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Abstract— This paper introduces a novel approach to an-
alyze distortion behavior in analog integrated circuits using
a nonlinear frequency-domain method. This approach cir-
cumvents the difficulties and inaccuracies associated with
device modeling required for the traditional Volterra series
method and can handle circuits operating in more strongly
nonlinear regimes. The efficiency of the method renders the
analysis of large analog blocks practical. We present exam-
ples of multi-tone distortion analyses of industrial amplifiers
and continuous time filters. The trend towards higher levels
of integration, particularly for wireless applications, renders
this method especially useful.

I. INTRODUCTION

Designers of communications circuitry ~ both at base-
band and radio frequencies — are concerned with the follow-
ing questions which all come under the heading of ” mildly
non-linear” phenomena:

1. Harmonic distortion ~ drive the circuit under consid-
eration with a sinusoidal input at a frequence w and
observe the amplitudes of the output harmonics at fre-
quencies kw (k > 1)

2. Intermodulation distortion - drive the circuit with two
sinusoidal inputs (also called "tones”) and observe the
amplitude of the intermodulation terms;

3. Compression point - find that input power at which
the ratio of a change in output power to a change in
input power starts to drop less than one.

None of these effects are predicted by a linear small-signal
model, however in each case the deviation from linearity is
rather small.

The method of Harmonic Balance [1], [2], [3] is well-
established as a simulation technique for nonlinear circuits
driven by one or more periodic inputs. A particular ad-
vantage of the harmonic balance method is the ease with
which it handles the "two tone” case of intermodulation
distortion. The gist of the method is to write each wave-
form in the circuit as a Fourier series truncated to N coef-
ficients, then replace the circuit’s differential equations by
a system of non-linear, algebraic equations involving the
Fourier coefficients. This is possible because the derivative
with respect to time of a Fourier series is just an alge-
braic operation. A numerical technique, such as Newton’s
method, is then employed to solve the resulting system of
non-linear equations.

However. the system of equations can become rather
large, since each waveform is replaced by a vector of N
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complex coefficients; N can be on the order of 128 for a
two-tone study. A circuit with, say 1000 waveforms, would
then generate a total system of 128000 equations in 128000
unknowns. Most numerical methods for solving larger sys-
tems of equations require the Jacobian Matriz of the equa-
tions to be formed at each step of an iterative process.
In the case of harmonic balance equations, this matrix is
rather dense, therefore, forming and factoring this matrix
becomes a computational bottleneck for even medium-sized
circuits (say, 50 transistors).

In this paper, we describe an implementation of a har-
monic balance tool which circumvents the computational
bottleneck associated with this large Jacobian matrix by
using an iterative linear solver (such as the QMR algo-
rithm [4]) which only requires multiplication of a vector by
the Jacobian matrix or its transpose. We show that the
time to multiply the Jacobian matrix with a vector grows

‘only slightly faster than linearly with the total number of

unknowns. A pre-conditioner for the iterative linear solver
is proposed which facilitates rapid convergence of the iter-
ative method, provided that the circuit is operating in the
mildly non-linear regime as mentioned above. Our imple-
mentation enables the simulation of circuits much larger
than can be handled with other implementations of har-
monic balance. However, strongly non-linear behavior can-
not be analyzed with the current tool.

II. FORMULATION OF CIRCUIT EQUATIONS

We assume that the circuit’s behavior can be described
by a system of equations of the form [5)

£(x,0) + 3 ax,0) =0 (1)
where:
¢ x(t) is an n-vector of circuit waveforms (in general, a
mixture of voltage, currents, charges, and fluxes);
¢ f is an n-valued function of contributions from non-
reactive elements to the the circuit equations;
o q is an n-valued function of reactive element contribu-
tions (charge for capacitors and flux for inductors).
Here, n is the dimension of the circuit’s system of equa-
tions. Note that n depends to some extent on exactly how
the circuit equations are formulated, but is always some
indication of the “size” of the circuit under analysis.
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Fig. 1. Simple circuit example

For example Figure 1 shows a parallel combination of a
diode and non-linear capacitor driven by a sinusoidal source
with non-zero Thevenin output resistance. Let v(t) be the
voltage waveform across the diode and capacitor, and let
q(1) be the charge waveform stored on the capacitor. By
current summation:

(v(t) — Acos(wt))/R + ip(v(t)) + -:—tq(t) =0.

where ip denotes the current through the diode. In
addition, there is a non-linear, algebraic equation con-
necting the capacitors’ charge with its applied voltage:
h(q(t),v(¢)) = 0. Thus, in the notation of (1), both f and
q are mappings from R? into R?:

. ( ) - < (v(t) — A cos(wi))

R
h(q(t), v(t))
and

(#)-()

We are searching for a steady-state solution for Equa-
tion (1). One established method for finding such a solu-
tion is to assume that each steady-state waveform in the
circuit can be represented by a truncated Fourier series

v(t)

+ip(v(t))
q(t) )

N-1
f)y =Y Xwi) =X w(t), i=12,...,n

j=o

(2)

where:
o w(t) are the first N real Fourier basis functions, e.g.,

(1, +2 coswt, —2sinwt, +2 cos Avt, ~2sin 2wt, .. |7

o X' is a vector of Fourier coefficients for the i-th circuit
variable.

For the case of a multi-tone analysis, the basis will contain
functions for all frequencies of interest, their harmonics,
and intermodulation products. The proper choice of the
bases is studied extensively in the literature [6], (7] and
is beyond the scope of this paper. For the sake of clarity
we will base our derivations in the sequel on the one-tone
Fourier basis, however, the results can be immediately gen-
eralized for multi-tone bases.

For a one-tone study, N might be on the order of 32,
while for a two-tone study it might go as high as 256. The
circuit determines n, which could be several thousand for
a large network, especially if a complex transistor model is
used. Substituting in (1), and expanding the derivative of
q with respect to time we obtain:

9q

f(XTw(t),t) + —

5 .xTW(z)+§S:0

ot 3)

t
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where
¢ X = [X', X%...,X"] is the N x n matrix of circuit
variable Fourier coefficients

o 23 is the n-vector of explicit derivatives w.r.t. time

(null in most practical cases).

The'steady-state solution waveforms to equation (3) are
completely determined by the values of the N x n Fourier
coefficients stored in matrix X. We must now write a sys-
tem of N x n algebraic equations equations from which
we can determine the coefficients. We apply the stan-
dard method of point collocation (8] to system (3). That
is, the equations are to hold at N different time points

ti,l2,...,tN.
f(XTw(tl),t1)+ -g—:(l-l XTW(iI)-l- %—? = 0
1y 1,
£(XTw(ty), tn) + %‘1 XTw(tw) + % =0
iN tn
(4)

or, as a system of n x N equations in n x N unknowns

H(X) = 0. (5)

I11. SOLVING THE NONLINEAR SYSTEM OF EQUATIONS

The system of algebraic nonlinear equations (5) is best
solved by Newton-Raphson based algorithms [9], due to
their quadratic convergence. However, Newton-Raphson
based algorithms require computation of derivatives of
H(X) with respect to X at various values of X. The ma-
trix of these derivatives — the so-called Jacobian matriz -
is, however, large and rather dense. Existing harmonic bal-
ance programs are limited, in fact, by the CPU time and
memory required to manipulate this matrix. In contrast,
our implementation does not actually form this matrix in
memory; instead it decomposes it into a sequence of simple
linear transformations, that can be applied sequentially. It
can be shown that the decomposition of the Jacobian ma-
trix of H(X) takes the following form

_O0H _ -1 1
J = 5% = GPIP™'+ CPIDP~. (6)
Here G = diag{Gi,...,Gn} and C = diag{C,,...,Cn}

are block diagonal matrices, with the blocks, G; and C;,
representing, respectively, derivatives of the two terms of
the circuit equations (1) at the i = 1,..., N time points.
These blocks are similar to the matrices used in standard
time-domain analysis, hence are very sparse. Furthermore,
I' is a linear operator representing n applications of a time-
to-frequency transformation, each of size N. For single-
tone analysis the transformation is just the FFT; multi-
tone analysis requires more involved, but computationally
as efficient transforms[3]. Finally, D, represents the time
differentiation operator (a tridiagonal matrix) and P just
a data permutation operator.

Every iteration of a Newton-Raphson type algorithm ap-
plied to the system (5) will typically require solving the
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following nN x nN linear system
Jz=bDb (M

The system matrix J can be quite large (say, nN >
100,000) and dense, and thus expensive to factor. There-
fore we consider iterative linear algebra methods [4] which
solve (7) without factoring J; instead they require repeated
multiplications of J and maybe J7 to different vectors. By
exploiting the special structure, (6), of the J the operations
required for the multiplications are:

1. Multiplications of the block-diagonal matrices G and
C with the vector. Due to the sparsity of typical cir-
cuit matrices this is accomplished in time O(nN).

2. Application of the time-to-frequency transforms I', ac-
complished in time O(nNlogN) when fast transforms
are employed.

3. The applications of the differentiation operator D,
and the permutation operators P and P~!, which can
both be done in time O(nN).

The total computation time for the entire operation above
is O(nNlogN). This is considerably less expensive than
the factorization of matrix J.

Unfortunately, iterative linear algebra methods are not
guaranteed to converge. The convergence is made much
more robust by the use of a preconditioner [4]. That is, we
apply the iterative method to a modified system

I3z =3 (8)
which has the same solution as (7). Intuitively, a good
choice for J is a good approximation of J which is also rel-
atively easy to invert. For a circuit that is mildly nonlinear,
its linearization around the DC operating point represents
such an approximation and, therefore, its Jacobian matrix
suggest itself as an effective preconditioner. The applica-
tion of this preconditioner (solving Jz = b) involves just N
AC analyses of the linearized circuits at the N frequencies
of interest.

IV. EXAMPLES

The first example is a 30 transistor MOS baseband am-
plifier from [10] analyzed in a closed-loop configuration.
The configuration uses MOS transistors as tunable input
resistors in order to adjust the gain. The designer was in-
terested in the distortion contribution from the nonlinear
input devices compared against ideal (linear) resistors.

First, as a calibration run, we performed a one-tone hatr-
monic distortion study on the amplifier, and compared the
results to a Fourier analysis of a transient run using a
SPICE-class simulator. Of course, the transient simulation
was allowed to go long enough to eliminate any transient
effects. Highly accurate agreement (five significant digits)
was obtained for the amplitudes of the harmonics as pre-
dicted by the two simulation methods.

Then, a two-tone study, with excitations at 1kHz and
1.01kHz, was performed using the harmonic balance im-
plementation. Figures 2 and 3 show the results of the
intermodulation study using ideal resistors versus biased
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Fig. 3.

transistors.  The significant distortion contribution from
the nonlinearity of the input transistors is clearly seen. Ab-
solutely robust convergence was observed on this example.
In the notation of the paper, n was 30 and N was 128,
given a final matrix dimension of 3800. A maximum of
6 circuit Jacobian evaluations were needed for each linear
solve during the 8 iterations of Newton’s method needed to
converge to the final answer. This simulation was accom-
plished in less than three minutes. The harmonic balance
analysis of this circuit is fast, accurate, and independent of
the frequency separation of the input tones. By compari-
son, the use of the transient method, mentioned above, to
perform this two-tone study would be tedious and prob-
lematic. First, because of the small separation of the two
tones a long transient run is needed to capture the steady
state. Moreover, the postprocessing of the transient data
severely limits the dynamic range of the analysis.

Our second example is a 380 transistors low-distortion
amplifier, also implemented in a MOS technology. We per-
formed a one-tone harmonic distortion analysis. This cir-
cuit had 216 waveforms, and was analyzed with 27 Fourier
coefficients, for a total system size of 5832. For an input
amplitude of 300 mV, the convergence of the program is
fast and robust - only five Newton iterations and a worst-
case iteration count of 58 for the linear solver. Total simu-
lation time is about five minutes on a fast scientific work-
station. As predicted by the designer the spectrum of the
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Fig. 5. Amplifier signal spectrum with 375 mV stimulus
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output signal was extremely pure with the largest harmonic
more than 80 dB below the fundamental. However not all
waveforms in the circuit were as pure. Figure 4 shows the
voltage spectrum of the most distorted waveform. Even
though this waveform indicates that the circuit has signif-
icant nonlinear behavior, our method converges robustly.
However, as the input amplitude was increased above 400
mV, the method began to slow down, then failed to con-
verge. The reason 1s that the degree of nonlinearity de-
pends on the input amplitude and our preconditioner stops
being an adequate approximation to the system Jacobian
when the circuit becomes highly nonlinear. Figure 5 shows
the spectrum of the same signal as Figure 4 but with an
input amplitude of 375 mV, which represents about the
limit of our technique. This waveform is quite distorted as
confirmed by the time-domain plot of Figure 6.

V. CONCLUSION

This paper describes an algorithm for the efficient com-
putation of the steady-state response of mildly nonlinear
circuits subjected to one or more sinusoidal excitations.
We formulate the circuit equations as a harmonic-balance
problem. and we significantly accelerate the solution time
by employing iterative methods for solving linear systems.
Our method is based on two novel results. The first, is the
decomposition of the large and dense Jacobian matrix of
the harmonic balance system of equations into a number
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Fig. 6. Amplifier time-domain signal with 375 mV stimulus

of relatively inexpensive-to-apply linear operators. This
decomposition makes possible the solution of very large
problems through the use of iterative linear solvers which
avoid the storage and factorization of the Jacobian matrix.
However, iterative linear solvers converge reliably only if a
good preconditioner is available. The second contribution
of this paper is the use of the linearized circuit Jacobian
matrix as preconditioner. This preconditioner is based on
solid engineering intuition, is adequate for all circuits op-
erating in a mildly nonlinear regime, and is inexpensive to
apply.

VI. ACKNOWLEDGEMENTS

We would like to acknowledge important contributions
from Roland Freund, Homer Wang, George Knoedl, Mihai
Banu, Andy Odlyzko, Davée Thompson, Jacob White, and
Mike Steer.

REFERENCES

(1] Kundert, K. S., J. K. White, A. Sangiovanni-Vincentelli,
"Steady-state Methods for Simulating Analog and Microwave
Circuits”, Kluwer, Boston, MA ., 1990.

[2] Gilmore, R.J, and M.B. Steer, " Nonlinear circuit analysis using
the method of harmonic balance - a review of the art. Part I. In-
troductory concepts,” Int. J. on Microwave and Millimeter Wave
Computer Aided Engineering, Vol. 1, No. 1, 1991.

(3] Gilmore, R.J, and M.B. Steer, "Nonlinear circuit analysis using
the method of harmonic balance - a review of the art. Part II.
Advanced concepts,” Int. J. on Microwave and Millimeter Wave
Computer Aided Engineering, Vol. 1, No. 2, 1991.

{4] Freund, R., G.H. Golub, N.M. Nachtigal, "Iterative Solution of
Linear Systems”, Acta Numerical, pp. 57-100, 1991.

[5] J.Vlach and K. Singhal, Computer Methods for Circuit Analysis
and Design. New York, N.Y.: Van Nostrand Reinhold, 1983.

[6] Rizzoli, V., C. Cecchetti, A. Lipparini, F. Fastri, "General-
purpose harmonic balance analysis of nonlinear microwave cir-
cuits under multitone excitation”, IEEE Trans. Microwave The-
ory and Tech., vol. MTT.-36, pp 1650-1660, Dec. 1988.

[7] Ushida, A. and L.O. Chua, "Frequency domain analysis of non-
linear circuits driven by multi-tone signals”, IEEE Trans. on
Circuits and Systems, vol. CAS-31, pp. 766-779, Sep. 1984.

(8] Fletcher, C.A.J., Compxtational Galerkin Methods. Springer Se-
ries in Computational Physics, Springer Verlag, 1984.

[9] Ortega, J.M. and Rheinboldt, W.C., Iterative Solutions of Non-

linear Egquations in Several Variables. Academic Press, New

York, 1969.

Banu, M., Khoury,J., and Tsividis, Y. "Monolithic Balanced

Operational Amplifiers.,” IEEE Journal of Solid-State Circuits.

Dec. 1988, pp.1410-1414.

[10]

11.5.4



