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Abstract

Phase noise is a topic of theoretical and practical interest in electronic circuits,
as well as in other fields such as optics. Although progress has been made in
understanding the phenomenon, there still remain significant gaps, both in its
fundamental theory and in numerical techniques for its characterisation. We
present a rigorous nonlinear analysis for phase noise in oscillators and reach
the following conclusions:

o The power spectrum of an oscillator does not blow up at the carrier
frequency as predicted by many previous analyses. Instead, the shape
of the spectrum is a Lorentzian (the shape of the squared magnitude of
a one-pole lowpass filter transfer function) about each harmonic.

¢ The average spread (variance) of the timing jitter grows exactly linearly
with time. A single scalar constant suffices to characterise both the
timing jitter and spectral broadening due to phase noise.

o Previous linear analyses of phase noise make unphysical predictions
such as infinite noise power. i

We develop efficient computational methods in the time and frequency do-
mains for predicting phase noise. Our techniques are practical for large cir-
cuits. We obtain good matches between spectra predicted using our technique
and measured results, even at frequencies close to the carrier and its harmonics,
where most previous techniques break down.

1 Imtroduction

Oscillators are ubiquitous in physical systems, especially electronic
and optical ones. For example, in radio frequency (RF) communica-
tion systems, they are used for frequency translation of information
signals and for channel selection. Oscillators are also present in digital
electronic systems which require a time reference, i.e., a clock signal,
in order to synchronise operations.

Noise is of major concern in oscillators, because introducing even
small noise into an oscillator leads to dramatic changes in its frequency
spectrum and timing properties. This phenomenon, peculiar to os-
cillators, is known as phase noise or timing jitter. A perfect oscilla-
tor would have localized tones at discrete frequencies (i.e., harmon-
ics), but any corrupting noise spreads these perfect tones, resulting in
high power levels at neigbouring frequencies. This effect is the major
contributor to undesired phenomena such as interchannel interference,
leading to increased bit-error-rates (BER) in RF communication sys-
tems. Another manifestation of the same phenomenon, jitter, is impor-
tant in clocked and sampled-data systems: uncertainties in switching
instants caused by noise lead to synchronisation problems. Charac-
terising how noise affects oscillators is therefore crucial for practical
applications. The problem is challenging, since oscillators constitute a
special class among noisy physical systems: their autonomous nature
makes them unique in their response to perturbations.

Considerable effort has been expended over the years in under-
standing phase noise and in developing analytical, computational and
experimental techniques for its characterisation (see Section 2 for a
brief review). Despite the importance of the problem and the large
number of publications on the subject, a consistent and general treat-
ment, and computational techniques based on a sound theory, appear
to be still lacking. In this work, we provide a novel, rigorous theory for
phase noise which leads to efficient numerical methods for its charac-
terisation. Our techniques and results are general; they are applicable
to any oscillatory system, electrical (resonant, ring, relaxation, etc.) or
otherwise (gravitational, optical, mechanical, biological, etc.). We ap-
ply our numerical techniques to a variety of practical oscillator designs
and obtain good matches against measurements.

The paper is organised as follows. In Section 2, we give a brief
review of the previous work, and in Section 3, we present an overview
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of our main results. Because of space limitations, discussion of back-
ground material, proofs and derivations [DMR97b] are omitted. In
Section 4, we derive several quantities commonly used in oscillator
design to quantify jitter and spectral properties, and in Section 5, we
apply our methods to several practical electrical oscillators.

2  Previous work

A great deal of literature is available on the phase noise problem. Here
we mention only some selected works from the fields of electronics
and optics. Most investigations of electronic oscillators aim to provide
insight into frequency-domain properties of phase noise, in order to de-
velop rules for designing practical oscillators; well-known references
include [Lee66, Rob91, Roh83, Vig94, Raz95]. Usually, these ap-
proaches apply linear time-invariant (LTI) analysis to high-Q or quartz-
crystal type oscillators designed using standard feedback topologies.
While often of great practical importance, such analyses often require
large simplifications of the problem, and skirt fundamental issues such
as why noisy oscillators exhibit spectral dispersion whereas forced sys-
tems do not. Attempts to improve on LTI analysis have borrowed
from linear time-varying (LTV) analysis methods for forced (nonoscil-
latory) systems (e.g., [Haf66, Kur68, RCMC94, OT97}). LTV analyses
can predict spectra more accurately than LTI ones in some frequency
ranges; however, LTV techniques for forced systems retain nonphysi-
cal artifacts of LTI analysis (such as infinite output power) and provide
no real insight into the basic mechanism generating phase noise.

Oscillators that rely on abruptly switching elements, e.g., ring and
relaxation oscillators, are more amenable to noise analysis. Pertur-
bations cause variations in element delays, or alter the time taken
to reach switching thresholds, thus directly determining timing jit-
ter. [WKG94, McN94, AM83] predict phase noise by using analyti-
cal techniques on idealized models of specific oscillator circuits. The
mechanism of such oscillators suggests the fundamental intuition that
timing or phase errors increase with time. However, this intuition does
not extend naturally to other types of oscillators.

More sophisticated analysis techniques predominate in the domain
of optics [Lax67]. Here, stochastic analysis is common, and it is well
known that phase noise due to white noise perturbations is described
by a random walk rocess. Although justifications of this fact are of-
ten based on approximations, precise descriptions of phase noise have
been obtained for certain systems. The fact that a random walk phase
noise process leads to Lorentzian power spectra is also well estab-
lished, e.g., [Fos88, VV83]. However, a general theory is apparently
not available even in this field.

Possibly the most general and rigorous treatment of phase noise
to date has been that of Kartner [K&r90]. In this work, the oscillator
response is decomposed into phase and magnitude components, and
a differential equation is obtained for phase error. By solving a lin-
ear, small-time approximation to this equation with stochastic inputs,
Kirtner obtains the correct Lorentzian spectrum for the power spec-
tral density due to phase noise. Despite these advances, certain gaps
remain, particularly with respect to the derivation and solution of the
linear differential equation for phase error.

Recently, Hajimiri [HL97] has proposed a phase noise analysis
based on a conjecture for decomposing perturbations into two (orthog-
onal) components, generating purely phase and amplitude deviations
respectively. This intuition is similar to Kértner’s approach [K&r90].
Unfortunately, the conjecture for orthogonally decomposing the pertur-
bation into components that generate phase and amplitude deviations,
while intuitively appealing, can be shown to be invalid [DMR97a].
Design intuition resulting from the conjecture about noise source con-
tributions can also be misieading.

In summary, the available literature often identifies basic and useful

4.21

0-7803-4292-5/97/$10.00 © 1998 IEEE

45
IEEE 1998 CUSTOM INTEGRATED CIRCUITS CONFERENCE



facets of phase noise separately, but lacks a unifying theory clarifying
its fundamental mechanism. Furthermore, existing numerical methods
for phase noise are based on forced-system concepts which are inap-
propriate for oscillators and can generate incorrect predictions.

3 Overview of main results

Consider the oscillator shown in Figure 1, consisting of a lossy LC
circuit with an amplitude-dependent gain provided by the nonlinear
resistor. The nonlinear resistor has a negative resistance region which
pumps energy into the circuit when the capacitor voltage drops, thus
maintaining stable oscillation. A current source b(?) is also present,
representing external perturbations due to noise. When there is no per-
turbation, ie., b(t) is zero, the oscillator oscillates with a perfectly
periodic signal x(¢) (a vector consisting of the capacitor voltage and
the inductor current), shown in Figure 2(a). In the frequency domain,
the unperturbed waveform consists of a series of impulses at the fun-
damental and harmonics of the time period, as shown in Figure 2(b).

Figure 1: Simple oscillator

T fo 2fo 3fo

(a) Time domain (b) Frequency domain

Figure 2: Oscillator waveforms

In general, the dynamics of any oscillator can be described by a system
of differential equations:

x= f(x) @

where x € IR" and f(-) : R"—IR". We consider systems that have a
periodic solution x,(¢) (with period T) to (1), i.e., a stable limit cycle
in the n-dimensional solution space. We are interested in the response
of such systems to a small state-dependent perturbation of the form
B(x)b(t) where B(-) : R"—=IR"*? and b(-) : R—IR”. Hence the per-
turbed system is described by

k= f(x) +B(x)b(r) @

Although our eventual intent is to understand the response of the os-
cillator when b(¢) is random noise, it is useful to consider first the case
when b() is a known deterministic signal. We carry out a rigorous
analysis of this case and obtain the following results:

1. The unperturbed oscillator’s periodic response x,(r) is modified
to x5(r 4 0(r)) + y(¢) by the perturbation, where:

(a) o) is a changing time shift, or phase deviation, in the
periodic output of the unperturbed oscillator.

(b) ¥(r) is an additive component, which we term the orbital
deviation, to the phase-shifted oscillator waveform.

2. o(t) and y(r) can always be chosen such that:

(a) a(r) will, in general, keep increasing with time even if the
perturbation b(¢) is always small.
(b) the orbital deviation y(z), on the other hand, will always
remain small.
These results concretise existing intuition amongst designers about 0s-
cillator operation. Our proof of these facts is mathematically rigor-
ous; further, we derive equations for o(r) and y(¢) which lead to qual-
itatively different results about phase noise compared to previous at-
tempts. This is because our results are based on a new nonlinear per-
turbation analysis that is valid for oscillators, in contrast to previous
approaches that rely on linearisation. Analysis based on linearisation

is not consistent for oscillators and results in non-physical predictions.
Our approach leads to a nonlinear differential equation for the phase
shift o(z):

doyr)
A

where v;(¢) is periodically time-varying vector, which we call the Flo-
quet vector [DMR97b]. The Floquet vector, which can be computed
efficiently, plays a crucial role in our analysis. Because of space limita-
tions, we will not provide the derivation of (3) here. For the derivations
and proofs of the above results, we use the Floquet theory [Far94] of
linear periodically time-varying systems. From (3), one can see that if
the perturbation is orthogonal to the Floquet vector for all 7, the phase
error 0,(¢) is zero. The Floquet vector, in general, has no relationship
to the tangent vector %;(¢) to the limit cycle. Authors in [HL97] con-
jecture that if the perturbation is orthogonal to the tangent vector, then
there is no phase error. This conjecture, even though it might sound
intuitive, is not correct. The direction of the perturbation that results in
zero phase error is the direction that is orthogonal to the Floquet vec-
tor, which is in general (and for almost all practical oscillators) oblique
to the tangent

Next, we consider the case where the perturbation b(t) is random
noise, i.e., a vector of white noise processes — this situation is impor-
tant for determining practical figures of merit like zero-crossing jitter
and spectral purity (i.e., spreading of the power spectrum). Jitter and
spectral spreading are in fact closely related, and both are determined
by the manner in which o/(t), now also a random process, spreads with
time. We consider random perturbations in detail and establish that:

1. The average spread of the jitter (mean-square jitter, or variance)

increases precisely linearly with time, i.e.,

E [o(1)] = o%() =t

= VT (o) B+ (D)), o(0)=0 ()

“

where

T
c= %fo VIT(T)B(xs(T))BT(xs(T))V‘(T)dT

2. The power spectrum of the perturbed oscillator is a Lorentzian
about each harmonic. A Lorentzian is the shape of the squared
magnitude of a one-pole lowpass filter transfer function.

3. A single scalar constant c is sufficient to describe jitter and
spectral spreading in a noisy oscillator.

4. The oscillator’s output with phase noise, i.e., x;(r 4+ .(r)) is a
stationary stochastic process.

If we define X; to be the Fourier coefficients of xs(r):

)

o)=Y Xiexp(ji2nfor)

=00

then, the spectrum of the stationary oscillator output xs(¢ + o(2)) is
given by

fozizc
n2fgidc +(f+ify)?

where fop = 1/T is the fundamental frequency. The phase deviation
o) does not change the total power in the periodic signal xs(¢), but it
alters the power density in frequency, i.e., the power spectral density.
For the perfect periodic signal x(t), the power spectral density has
& functions located at discrete frequencies (i.e., the harmonics). The
phase deviation (t) spreads the power in these 8 functions in the form
given in (6), which can be experimentally observed with a spectrum
analyzer.

The above results have important implications. The Lorentzian
shape of the spectrum implies that the power spectral density at the
carrier frequency and its harmonics has a finite value, and that the to-
tal carrier power is preserved despite spectral spreading due to noise.
Previous analyses based on linear time-invariant (LTT) or linear time-
varying (LTV) concepts erroneously predict infinite noise power den-
sity at the carrier, as well as infinite total integrated power. That the

S(f)=2 3 XX} (©6)
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oscillator output is stationary is surprising at first sight, since oscilla-
tors are nonlinear systems with periodic swings, hence it might be ex-
pected that output noise power would change periodically as in forced
systems. However, it must be remembered that while forced systems
are supplied with an external time reference (through the forcing), os-
cillators are not. Cyclostationarity in the oscillator’s output would, by
definition, imply a time reference. Hence the stationarity result reflects
the fundamental fact that noisy autonomous systems cannot provide a
perfect time reference.

We apply our theory above to develop correct (both time and fre-
quency domain) computational techniques that are efficient for prac-
tical circuits [DMR97b]. We derive new numerical methods for jit-
ter/spectral dispersion, with the following features:

1. The methods require only a knowledge of the steady state of the
unperturbed oscillator, and the values of the noise generators.

2. Large circuits are handled efficiently, i.e., computation/memory
scale linearly with circuit size.

3. The separate contributions of noise sources, and the sensitivity
of phase noise to individual circuit devices and nodes, can be
obtained easily.

We use our theory and numerical methods to analyse a variety of oscil-
lators, and compare the results against measurements. We obtain good
matches even at frequencies close to the carrier, unlike most previous
analyses. Our numerical methods are more than three orders of magni-
tude faster than Monte-Carlo simulations, the only alternative method
for producing qualitatively correct predictions. The brute-force Monte-
Carlo technique is the only previously available analysis method, apart
from ours, that is not based on linearisation.

State space interpretations of phase and orbital deviation

The phase and orbital deviations have intuitive interpretations when
the oscillator’s response is viewed in the state-space or phase plane. In
Figure 3, the voltage v(¢) across the capacitor is plotted against the cur-
rent i(¢) through the inductor. The trace for the unperturbed oscillator
forms a closed curve since this waveform is perfectly periodic. When
the oscillator is perturbed, this periodicity is lost. For stable oscilla-
tors, however, the perturbed trajectory remains within a small band
around the unperturbed trajectory, as shown.

Region containing trajectory
o="0f perturbed oscillator x_s(1 + alpha(t)} + y(1):

perturbed oscillator at time t

(): orhital deviation
due 1o perturbation

Limiteycle of
unperturbed
oscillator

2_s(t+ ulpha(t)): phase shitt to

x_s(): unperturbed
ALY wop unperturbed oseillator due to perturbation

oscillator at time t

Figure 3: Oscillator trajectories

The closeness of the perturbed and unperturbed trajectories in the
phase plane does not imply that the time-domain waveforms are also
close to each other. The points on the perturbed and unperturbed tra-
jectory corresponding to a given time ¢ will, in general, be far from
each other, as illustrated in Figure 3. However, the waveform of the
perturbed oscillator does remain close to the unperturbed waveform
after it is time-shifted by o(r). In the figure, this time or phase shift
results in the difference between the unperturbed point x(¢) and the
“phase component” x(¢ + o(t)) of the perturbed trajectory. The or-
bital deviation y(¢) due to the perturbation is also shown.

oft) grows very much like the integral of the perturbation. For
a constant perturbation, for example, o(¢) is approximately a linear
ramp. This indicates how the frequency of the oscillator can change
due to perturbations, for a linearly increasing phase error is equivalent
to a frequency error. It also suggests why cycle-to-cycle (i.e., per cycle)
timing jitter is a constant quantity.

4 Phase noise/timing jitter characterisation

In this section, we discuss several popular characterisations of phase
noise that is used in the design of electronic oscillators, and how
they can easily be obtained from the stochastic characterisation we de-
scribed in Section 3.

Single-sideband phase noise spectrum in dBc/Hz

In practice, we are usually interested in the PSD around the first har-
monic, i.e., S(f) for f around fy. The single-sideband phase noise
L(fm) (in dBc/Hz) that is very widely used in practice is defined as

S o+v Jm
Lfw) = 10logyq (%)

For “small” values of ¢, and for 0 < f;, < fo, (7) can be approximated
as

@

fie
L(fm) = 1OIOgIO Tt2f4(_‘2 +f2
0 m

Furthermore, for fgc & fm < fo, L(fm) can be approximated by

2
L{fm) % 101ogyg ((ff%) c)

Notice that the approximation of L{ f,) in (9) blows up as f,,— 0. For
0< fu<m fgc, (9) is not accurate, in which case the approximation in
(8) should be used.

Timing jitter

In some applications, such as clock generation and recovery, one is
interested in a characterisation of the phase/time deviation o(t) itself
rather than the spectrum of x;(r + (¢)). In these applications, an os-
cillator generates a square-wave like waveform to be used as a clock.
The effect of the phase deviation a(¢) on such a waveform is to create
Jitter in the zero-crossing or transition times. In Section 3, we stated
that () (for an autonomous oscillator) becomes a random variable
with a linearly increasing variance, i.e., 0'2(t) = ct. Let us take one of
the transitions (i.e., edges) of a clock signal as a reference (i.e., trigger)
transition and synchronize it with z = 0. If the clock signal is perfectly
periodic, then one will see transitions exactly at 4 = kT, k= 1,2,...
where T is the period. For a clock signal with a phase deviation c(t)
that has a linearly increasing variance as above, the timing of the kth
transition #; will have a variance (i.e., mean-square error)

®

&)

E [(tk—kT)z] = ckT (10)
The spectral dispersion caused by a(z) in an oscillation signal can be
observed with a spectrum analyzer. Similarly, one can observe the
timing jitter caused by o(z) using a sampling oscilloscope. McNeill
in [McN94] experimentally observed the linearly increasing variance
for the timing of the transitions of a clock signal generated by an
autonomous oscillator, as predicted by our theory. Moreover, ¢ (in
secz.Hz) in (10) exactly quantifies the rate of increase of timing jitter
with respect to a reference transition. Another useful figure of merit is
the cycle-to-cycle timing jitter, i.e., the timing jitter in one clock cycle,
which has a variance cT.

Noise source contributions

The scalar constant ¢ appears in the characterisations we discussed
above. It is given by (5). where B(.) : IR"—IR"*” represents the modu-
lation of the intensities of the noise sources with the large-signal state.
(5) can be rewritten as

21T o, ) p
c=3 7/ 0 () Bir)dr= ¥ i
e 0 i
i=1 i=1
where p is the number of the noise sources, i.e., the column dimension

of B(x4(.)), and B;(.) is the ith column of B(x,(.)) which maps the ith
noise source to the equations of the system. Hence,

¢i= %/()T{v{(r)Bi(m)]zdz

an

(12)
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represents the contribution of the ith noise source to ¢. Thus, the ratio
ci

c= Zf;

16

13)

can be used as a figure of merit representing the contribution of the
ith noise source to phase noise/timing jitter. Note that the phase er-
ror a¢) is described by a nonlinear differential equation where the
noise sources are the excitations. Hence, one can not use the superpo-
sition principle to calculate the phase error arising from multiple noise
sources. On the other hand, the phase error variance 62() = ct is lin-
early related to the noise sources, i.e., the variance of phase error due
to two noise sources is the summation of the variances due to the noise
sources considered separately.

Phase noise sensitivity

One can define

T
o1 [ l@eara (14)
T Jo

(where 1 < k < nand e, is the kth unit vector) as the phase noise/timing
Jitter sensitivity of the kth equation (i.e., node), because e represents a
unit intensity noise source added to the kth equation (i.e., connected to
the kth node) in (1). The phase noise sensitivity of nodes can provide
useful information in search for novel oscillator architectures with low
phase noise.

5 Examples

We now present examples for phase noise characterisation of practical
electronic oscillators.

Oscillator with a bandpass filter and a nonlinearity [DTS97]

This oscillator (Figure 5) consists of a Tow-Thomas second-order
bandpass filter and a comparator [DTS97]. If the OpAmps are con-
sidered to be ideal, it can be shown that this oscillator is equivalent
(in the sense of the differential equations that describe it) to a paral-
lel RLC circuit in parallel with a nonlinear voltage-controlled current
source (or equivalently a series RLC circuit in series with a nonlinear
current-controlled voltage source) as in Figure 1. In [DTS97], authors
breadboarded this circuit with an external white noise source (inten-
sity of which was chosen such that its effect is much larger than the
other internal noise sources), and measured the PSD of the output with
a spectrum analyzer. For Q0 =1 and f, = 6.66 kHz, we performed
a phase noise characterisation of this oscillator using our numerical
methods, and computed the periodic oscillation waveform x,(¢) for the

output and ¢ = 7.56 x 10~8 sec2.Hz. Figure 5(a) shows the PSD of the
oscillator output computed using (6), and Figure 5(b) shows the spec-
trum analyzer measurement'. The single-sideband phase noise spec-
trum using both (8) and (9) is in Figure 5. Note that (9) can not predict
the PSD accurately below the cut-off frequency f. = nfgc =10.56 Hz
(marked with a * in Figure 5) of the Lorentzian.

Figure 4: Band-pass filter and a comparator

2.5 GHz Oscillator with on-chip inductor [Kin97]

A simplified schematic for this oscillator is in Figure 7. We com-
puted ¢ = 1.34 x 10719 sec2.Hz which corresponds to L(f,) =
—100.65 dBc/Hz at f,, = 100 KHz using (9). The measured SSB
phase noise at f,, = 100 KHz is L(f,) = —96 dBc/Hz. We believe
that the 4.65 dBc/Hz difference between the measured result and the
one simulated is due to the following: (a) The oscillator circuit simu-
lated was not extracted from the layout. (b) The MOS device models
and the noise models used in the simulation were not characterised for

!The PSDs are plotted in units of dBm.

3

3

Power Spectral Density (dBim)
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(a) Computed PSD (4 harmonics) (b) Measured PSD [DTS97]

Figure 5: Computed and measured PSD
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Figure 6: L(f,,) computed with both (8) and (9)
the process the oscillator was fabricated with. We generated a noise
source contribution report for this oscillator using (13). M1, M2 con-

tribute 41% to ¢, M3, M4 and M5 contribute 15%, 35% is from induc-
tor losses, and 9% is from the rest of the noise sources in the circuit.

Figure 7: Oscillator with on-chip inductor: simplified schematic
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