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Abstract

Singular circuits are those that have a continuum of solu-
tions (or no solution) and are characterized by rank de-
ficiency in the (linearized) circuit matriz. Such circuits
often arise in practice - examples are filters with poles at
zero, chains of transmission gates that are off, and circuits
that rely on charge storage and transfer. In this paper, a
technique for the efficient solution of such circuits is pre-
sented. The method is based on solving for the minimum-
least-squares solution of the singular system. Unlike tradi-
tional methods for least squares solution, the new approach
exploits the sparsity of the circuit matriz, making it practical
for large industrial circuits. The method is best for applica-
tions with relatively small singular subspaces, as is the case
in most circuits. Applications to industrial designs testify
to the efficacy of the new technique; an example in which
more than a week of design time would have been saved 1s
presented.

1 Introduction

A basic operation in circuit simulation, as in many other
numerical computations, is that of solving a system of lin-
ear equations Az = b for the vector £ (with A a given
sparse matrix and b a known vector). This operation arises,
for example, in the Newton-Raphson method for nonlinear
equation solution[1], as well as during the implicit integra-
tion of ordinary differential equations[2]. In most practi-
cal situations, the matrix A is assumed to be of full rank
or nonsingular, i.e., with a nonzero determinant. This as-
sumption makes it possible to use efficient techniques such
as sparse LU factorization[3, 4] to obtain the solution z.
The exploitation of sparsity is key to making large practi-
cal problems computationally tractable.

In many real-life situations, however, the nonsingular-
ity assumption for A does not hold. For example, a circuit
consisting of two isolated parts (without a common ground)
except for inductive coupling through a transformer has a
singular matrix. The reason for this is that one of the coils
of the transformer is floating with respect to the other. De-
spite the singularity, the circuit is meaningful because the
designer is not interested in the absolute potential but in
potential differences between nodes of interest. Singularity
is also encountered in the DC analysis of circuits which have
nodes with no path to ground not involving a capacitor’.
Such situations are especially common in circuits that rely
on charge storage and transfer.

An 1mportant practical situation in which singular ma-
trices occur is when real circuitry is macromodelled using
idealized elements. This is common in the hierarchical de-
sign of systems, with some blocks represented in transistor-
level detail and others as simple idealized macromodels.
Often, the idealization is designed with a singularity — an
example is a filter with a pole at zero frequency. In practi-
cal realizations, parasitics often remove exact singularities;

11t is sometimes possible in such cases to use charge conservation
to eliminate the singularity using a variant of the present approach;
this is a topic of current work.

even so, the matrix may be numerically singular owing to
the finite precision to which numbers are representated in
computers. Numerical singularities and near-singularities
also occur in circuits with high-impedance nodes, for exam-
ple inside high-gain op-amps in open loop simulation.
Previous approaches towards solving singular circuits
have all been based on modifying the circuit to remove its
singularities. A common method to avoid floating node
problems is to insert a small conductance gmin, usually
across parasitic diodes in MOS and BJT devices. Checking
the circuit’s topology using graph-based rules is often used
to detect structures that lead to matrix singularites; the
designer is required to change the circuit to remove them

- before proceeding with the simulation. These techniques

are not always effective, even for the subclass of singular
circuits that they address. For example, small values of
gmin can cause the Newton-Raphson method to take very
large steps, leading to non-convergence. It is impossible to
detect certain singularities by graph-based rules, for exam-
ple in a tank circuit excited at its resonant frequency. As
shown in Section 3, the process of finding singularities can
cause serious delays in design — it took more than a week
for the three singularities in the circuit of Figure 5 to be
found.

This work attacks the problem at the matrix level and is
therefore uniformly applicable to any circuit situation that
causes a singularity. As such, it does not require the explicit
detection of the singularity, nor does the circuit need to be
changed. Information about the location of singularities
is produced as a by-product of finding the “best” possible
solution of the singular circuit. Unless the singularity is
the result of an error in the circuit, the solution provided
is what the designer is looking for. A key feature of the
method is that it uses LU faciorization to exploit sparsity;
hence it is applicable to large circuits, unlike other methods
for dealing with singular systems[1, 5] (see Section 2.1). The
method is best suited for circuits with a small number of
singularities (e.g., with only a few floating nodes). For most
practical circuits, this does not constitute a limitation.

The new technique is presented in Section 2. Computa-
tional considerations, crucial for the practical applicability
of the method, are also addressed in Section 2. In Section
3, the method is applied to two industrial examples. In
Section 4, the key features of the new technique, as well as
related future work, are summarized.

2 Exploiting sparsity in singular systems

TIn this section, an efficient method for obtaining the “best”
solution of a singular circuit is presented. The definition
and properties of the minimum least-squares solution, its
connection with circuits, the role of the singular subspace
and traditional approaches for solving singular systems are

the subject of Section 2.1. An outline of the new technique
and its computational properties is presented in Section 2.2.
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2.1 The minimum least-squares solution

Given a singular square matrix A and a vector b, the object
is solve for z satisfying:

Az =1b (1)

If A is nonsingular, there is always a unique z satisfying
Equation 1[6]. If A is singular, however, two possibilities
exist: if b is not in the range R(A) of A, no solution =
exists satisfying Equation 1;if b is in the range space of A,
a continuum of solutions z satisfy the equation.

Despite the lack of a unique solution in the singular
case, it can be shown[5] that a unique z* does exist that is
the “best” solution to Equation 1, whether A is singular or
not. z* is called the minimum least-squares solution and is
defined to be the smallest possible vector (i.e., of smallest
norm) that minimizes ||Az —b]|. It is appropriate to think of
£* as the best solution because of the following properties:

b’ = projection of b
onto range space

range space
of A

Figure 1: Orthogonal projection of b on the range of A

1. If Ais nonsingular, z* is the unique solution of Equa-
tion 1.

2. If A is singular and b is in the range of A, then z* is
the solution of minimum norm that satisfies Equation
1.

3. If A is singular and b is not in the range of A, then
there exists a unique vector b’ in the range of A that
is closest to b. 2* is the solution of minimum norm
satisfying Az = ¥’

The concept of the minimum least-squares (MLS) solu-
tion is illustrated in Figures 1 and 2.

It is useful to obtain an appreciation of how cases 2 and
3 above relate to circuits. Figures 3 and 4 show two circuits
- the first is an idealization of a switched-capacitor circuit
and the second a circuit segment generating a pole at zero
frequency. Such structures are common in macromodels for
system-level design. The circuit equations for Figure 3 can
be shown to be an example of case 2, 1.e., bis in the range of
A and the circuit has an infinite number of solutions. The
MLS solution for this case corresponds to a voltage of zero
at node 2. The circuit of Figure 4 is an example of case 3
above; it does not have any solution at DC. For this case,
b’ corresponds to setting the current source to zero; at this
value, the circuit has an continuum of solutions. The MLS
solution corresponds to a voltage of zero at node 1.

The two examples above were simple linear ones. Most
practical circuits are nonlinear, hence it is of interest to ex-
amine how the MLS solution generalizes to the nonlinear

£ TN
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Figure 2: The MLS solution z*
i 2 3

® = ri

Figure 3: b € R(A): continuum of solutions

case. For an arbitrary nonlinear equation f(z) = 0, the
analogue of the linear MLS solution is a minimum-norm z*
that minimizes ||f(z)|| locally. Unlike the linear case, there
may be several local minima, leading to multiple values for
z*, one for each local minimum of ﬁf(z)“ An important
conrnection between the linear and nonlinear cases is ob-
tained through a generalization of the well-known Newton-
Raphson method for solving nonlinear equations. The usual
Newton-Raphson iteration is:

J6z = —f(z), J= % (2)

For J nonsingular, 6z is well-defined and unique. An imme-
diate generalization when J is singular is to use the MLS
solution of Equation 2 for §z. It can be shown that this
variation maintains the local quadratic convergence proper-
ties of the Newton-Raphson method; the difference is that
it converges to a local minimum of f(z)[7, 8], while the
nonsingular Newton-Raphson converges to a zero of f(z).
Hence the linear MLS solution can be used in the Newton-
Raphson method to obtain nonlinear locally MLS solutions.

1_}%1»2
0

Figure 4: b € R(A): no solutions

Let the size of A (the number of rows or columns) be
denoted by n, which for practical circuits can easily be in
the thousands. An important concept is the dimension of
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the null space N{A) of A[6]. Denote this (also called the
dimension of the singularity of A) by m. In circuit terms,
m is the number of independent circuit segments that are
not well-defined; for example, in Figures 3 and 4, m is 1.
In practical circuits, m is usually much smaller than » and
rarely exceeds 20 or 30. It will be seen later that this fact
is key to the practical applicability of the technique of this
work.

Traditional approaches for obtaining the MLS solution
use the singular value decomposition (SVD) or the QR de-
composition of A[1, 5], which destroy sparsity and are hence
inefficient for large circuits. A property of the MLS solution
that is sometimes used is the so-called normal equation:

AlAzr = A'b (3)

If A is not square but of full rank with more rows than
columns, it can be shown that A’A is square and nonsingu-
lar. In such cases, the normal equation can be used with tra-
ditional nonsingular solution technigues to obtain the MLS
This situation is not however easily applicable to circuits,
which typically have square matrices; moreover, forming
A’A usually destroys sparsity to a considerable extent, re-
ducing the effectiveness of sparse factorization techniques.
The author is not aware of any existing approach for solving
the MLS problem that exploits sparsity to the same degree
as LU factorization techniques do for sparse nonsingular
matrices.

2.2 Obtaining the MLS solution for sparse A

In this section, an outline of the new technique is presented.

Consider the most general case 3 above, with b ¢ R(A).
The situation is illustrated in Figure 1. The first step in the
new method is to obtain b’, the orthogonal projection of b
onto R(A); this is the vector in R(A) that is closest to b,
i.e., ||b — b]|' is the minimum least-square error achievable.

The equation Az = b’ has a continuum of solutions, as
illustrated in Figure 2. If z1 and z, are two such solutions,
then £1 — %2 in necessarily in the null space of A; hence in
order to find the minimum norm solution z*, the new tech-
nique starts with any solution z of Az = b’ and subtracts
from it all its components in the null space of A. In other
words, z* is obtained from any solution z by subtracting
from z its projection onto N(A).

In order to obtain numerical representations for the
range space R(A), the null space N(A) and a solution z
to Az = b, the LU factorization of A is used. Usually,
LU factorization is performed only for nonsingular matri-
ces; however, all square matrices, singular or otherwise, can
be decomposed into LU factors. For concreteness, assume
the Crout form of the LU algorithm, ie., Li; =1, Vi €
{1,...,n}. This makes L always nonsingular; U can be
shown to have the same rank as A. The following example
shows the LU factors of a matrix that is rank-deficient by

1 (e, m=1)
8 6 6 8
8 10 9 11
A=133 28 29 38 (4)
24 22 23 30
1 00 0 8 6 6 8
110 0 o 4 3 3
=14 1 10| U=lo o0 2 3 (5)
301 1 1 00 0 0

The LU factors of a singular matrix can be obtained
by small modifications to the procedure for the nonsingular
case, as follows: when singularity is detected by the LU
factorization routine, the remaining lower submatrices of L
and U (of size m) are set to the identity and zero matrices of

size m, respectively. Pivoting strategies and other heuristics
used for nonsingular LU factorization carry over unchanged
to this generalization.

Once the LU factors are available, they can be used to

find N(A), R(A) and a solution to Az = b'. First consider

the problem of finding a solution ¢° of the consistent equa-
tion LUz = b, assuming b’ has already been computed.
Since L is nonmsingular, we have Uz = L™'0’. It can be
shown the last m rows of U can be chosen to be identically
zero without loss of generality if A is rank-deficient by m.
Therefore a solution is to set the last m variables of = to
zero, and solve for the first n — m variables using normal
reverse-substitution.

A slight variant of the above can be used to produce a
basis for the null space N(A). To obtain m linearly indepen-
dent vectors in N(A), the last m variables of z are chosen
as follows: {1,0,...,0}, {0,1,0,...,0}, ..., {0,0,...,1}.
With each of these choices, Uz = 0 is solved for the top
n — m remaining variables using back-substitution. The
resulting vectors form a basis for N(A) and are linearly
independent. Let the basis be denoted by {n',...,n™}.

The projection of z° onto N(A) is obtained next. For
this task, it does not suffice to have a basis that spans N(A);
it is necessary to obtain an orthonormal basis. Given the
basis {n',...,n™}, the standard Gram-Schmidt orthogo-
nalization procedure [6] is used to convert it into an or-
thonormal basis. Let the orthonormal basis thus obtained
be denoted by {n°,...,n°"}.

Once the orthonormal basis is available, the MLS solu-
tion z* is easily obtained from z° by subtracting the pro-
jection:

m
ot = ro _ Z<$Oa noi>noi (6)
=1

where (-,-) denotes the dot product. Equation 6 eliminates
any component of N(A) from z°, leaving the MLS solution.

The above assumed that b’ had already been calculated.
This is in fact the first step in finding the MLS solution, and
it is achieved by first computing a basis for the orthogonal
complement of the range space R(A) of A, rather than for
R(A) itself. The orthogonal complement is chosen for two
reasons: 1. its dimension can be shown [6] to be the same
as m, hence the space is small, leading to computational
efficiency, and 2. since the orthogonal complement of A is
the same as the null space of A’[6], it can be computed in
the same manner as the basis for N(A) as described above,
using A’ = U'L’. Once an orthonormal basis for the orthog-
onal complement is obtained, 4’ is derived by subtracting
from b all its components in this space, analogous to Equa-
tion 6.

The computation involved in the above procedure is
dominated by the LU factorization and the Gram-Schmidt
orthonormalization steps. LU factorization is almost linear
in the size of the matrix » when A is sparse. The Gram-
Schmidt procedure requires O{nm?) operations, i.e., it is
linear in » and quadratic in m. For this reason, the method
is best suited for small m, a situation that holds for most
circuit applications.

3 Results

In this section, two industrial circuits with singularities are
presented and the efficacy of the technique demonstrated.
The first circuit is a system-level design for a programm-
able line termination circuit. The block diagram of the
circuit is shown in Figure 5. The purpose of the circuit
is to present a programmable impedance to a communica-
tions line in order to match its characteristic impedance
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and minimize echoes and reflections (accurate line match-
ing is especially important for data communications appli-
cations). The circuitry is mixed analog-digital. The line
current is sensed, filtered and digitized before being input
to the digital section of the circuit. A DSP-based calcula-
tion produces a digital representation of the voltage that
the desired termination would generate; this voltage is then
converted to analog form, filtered and placed on the line
using a transducer. During system-level design, most of
the blocks were macromodelled using ideal elements such
as linear controlled sources.
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Figure 5: Programmable line termination system

The circuit as simulated by the designers contains three
singularities (m = 3). Two of the singularities are due to

deliberately designed poles at DC in the sinc® decimator
and the interpolator/LP-filter blocks. A third singularity is
the result of a benign error in the DSP macromodel, where
the output of a sensing controlled current source is con-
nected to a floating node. The circuit would not simulate
in a proprietary internal simulator because the initial op-
erating point computation would terminate with a singular
matrix error. The existing topology check in the simulator
having failed to locate the problems, it took the designers
more than a week to find the causes of the singularities and
devise workarounds.

Applying the new technique to the circuit resulted in
its solution in four Newton-Raphson iterations. In addi-
tion, the degree of rank-deficiency m = 3 was found and
information produced about the location of the singulari-
ties.

The second circuit, shown in Figure 6, consists of a chain
of 32 transmission gates. The gates are alternately on and
off. If the transmission gates were ideal, half the drains and
sources in the chain would be floating (m = 16). In a well-
modelled circuit, however, parasitics and leakage elements
prevent exact singularities, hence the matrix is not exactly
singular but nearly so. The circuit does not converge with
the Newton-Raphson algorithm because the near-singular
matrix leads to large steps, taking the algorithm outside its
region of convergence, from which it does not recover.

When simulated with the new technique with appropri-
ate threshold parameters, the circuit converges in 8 Newton-
Raphson iterations. m is detected to be 16 and information
produced about the locations of the near-singularities.

4 Conclusion

A new technique has been presented for solving circuits with
singularities. The method is based on finding the minimum
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Figure 6: Chain of transmission gates

least-squares solution of Az = b efficiently when A is sparse.
LU factorization and Gram-Schmidt orthogonalization are
the main computational steps in the new technique.

The method is applicable to large VLSI designs, unlike
traditional techniques for least-squares solution that do not
take advantage of the sparsity of circuit matrices. It is best
suited for circuits that have a small number of singular-
itles because the computation involved in Gram-Schmidt
orthonormalization increases as the square of the number
of singularities.

The application of the method to a system-level design
with singularities and to an almost-singular circuit with off
transmission gates has been presented in this paper. It is
relevant to a number of other areas as well - RF circuits
and harmonic balance, analysis of tank circuits and oscilla-
tors, transient analysis, optimization, homotopy methods,
solution using charge conservation and AHDL simulation
are examples. Work is currently continuing in application
to these areas.
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