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Abstract

This %ape}" introduces a new, efficient technique for analyz-
ing RF noise in large circuits subjected to true multitone ex-

citations. Noise statistics in such circuits are time-varying
and are modelled in this work as cyclostationary stochastic
processes, characterized in terms of their harmonic power

spectral densities (HPSDs). Results from a large RF inte-
grated circuit driven by an LO tone and a strong RF signal
are presented. The analysis predicts correctly that the pres-
ence of the RF tone affects the noise significantly.

1 Introduction

Predicting noise is important in RF design. RF circuits are
usually analyzed for their steady-state behaviour under one
or more periodic excitations. Noise statistics in such cir-
cuits vary periodically or quasi-periodically in time, there-
fore SPICE-like stationary noise analyses do not capture
important aspects such as frequency translation of noise
spectra. In order to address such effects, noise needs to
be modelled as cyclostationary stochastic processes. In this
paper, a new RF noise formulation and algorithm, based on
cyclostationary concepts, is presented.

Most previous algorithms [1, 2, 3] that model time-
varying noise are limited to designs containing relatively
few nonlinear elements, characteristic to microwave circuits.
These methods are impractical for integrated RF circuits
where nonlinear devices are numerous. Recently, an algo-
rithm [4] was proposed that can analyze large circuits effi-
ciently, but it is limited to single-tone excitations only. The
technique presented in this paper can analyze large circuits
with multitone large-signal inputs efficiently.

The statistics of cyclostationary processes are periodic
or quasi-periodic, hence can be expressed as Fourier series.
The technique of this work is formulated in terms of the co-
efficients of the Fourier series, termed cyclostationary com-
ponents. The cyclostationary components, which the new
algorithm computes efficiently, are useful in system-level
analysis as equivalent noise models of RF circuit blocks.
They also provide an intuitive yet mathematically rigorous
visualization of RF noise propagation, which can contribute
to design insight.

The algorithm is based on a structured block-matrix re-
lation between the cyclostationary components of the noise
variables within a circuit. It can compute the total noise
at a specific output, correlations between noise at different
outputs and also individual contributions from each noise
generator to a specific output. Moreover, bias-dependent
white and coloured noise sources (e.g., thermal, shot and
flicker noises) are treated naturally, even when they are cor-
related. The algorithm has been verified against extensive
Monte-Carlo noise simulations to an accuracy of 2%.

Cyclostationary processes are reviewed and the concept
of harmonic power spectral densities is introduced in Sec-
tion 2 through an example. The general noise formulation
and the algorithm for large circuits are outlined in Sec-
tion 3. In Section 4, the algorithm is illustrated on a large
RF example.

2 Cyclostationary Noise and HPSDs
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Figure 1: Mixer-filter-mixer circuit: naive analysis

The circuit of Fig. 1 consists of a mixer, followed by a band-
pass filter, followed by another mixer. This is a simplifica-
tion of, e.g., the bias-dependent noise generation mecha-
nism in semiconductor devices [5]. Both mixers multiply
their inputs by a local oscillator of frequency fo, i.e., by
cos(2r fot). The bandpass filter is centered around fo and
has a bandwidth of B <« fo . The circuit is noiseless, but
the input to the first mixer is stationary band-limited noise
with two-sided bandwidth B.

A naive attempt to determine the output noise power
would consist of the following analysis, illustrated in Fig. 1.
The first mixer shifts the input noise spectrum by +f; and
scales it by 1/4. The resulting spectrum is multiplied by the
squared magnitude of the filter’s transfer function. Since
this spectrum falls within the pass-band of the filter, it is
not modified. Finally, the second mixer shifts the spectrum
again by = fo and scales it by 1/4, resulting in the spectrum
with three components shown in the figure. The total noise
power at the output, i.e., the area under the spectrum, is
1/4 that at the input. '

This common but simplistic analysis is inconsistent with
the following alternative argument. Note that the bandpass
filter, which does not modify the spectrum of its input,
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can be ignored. The input then passes through only the
two successive mixers, resulting in the output noise voltage
o(t) = i(t) cos® (2 fot). The output power is:

cos(27 2fot) + cos(27 4 fot)
2

o (t) = i*(t) g+

The average output power consists of only the 3/8¢%(¢)
term, since it can be shown that the cosine terms time-
average to zero. Hence the average output power is 3/8
of the input power, 50% more than that predicted by the
previous naive analysis. This is, however, the correct result.

The contradiction between the above arguments under-
scores the need for a more rigorous analysis. Modelling
circuit noises as stochastic processes provides the required
generality and rigour. Since the local oscillator is periodic,
the processes are cyclostationary [6, 7], i.e., their statistics
vary periodically with time. The auto-correlation function
of any cyclostationary process z(t) (defined as R..(t,7) =
E[z(t)z(t + 7)], E]-] denoting expectation) can be expanded
in a Fourler series in ¢:

R..(t,7) = Z R.,(7) gIi2m fot )

t=—00

R.,(7) are termed harmonic autocorrelation functions. The
periodically time-varying power of z(t) is its autocorrelation
function evaluated at 7 = 0, i.e., R,.(¢,0). The quantities
R..(0) represent the harmonic components of the periodically-
varying power. The average power is simply the value of
the DC or stationary component, R.,(0)'. The frequency-
domain representation of the harmonic autocorrelations are
termed harmonic power spectral densities (HPSDs) S.,(f)
of z(t), defined as the Fourier transforms:

S..(f) = / R. () e 3™ dr (2)

-—00

Equations can be derived that relate the HPSDs at the in-
puts and outputs of various circuit blocks. By solving these
equations, any HPSDs in the circuit can be determined.

Consider, for example, the circuit in Fig. 1. The in-
put and output HPSDs of a perfect cosine mixer with unit
amplitude can be shown [8] to be related by:

S“k—z —Jo up \J — Jo uy 0
5 f) U=5) | Su(q= )4 S0 1 1)
+S“k+2 (I+ fo) (3)

(u and v denoting the input and output, respectively). The
HPSD relation for a filter with transfer function H(f) is [8]:

Sop (f) = H(=F)H(f + Kk fo) Su, (f) (4)

The HPSDs of the circuit are illustrated in Fig. 2. Since
the input noise i(t) is stationary, its only nonzero HPSD
is the stationary component S;,(f), assumed to be unity
in the frequency band [~ B/2, B/2], as shown. From Equa-
tion 3 applied to the first mixer, three nonzero HPSDs (S,,,
Sz, and S»_,, shown in the figure) are obtained for z(¢).

1 Stationary processes are a special case of cyclostationary pro-
cesses, where the autocorrelation function (hence the power) is inde-
pendent of the time ¢; it follows that R, (7) = 0 if i # 0.

These are generated by shifting the input PSD by % fo and
scaling by 1/4; in contrast to the naive analysis, the sta-
tionary HPSD is not the only spectrum used to describe
the upconverted noise. From Equation 4, it is seen that the
ideal bandpass filter propagates the three HPSDs of z(t)
unchanged to y(t). Through Equation 3, the second mixer
generates five nonzero HPSDs, of which only the station-
ary component So,(f) is shown in the figure. This is ob-
tained by scaling and shifting not only the stationary HPSD
of y(t), but also the cyclostationary HPSDs, which in fact
contribute an extra 1/4 to the lobe centered at zero. The
average output noise (the shaded area under So, (f)) equals
3/8 of the input noise.

iy
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| of(t)
| stationary
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Figure 2: HPSDs of mixer-filter-mixer circuit

This simple example illustrates that HPSDs are a rig-
orous and convenient way to analyze RF noise. The HPSD
formulation is a powerful one: incorporating a non-ideal
filter is simple using Equation 4, and noise propagation
through the circuit is easy to visualize. Non-intuitive re-
sults regarding the stationarity of filtered noise have also
been established using HPSDs [8]. The formulation is useful
not only for hand-calculations and proofs, but also for sim-
ulating large circuits, since the HPSDs of circuit unknowns
obey a block-matrix relation. This equation, together with
an efficlent algorithm to compute it for large circuits, is
described in Section 3.

3 Efficient cyclostationary noise computa-
tion algorithm

Noise in any nonlinear circuit can be analyzed using the
circuit’s ODEs:

q(=(t)) + f(z(8)) +b(t) + Au(t) =0 (5)

z(t) are the circuit unknowns, b(t) the periodic large-signal
excitations and u(t) the device noise generators. Since the
noise is small, it can be analyzed using a small-signal per-
turbation about the periodic noise-free solution z*(t). A
time-varying linearization yields:

Cy+GHy+Au(t)=0 (6)

where y(t) represents the small-signal deviations due to
noise. Equation 6 describes a linear periodically time-varying
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(LPTV) system with input u(t) and output y(t). The sys-
tem can be characterized by its time-varying transfer func-
tion H(t, f). H(t, f) is periodic in ¢ and can be expanded in
a Fourier series similar to Equation 1. Denote the Fourier
components (harmonic transfer functions) by H;(f), .
Since u(t) and y(t) are vector processes, their autocorre-
lation functions are matrices R,.(t,7) = E [z(t)zT(t + T)],
consisting of auto- and cross-correlations. Similarly, the
HPSDs S:,(f) are also matrices. One of the main contri-
butions of this work is a block-matrix relation between the
input and output HPSDs matrices (* denotes the Hermi-

tian):
Sae(f) = H(S) Suu(H) H'(F) Y]

H(f) (the conversion matriz) is the following block-structured

matrix (f" denotes f + kfo):

Ho(f')  Hi(f%) Ha(f) -
Ho(fYy Ho(f°) Hi(f 7Y - (8)
Hoo(f') H-a(f%) Ho(F7') -

H(f) =

Suu(f) and 8. (f) are similar to H{f): their transposes
ST ) have the same structure, but with H;(f *) replaced
by ST.(f*).

Equation 7 expresses the output HPSDs, contained in
Sz2(f), in terms of the input HPSDs (contained in Su.(f))
and the harmonic transfer functions of the circuit (con-
tained in #(f)). The HPSDs of a single output variable
zp(t) (both auto- and cross-terms with all other output vari-

ables) are available in the pt’h column of the central block-
column of 8L, (f). To pick this column, SL.(f) is applied
to a unit vector Eop, as follows ( denotes the conjugate):

82 (f) Eop = H(f) Siu(F) H” (f) Eop 9)

Evaluating Equation 9 involves two kinds of matrix-vector
products: H(f)z and Suu(f)z for some vectors z. Con-
sider the latter product first. If the inputs u(t) are station-
ary, as can be assumed without loss of generality [8], then
Suu(f) is block-diagonal. In practical circuits, the inputs
u(t) are either uncorrelated or sparsely correlated. This re-
sults in each diagonal block of 8., (f) being either diagonal
or sparse. In both cases, the matrix-vector product can be
performed efficiently.

The product with #(f) can also be performed efficiently,
by exploiting the relation H(f) = J7'(f)A[9). Aisa
sparse incidence matrix of the device noise generators, hence
its product with a vector can be computed efficiently. J(0)
is the harmonic balance Jacobian matrix [10] at the large-
signal solution z”(t). J(f) is obtained by replacing kfo by
kfo + f in the expression for the Jacobian. By using iter-
ative linear algebra techniques, it can be shown [10] that
the product J™'z can also be computed with effort that
grows linearly with circuit size and almost linearly with the
number of large-signal harmonics. As a result, Equation 9
can be computed efficiently for large circuits to provide the
auto- and cross-HPSDs of any output of interest.

4 Results

The fast cyclostationary noise algorithm of Section 3 has
been prototyped in a Bell Labs internal simulator. The

Figure 3: Mixer cell
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Figure 4: Mixer: Stationary PSD at output

algorithm has been verified against Monte-Carlo noise sim-
ulations with 60,000 sample waveforms, to an accuracy of
within 2%. In this section, noise analysis results from two
circuits are presented — a mixer excited by a single LO
tone, and a large circuit, consisting of an I-channel buffer
and mixer, driven by two strong tones (a signal and an LO).

4.1 Mixer analysis

The mixer in Fig. 3 was analyzed for cyclostationary noise
to investigate the effect of large-signal LO variations on the
output noise. The LO signal of amplitude 1.5V is applied
at the base of the first transistor, as shown. The RF input
signal is applied through the current source, which is held at
a DC value of 2mA (i.e., no RF signal) for the noise analy-
sis. Two simulations were performed: a stationary analysis
with no LO present to obtain the noise of the quiescent cir-
cuit, and a cyclostationary analysis with the LO amplitude
at 1.5V. The former simulation took a few seconds and the
latter (with 25 large-signal harmonics) 40 seconds per fre-
quency point. The stationary PSD is shown in Fig. 4, and
some nonstationary HPSDs in Fig. 5.

From Fig. 4, it can be seen that the presence of a large
LO signal reduces the average noise power at the output.
This is a known property of switching mixers. Fig. 5 shows
the first six harmonic PSDs of the noise at the output when
the LO is 1.5V.

From a knowledge of the HPSDs, it is possible to cre-
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Harmonic PSDs for LO=1.5V
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Figure 5: Mixer: Harmonic PSDs at output

ate system-level macromodels for functional blocks like the
mixer. All the noise of the circuit can then be concen-
trated in an equivalent noise source with the same HPSDs.
While only the stationary PSD determines the average noise
power, the nonstationary HPSDs must be included because
they can contribute to the stationary component of some
other block, as discussed in Section 2.

4.2 I-channel buffer and mixer circuit

The next example is a portion of the W2013 RFIC, con-
sisting of an I-channel buffer feeding a mixer. The circuit
consisted of about 360 nodes, and was excited by two tones
— a local oscillator at 178Mhz driving the mixer, and a
strong RF signal tone at 80Khz feeding into the I-channel
buffer. Two noise analyses were performed. The first anal-
ysis included both LO and RF tones (sometimes called a
three-tone noise analysis). The circuit was also analyzed
with only the LO tone to determine if the RF signal af-
fects the noise significantly. The two-tone noise simula-
tion, using a total of 525 large-signal mix components, re-
quired 300MB of memory and for each frequency point, took
40 minutes on an SGI machine (200MHz R10000 CPU).
The one-tone noise simulation, using 45 harmonics, needed
70MB of memory and took 2 minutes per point.

The stationary PSDs of the mixer output noise for the
two simulations are shown in Fig. 6. It can be seen that the
presence of the large RF signal increases the noise by about
1/3. This effect is difficult to predict with the technique
of [4]. The peaks in the two waveforms, located at the LO
frequency, are due to noise shifted from other frequencies.

5 Conclusion

An efficient frequency-domain algorithm has been presented
for computing noise in nonlinear circuits. The method uses
harmonic PSDs in its noise formulation. A block-structured
matrix equation for the output noise statistics is the central
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Figure 6: Stationary PSDs for the I-Q mixer/buffer circuit

result enabling the fast algorithm. The algorithm, which
has been verified against Monte-Carlo simulations, is effi-
cient for circuits with many large tones and can generate
information useful for noise macromodels. Results from a
mixer cell and a large I-channel buffer and mixer RF inte-
grated circuit have been presented, predicting the fact that
the presence of multiple tones can significantly affect the
noise performance of a circuit.
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