC+G)(sL + R)

The general solution of any first-order ordinary differential
equation of the type

®)

(10)

% 4 Pley = Q(x)

oz (1

is
y=e" [ Py (01 + / Q(a:)ef Pmd"dz) (12)

Equation (12) is applied to (8) and (9) to obtain solutions
for p and ¢:

p(z,8) = == (A + %f e'\”[Lio('y)
0

+ Z(s)Cvo(y)]dy) (13)
a(z,9) = (B +5 )
- Z(s)Cvo(y)]dy) (14)

The boundary condition at z = 0 is applied to (13), and that
at £ = [ to (14), to determine the constants A and B which
are substituted for to obtain

e ] e—,\(::—y) )
pla,) - e p(0,9) = [* (L)

+ Z(8)Cuo(y)]dy

I _—Xy—z
a9 g(a,) = [ T iy
= Z(s)Cuo(y)]dy

Now p and g are substituted for in terms of V' and I (using
(5) and (7)) and the resulting equations divided by Z(s) to
obtain

[V(z,8)Y(s) +£(:z, 8)] — e~**[V(0,8)Y (s) + I(0, 3)]
- /0 e 2=V [Lig(y)Y (3) + Coo(y)ldy (A7)
V(L 8)Y(s) — I(l,s)]e =) — [V(z,s)Y(s) — I(z,5)]

{
= / e V=D Lig(y)Y (s) — Cuo(y)ldy  (18)

1 sC+G
YO =2m~Vi+r

Equations (17) and (18) need to be Laplace inverted to
obtain time-domain equations. In doing so, however, it is
important to note that the Laplace inversion operator cannot
.be transmitted into the space integrals on the RHS of the

15)

(16)

where

(19)
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equations, because the integrands are not uniformly continuous
(this may be verified easily for the lossless case with vo(-)
and 7g(-) constant). Therefore, before the Laplace inversion
operator is applied, the space integrals are evaluated in the fre-
quency domain by making the assumption that vo(-) and %o(-)
are piecewise constant functions (formulae for the piecewise
linear case, as well as for the general case of any piecewise
continuous vo(-) and %y(-), are available, but are omitted for
brevity). The interval [0,] is partitioned into a number of
segments between the points zg, Z1,...,Tn,, with o = 0 and
Tn, = 2. Over each interval I; = [z;_1,;], the piecewise
constant assumption about the initial states is applied; vo(z)
and ig(z) are replaced by the constants vg; and ig;. Define the
index n, by the relation z,,, = y for any y € {z1,...,2n,},

. with ng = 1. The integrals on the RHS of (17) and (18)
are split into a sum of integrals, each over I;; the integrand
in each of these integrals is simply an exponential which is
easily integrated to yield

[YoV(z,s)Hy (s) + I(z,5)] -
+1(0,5) Hy(2, )]

_ x> [ dojlhsyy (2 — 2, 8) — Hsyy (2 — 2j-1,9))

=2 {Svatitone 2o Ry} @O
[YoV({l,8)Hyy (I — z,8) — I(1,8)H,(I — 2, 5)]
- YoV (z, 8)Hy(s) — I(x, 3)]

[YoV (0, s)Hyy (z, 5)

-5 (S T T i e
where

Yo= % Hy(s>=%?’ﬂw(w,s)=e‘“”z @)

H,y(z,3) = Hy(s)Hy(z,8), Hsyy (,8) = LY (8)—7—— —A((e))z

23)

Hs,(z,5) = VIO —;((’))I 24)

Let hy, hyy, h., hgyy and hgs., denote the inverse Laplace
transforms of Hy, H,y, H,, Hs,y and Hg., respectively.
Define

7% =VLC, B==: (R G) a= (5—9) @5)

L C L C
and note that
sC+G _ [(s+P)—
Hy(s) = I+R \NG+B+a ©

) = T e g

H.,y(z,s) = Hy(z,3)H(x, s) (28)
=10\ (o+AV a2
Hg\(z,8) = (29)

2In Section V, a scheme for selecting these points dynamically is described.

TABLE I
LarLACE TRANSFORM PARS (FoDOR {20])
No. F(s) 70
—T/32—a2
1 321_02 =TV 1(t—T)lo (m/'E_Tft = )
2 TV _ger  10=T) = (a\/{T_—Tf)
1
3 e Io(at)
A G allo(at) + I (at)]
Ve—a 1 [e—ﬂt - e—ag]
5 Vsta—s+P "=

e~/ (s+8)2—0?

BT 0

Hs..,y(:l:, 3) =

Using Table I, the relation® I} = I, and elementary
properties of the Laplace transform, the following expressions
are obtained for hy(t), h,(z,t), hyy(x,t), hs,(z,t) and
hs.-,y(.’l:,t):

hy(t) = [6(t) + a{I1(at) — Ip(at)}]e 31

hy(z,t) = [6(t — Yz) + u(t — voz)
ayozl (Ot\/ 2 — (’Yow)z)
V2~ (2)?

hyy(z,t) = [S(t — 70z) + u(t — voz)a

{th (a\/# - (’702)2)

2

] e~ Pt (32)

t2 — (7o)

- I (Ot\/ 2 — (’Yo:c)z) }] e~Pt
hsa(,1) = u(t - 202)lo (a\/tz - (‘mw)z) Bt (34)

t

(33)

hsyy(z,t) = u(t — o) l:e—"(t'”"’m) + a'yga:/
.

I (a\/‘r2 - (‘mm)z)
V72 = (102)’”

In the above, u(:) and &(-) denote the unit step and delta
functions, respectively.
Laplace inversion of (20) and (21) yields the time-domain
constitutive relations of the lossy transmission line at any z.
Using * to denote convolution (described in Section III), the

e—a(t—‘r)

dr] e Pt (35)

311 is the modified Bessel function of k*P order.
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following time-domain equations are obtained:

[You(z, t) * by (t) + i(=, )]

- [Y;J'U(O’ 1) * hqy (2, t) + (0, 1) * hy(z,t)]
_"z’:{ i0j[hsyy (z — 2j,t) — hsyyv(z — 2j-1,1)]
- = +Yovoj[hs—y(:r - :c,-,t) - hs-,(:l: - .’L‘j..l,t)]

[Yov(l,t) * hyy (I — z,t) — i(l,2) % hy (1 — z,1)]
= [You(z, t) * hy (t) — i(z, 1))

- ‘2 { i0;[hsyy (j-1 — 2, 1) — hsyy (zj — 2, 1)]
S | =Yovojlhsy(zj-1 = z,t) = hsy(z; — =,1)]

From (36) and (37), the convolution and state-based meth-
ods can both be derived. The equations obtained by substi-

tuting z lin (36) and z 0 in (37) are of special
interest:

[Yova(t) * hy (2) — i2(t)]
= [Your(t) * Aoy (1, 1) + 6 (8) » Ry (1, 2)]

= i { ioj[hsyy (I = 2;,t) = hsyy (I - z5-1,1)]
=1 +Yovo;lhs, (I — zj,t) — hsy (I — -1, 1))

[Yova(t) # hyy (1,£) + iz(8) % by (1,)]

- [Yo’Ul (t) * hy (t) - il(t)]
- i { ioj[hsyy (zj-1,1) — hsyy (2;,1)]
S | Yovos[hsy(2-1,8) — hsy(a;,t)]

The above are the equations of the convolution technique
with an arbitrary initial state. It is customary to assume the
initial state to be that at a “dc operating point”, i.e., a solution
of the circuit with no time-variation in any waveform. In such
a case, vp(z) and ig(z) can be assumed to be zero* without
loss of generality, and the RHS of (38) and (39) become zero.
At time-point ¢; in a transient simulation, each convolution on
the LHS is carried out from o to ¢;, using stored values of
v1, V2, %1 and i3 at ¢; for all j, 0 < j < i. The computation
required at ¢; depends on the index i, leading to the quadratic
complexity.

Equations 38 and 39 can be used in another way: at time
t1, the procedure is identical to the convolution method, with
convolution over the interval [to, ¢;], using the initial state of
the line at time ¢y = 0. The new state of the line at time
t1 is calculated next, using (36) and (37) for each = chosen
to sample the internal state. At the next time-point ¢, the
newly calculated internal state at ¢ is used as vo(z) and %p(x)
instead of the original internal state at time £, in (36)~(39). In
other words, the time-invariance property of the Telegrapher
Equations is used, redoing the derivation with initial time #;.

At time t2, convolution is performed over only [t;, 5], not
over [to, 2] as in the conventional convolution method. The
internal state of the line at ¢;, known from the last time-point,
is used to supply the RHS of (38) and (39). The internal
state at 2 is then calculated. This procedure is repeated for
every subsequent time-point. The key feature leading to linear
time-complexity in this technique is that the computation
at time ¢; is independent of i, since convolution is always

} o

}en

} 38)

(39

4See Appendix B, which deals with the reduction of nonzero dc initial
states to zero.

9

performed over only one interval, [¢;_1,%;]. The contribution
of the convolution over [to,¢;—1] is captured by the internal
state terms on the RHS, the computation of which is also
approximately independent of i.

To solve for the port variables at time ¢;, (38) and (39) are
used to load the circuit simulator matrix and the right-hand-
side vector of excitations. The circuit is then solved by the
simulator and the port variables determined at t;. For each
z chosen to sample the new internal state of the line (see
Section V), (36) and (37) are then used to obtain the voltage
and current at time ¢;. It is to be noted that the RHS of these
equations depend only on the (known) initial line state, and
that v(z,t;) and i(z,t;) can be determined from the initial
line state and the values of the port variables at the current
time-point #;. In particular, v(z,t;) and i(z,%;) at any z are
independent of v(y, ¢;) and (y, ¢;) for any y # =; this implies
that a system of simultaneous equations does not have to be
solved to determine v(z,;) and i(z,t;), the solution being
available explicitly.

1. NUMERICAL CONVOLUTION

In Section II, the state-based and convolution methods were
derived. The computer implementation of both methods calls
for the numerical computation of the convolution integral
over a period of one or more time-steps. In this section,
generalisations of the Backward Euler (BE) and Trapezoidal
methods for ODE’s suitable for convolution are formulated.

The convolution integral to be calculated is the following:

u(t) = /0 a(r)h(t — 7)dr 40)

In (40), z(7) is the input to the linear system, y(t) is the
output and h(7) is the impulse response (or kernel) of the
system. h(7) is assumed to be a causal function of time and
may be finite or infinite in duration. At any given time ¢, z(r)
and () are assumed to be known over the half-open interval
[0,2)°. Tt should be noted that in a circuit context, z(r) and
y(7) are usually also related by a relation other than (40); one
may be a function or a causal functional of the other.

In a numerical implementation, z(t) can only be known
at a discrete number of points. Knowledge of the values of
z(t) at a discrete number of points is not sufficient to specify
y(t) uniquely by (40); it is necessary to make assumptions
about the overall nature of z(t). In deriving linear multistep
methods for differential equations [21], the assumptions that
z(t) is piecewise linear and piecewise constant result in the
well-known Trapezoidal and Euler methods, respectively. The
same assumptions are made here to arrive at generalisations
of these methods for convolution.

A. Generalized Trapezoidal Method
If the assumption is made that z(¢) is piecewise linear (over
the partition 0,1, --,t, of [0,t,]), the following numerical

32(r) and y(7) can be assumed zero for 7 < 0 without loss of generality;
see Appendix B.
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integration formula arises (see Appendix A for the derivation):

tn F(h, tn — tn-l)
h(t, — 7)dr =~ g, ————T"—=
/O 2(P)hltn = T)dr Ty
n—1
F(h,ty —tic1) — F(h,t, — 1)
+ '2___:11‘1[ ti —ti-1
_ F(h,t, - t;) —F(h,tn—t,‘+1)] @1
tig1 — b

In (41), ¢; are a discrete set of n timepoints in the interval
[0,t,], with to = 0. z; are samples of z(7) at t;. F(h,t) is
defined as follows:

F(h,t) /0 ‘ /0 " hr)drdr

It is to be noted that the first argument of F'(-, -) is a function,
not a single real number.

If the assumption that z(t) is piecewise-linear is not strictly
valid, the integration formula in (41) has an error term. An
expression for the error term is given in Appendix A.

42)

B. Generalized Euler Methods

Generalisations of the Backward and Forward Euler meth-
ods for numerical convolution can likewise be derived (the
derivation is omitted, being similar to and much simpler than
that for the Trapezoidal method).

Generalized Backward Euler:

tn
/ 2(T)h(tn — 7)dT = T E(hytn — tn_1)
0
n—1

+ Z .'L‘,'[E(h, tn — t,'_1) - E(h, tn — ti)] (43)

=1

Generalized Forward Euler:

n—1

/D  o(rh(tn — T)dr ; il E(hytn — ti) — E(hytn — 1))
44)
where:
E(h,t) £ /0 ' h(r)dr 45)

C. Analytic Expressions for E(-,-) and F(-,)

One of the advantages of using the above formulae is that
analytic expressions for E(:,-) and F(-, ) have been identified
for some of the lossy line’s impulse responses. The following
identities are valid for the special case a = (3 (refer (25)),
which holds when G equals zero®:

/ by (u)du = =P To(B%) (46)
/ ‘ / * by (u)du dw = te="*{Io(Bt) + L, (88)} @7

./t hyy (2, u)du = 1,_ppce” "I (ﬂ Ve - (-yom)2) “®
0

SThe G = O case is useful in many practical applications.

Unfortunately, analytic expressions have not been found
so far for [} [* hyy(z, u)dudw, fj hy(z,u)du, and f; [
hy (z,u)du dw. These are calculated numerically from the
impulse responses (see Section V).

IV. COMMENTS

While the segmenting approaches also essentially use the
internal state of the line, there are three important differences
between them and the state-based method. First, analytic
solutions are utilized in the state-based method, leading to
improved accuracy. Second, dynamic variation of the locations
of the internal state sample points is possible. The points
may be spaced densely in regions where waveforms are fast
varying, and sparsely in regions where waveforms vary slowly.
This leads to the possibility of automatically exploiting latency
in “quiet” sections of a circuit, for having few sample points
leads to reduced computation. Dynamic variation is impossible
in the segmentation techniques, therefore all the sample points
have to be densely spaced, i.e., many segments need to be used.
Third, segmentation techniques increase the size of the circuit
matrix; the interdependence between the unknown internal
variables at the present time-point requires their simultaneous
solution. This is not the case in the state-based method, where
the new state at any internal point is calculated individually
and explicitly.

An understanding of why convolution is quadratic time
while the state-based method is linear time, although both are
equivalent if truncation and roundoff errors are not considered,
can be obtained by considering what data is used by each
method to recreate the line’s past activity. The physical nature
of the problem makes it possible for all the information needed
for future simulation to be represented as the functions vo(-)
and ig(-) over the fixed interval [0,]. In convolution, this
information is obtained indirectly from the values of the port
variables over the interval [0,¢]. This is inefficient, for this
interval becomes increasingly less compact as the simulation
proceeds.

The main computational effort in the state-based method is
the calculation of the new line state at every time-point. The
computation involved is however approximately independent
of time, depending only on the number of internal samples
of the line”; hence the linear complexity, which implies that
for simulation lengths generating more than some N, time-
points, the state-based method is faster than the convolution
method. The crucial question is, of course, whether N¢i¢ is
achieved and exceeded in practical simulations. Examples in
Section VI show that this is so in realistic circuits being
simulated for one or more clock or data pulses.

The computation of the expressions in (31)~(35) dominates -
the execution time taken by the state-based method. In the
implementation reported in this paper, these functions are
calculated without any computation-reducing approximations.
The nature of the functions is smooth, however, so pre-

TGiven a dynamic sample point allocation scheme (see Section V), the
number of internal samples needed is proportional to the “activity” of the
waveforms inside the line.
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calculation and using table-based lookups or spline approx-
imations is expected to provide significant speedup without
appreciable loss of accuracy.

V. IMPLEMENTATION ISSUES

The techniques described in the preceding section have
been implemented in an experimental version of the circuit
simulator SPICE 3, version 3e.1 [22].

The one-step convolution in the LHS of (36)—(39) is per-
formed using the first term of the numerical convolution
technique described in Section II. The evaluation of the
integral in (35) is not computationally demanding, except when
large time-steps are taken by the simulator; one Runge-Kutta
step usually provides adequate accuracy. The implementation
provides the option of choosing from different integration tech-
niques (Runge-Kutta, Simpson, Burlisch-Stoer, Trapezoidal).

In the current implementation, the sample points for the
line’s internal state are dynamically determined by a sim-
ple and conservative heuristic method. The fact that waves
propagate into the line from both ends is exploited. A list of
sample points for the wave propagating from the left end is
maintained; at every new time-step, the points are shifted to
the right by the distance -t travelled by the wave. This list
is merged with a symmetric set of points from the right end
of the line to obtain the complete set of sample points for the
current time-point. At the start of the simulation, the merged
list contains only the two end-points of the line; by the above
procedure, the sequence of time-steps selected by the simulator
completely determines the dynamic list of internal sample
points. Some computation is saved because the merged set is
symmetric about the center of the line. This simple dynamic
sampling scheme is over-conservative, since lines in “quiet”
sections of the circuit have their sample points determined by
the same simulator time-step that determines the samples of
lines in more “active” parts of the circuit. Experimentation
is currently under way with dynamic sample point allocation
schemes that take full advantage of the state-based technique
by automatically exploiting latency.

VI. EXPERIMENTAL RESULTS

Waveform and computation speed comparisons with the
lumped-RLC and convolution methods for four circuits are
presented in this section.

The first three circuits use BJT digital drivers with output
rise-times of 500 ps—2 ns, connected by lossy interconnect to
diode receivers or other BJT drivers. raytheonl has one fan-
out, raytheon2 has branching interconnect to three fan-outs
and raytheon3 has a 2-wire multiconductor line; all three use
identical interconnect parameters®. mosaic is a single lossy
line driven by a voltage source with series resistance and
terminated by clamping diodes; interconnect parameters for
mosaic were taken from [23]. For the lumped-RLC method,
240 segments were used for the first three circuits, and 64
segments for mosaic.

It is seen from Table II that the state-based method is more
efficient than the convolution and lumped-RLC methods for

8These circuits were provided by Raytheon Co.
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TABLE II
CoMpARISON OF EXECUTION TIMES
Simulation Execution Time (s)
Circuit L&(a:sg)th lumped-RLC Convolution State-Based
60 739 19.43 20
120 1550 62.31 413
raytheonl ;g5 2237 13132 60
240 3002 220 78
60 336.35 37 28.7
o120 668.3 110 52
raytheon2 180 1027 239 78.7
240 1372 380 99.6
1000 5646 6301 428
60 885 40 28
raytheon3 120 1791 141 57
180 2700 529.41 95.3
10 44.44 0.9 2
mosaic 20 93.18 3.6 2
40 1813 12.9 3.5
80 371 49.5 6
Bxecution Time (s}
140.
120.
lumped-ALC ~
100.
Convolytion \_‘,“ -
e s Stats-Based
0. 2r2lllll

40.00 60.00 80.00 Simulation length (ns)

Fig. 1. mosaic: execution time versus simulation length.

the longer simulations, with speedups of more than 10 and
50, respectively. The convolution method itself is more than
5-10 times faster than the lumped-RLC method for the shorter
simulations. Fig. 1 shows the variation of execution time for
the three methods as the simulation length is increased.

The relative accuracies of the three methods can be com-
pared visually in Figs. 2-5. For the raytheon circuits, the
lumped-RLC method is as accurate as the other two, due to
the large number of segments used for modelling the lines. In
the mosaic circuit (Fig. 5), spurious ringing, characteristic of
the lumped-RLC method, can be seen.

VII. CONCLUSION

A new linear time technique for simulating simple lossy
transmission lines has been presented. The technique uses
exact analytic forms for impulse responses and related func-
tions. The key principle of the technique is to incorporate
information about the internal state of the line into an analytic
solution of the Telegrapher Equations. Dynamic allocation of
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Voltage (V) Voltage (V) mosaic
| Convolution|
00 A+ et : I
aoo—| \ —/ > A 1 N
- volublon lumpedt-RLC H iState—Based
4.00
3.00
2.00 [ 3.00
Stats—_Based / ¥
A AL
' Ay | -
o. 4
[ Al - 5

0.00 10.00 20.00 30.00 40.00 50.00 Oa w(m) 0.00 2.00 4.00 6.00 8.00 1355’ e}
Fig. 2. raytheonl receiver-end voltage. Fig. 5. meosaic receiver-end voltage.
Voltage (V) raytheon2 and Euler methods have been presented for numerical convo-
s.00 ALE = lution that take advantage of the analytic forms. Experimental
/\ A simulations verify the linear complexity of the state-based
o0 5 | " technique, demonstrating significant speedup over the convolu-
O — ' . tion and lumped-RLC methods. In addition, convolution using
) \ \ the analytic responses and numerical formulae of this work is
200 — seen to be superior in accuracy to the lumped-RLC method
\ /\/ \ /\ while being significantly faster for short simulations.
B v
VIII. APPENDIX A
Ry |
’ Y V . ,
/\ A. Generalized Trapezoidal Method
(VA V In order to generalize the Trapezoidal method for the
. numerical convolution of (40), the assumption is made that

©0.00 10.¢

z(t) is piecewise linear, i.e., of the following form:

Fig. 3. raytheon2, voltage at one receiver. A
z(t) = zi + mi(t — t;),t € [ti,tig1),i=0,...,n~1 (49)

Using (49), (40) is split up into a sum of integrals over the

w:: e ravthiome piecewise linear regions and expressed as:
0.80 n-1 titr
: Yt) =3 / (i + ma(r — t)h(tn — T)dr  (50)
0. mh:‘b\nd im0 Jt:
o p——— \ Equation (50) is evaluated by parts and algebraically ma-
o 't{",\\\‘ 1 nipulated to arrive at the following:

/]  F(hte = tas)
o A ] \ v A[ Un = o T —tat
N v , N S [Fhta —tii1) = F(hyta — t)

T I o ——
. A 4 _ F(hyta —t:) = F(hyta = t.~+,)]

lumpgd—-RLC V tig1 — t;

—1.

0.00 10.00 20.00 30.00 40.00 30.00 _ _ F(h, tn — 0) —_ F(h, tn — tl)
Fig. 4. raythoon3, far-end crosstalk. + o [E(h’t" 0 t1 -0 D
where
t

state sample points is possible for automatic exploitation of E(h,t) 2 / h(7)dr (52)
latency. Analytic forms for impulse responses have also been Ot .
applied to the existing convolution method, removing the need F(h,t) Y / / h(r")dr'dr (53)
for numerical inversion. Generalizations of the Trapezoidal o Jo
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If zo = 0°, the last term in (51) drops out:

n—1

F(h,ty —tn—1) [F(h,t" —ti—1) = F(h,tn — t;)
In =Tp ————————— + x;
v “ th —th—1 x=El ti —tiy
_F(h,t,.—t.‘)—F(h,tu—tH.l)] (54)
tiy1 — ¢

which is the numerical integration formula (41).

B. Local Truncation Error

If z(t) is not piecewise linear, define the error €, and the
local error Ae,, as follows:

>

€n (55)

Yo — /0 2()h(tn ‘l")d‘r

De, 2 6n = €nt (56)
By an analysis analogous to that for differential equations
[21], the following expression can be obtained for the local

€ITor:

F(hatn - tu—l)(tn - tn—l)
2

Ae, = 2" T:){ = G(h,t, — tn_l)}

= (t: — tica)
+ 3" () [T F (bt = tic1) + F(hytn — 1)
i=1

- F(h,t,._1 - t.'_l) - F(h,t"_l - t,‘)}
+Glhytn —t:) = Glhytn — tiiy)
- G(h, tp—1 — ti) + G(h’ th—1 — tikl)]

t pr pr
G(h,t) 2 /0 /0 /0 h(e")dr" dr' dr

z"(-) refers to the second derivative of z(¢), and 7} €
[ti—lati]q 1 € {1, e ,n}.

If h(r) = 1, then F(t) = &, G(t) = &. If these
are substituted into (57), it can be shown after algebraic
manipulation that the coefficients of #”(7}) inside the )}
become identically zero, and the expression reduces to the first

3
term which simplifies to x”(r,’:)%% the local truncation
error estimate for the trapezoidal method.

(57)

where

(58)

IX. APPENDIX B

A. Dealing with a Nonzero Initial dc Condition

Assume there exist two sets of solutions (v*(z, t),i%(z,t))
and (v%(z,t),i*(z,t)) to (1) and (2). Since the Telegrapher
Equations are linear PDE’s, any linear combination of
the above solutions (with coefficients not involving z or
t) is also a solution of the Telegrapher Equations. The
dc solution (v*°(z),i%(x)) is a particular solution of the
Telegrapher Equations. Therefore, given any other solution
(v(z,t),i(z,t)), the linear combination (v'(z,t),it(z,t)),
where v¥(z,t) = v(z,t) — v¥(z), it (z,t) = i(z,t) - i%(z),
satisfies the Telegrapher Equations.

°This can be assumed without loss of generality; see Appendix B.
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Therefore, v and i can be replaced by v' and it in all the
equations in Section II. Thus, if the simulation starts from a
dc steady-state, then v'(z,0) = it(z,0) = 0.
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