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Abstract

Recently, the MPDE (multirate partial differential equation) formulation was
introduced for analysing circuits with widely-separated time scales [Roy98]. A
striking feature of the MPDE is that it leads to efficient methods for simulat-
ing several categories of circuits that are difficult or impossible to analyse by
existing simulation techniques. In this paper, numerical methods based on the
MPDE are applied to several subsystems important in portable wireless sys-
tems, namely DC-DC power converters, switched-capacitor filters and RF mix-
ers. Simulations indicate speedups of more than two orders of magnitude over
traditional methods. It is also shown how the MPDE can be used to abstract
compact high-level models from detailed circuit descriptions of wireless sys-
tem components.

1 Introduction

The presence of widely-separated time scales in circuits such as power
converters, switched-capacitor circuits, RF mixers, etc., creates a sig-
nificant bottleneck for existing simulation tools. Such circuits com-
bine strongly nonlinear elements with at least two well-separated time
scales (e.g., clock/LO and signal), and this combination of properties
often breaks traditional numerical methods (e.g., transient analysis,
shooting, harmonic balance). Available tools are typically slow and
inaccurate when dealing with such circuits.

Recently, we introduced a general formulation for multi-rate cir-
cuits [Roy98, Roy97] called the multi-rate partial differential equa-
tion (MPDE). By representing multi-rate signals as functions of more
than one time variable (see Section 3 for an illustration), this formu-
lation makes it possible to analyse strong nonlinearities together with
widely-separated time scales efficiently. In this paper, we apply new
MPDE-based numerical techniques to circuits for power-conversion,
switched-capacitor filtering and switched RF mixing. These circuits,
important in wireless/portable applications, often take disproportion-
ately long to design because of the lack of effective simulation meth-
ods. The new methods are more than two orders of magnitude faster
than traditional techniques and also produce more accurate results.

We also show how the MPDE addresses the problem of generating
accurate higher-level models of complex building blocks. This capa-
bility is useful for bottom-up design of wireless and other systems.
MPDE-based analysis is used to generate representations of linear
time-varying (LTV) transfer functions, which often describe the opera-
tion of communication systems adequately. Reduced-order modelling
techniques for linear operators are used to produce smaller, higher-
level models that are cheaper to evaluate, yet approximate the input-
output behaviour of the more complex system well. Capturing the
time-varying nature of these transfer functions ensures that important
phenomena like frequency translation are modelled correctly.

In Section 2, previous simulation techniques relevant to the multi-
rate problem are reviewed briefly. The MPDE formulation, together
with new numerical methods based on it, is described in Section 3.
MPDE-based reduction of LTV transfer functions is presented in Sec-
tion 4. Application of the new methods to several circuits is described
in Section 5.

2 Previous methods and limitations

Existing time-domain methods such as transient integration and shoot-
ing, while suitable for strong nonlinearities, have difficulty with widely
separated time-scales. They are forced to follow the details of wave-
forms at the fastest time scale, for the much larger durations of the
slower time scales. This results in an excessive number of simulation
timepoints and also accuracy 1oss.

Frequency-domain ~ methods like harmonic balance
(e.g., [KWSVI0]) can, on the other hand, handle several time
scales or tones, but have difficulty with strong nonlinearities. The
reason is that strong nonlinearities tend to generate signals with sharp

edges and corners, which are inefficient to represent in the frequency
domain because they require many Fourier components. Strong
nonlinearities also cause problems with preconditioning, needed in
recent harmonic balance methods (e.g., [MFR95]).

Mixed frequency-time methods, such as those of Ushida and
Chua [UC84] and Kundert et al [KWSV90], have attempted to com-
bine the advantages of both domains. However, these techiques rely
on highly localized sampling, resulting in numerical ill-conditioning.
They are also limited to only one strongly nonlinear tone. The special-
ized program SWITCAP [FTW83], designed for switched-capacitor
circuits, uses idealized switch models to achieve significant speedups
over more general algorithms. This approach ignores important non-
linear effects; in particular, it is limited in its capability to predict signal
path harmonic distortion, a critical figure of merit for SC designs.

3 MPDE-based numerical algorithms

In this section, an overview of the MPDE and related numerical tech-
niques is presented. Many details are omitted for brevity and may be
found in [Roy98].

The key to the MPDE formulation is the use of multivariate func-
tions (functions of several time variables) to represent signals with sep-
arated time scales efficiently. To understand the concept, consider the
product of a 1 Hz sine wave and a 1Ghz pulse train, given by:

y(t) = sin(2nt) pulse (L) )}

109

Figure 1 depicts y(¢), with the pulse train frequency of 10° changed
to 50 for viewing convenience. This quasi-periodic signal is expensive
to represent in the time domain because 10° pulses of different shapes
need to be sampled before the waveform repeats. It is this problem
that makes traditional time-domain techniques like SPICE’s transient
analysis inefficient for such signals. Representation in the frequency
domain as a two-tone signal is also inefficient because the pulses re-
quire many Fourier components for accuracy.

Figure 1: y(¢)

Consider, however, the function of two variables obtained by re-
placing the ‘slow’ time component by #; and the ‘fast’ time component
by t:

$(t1,12) = sin(2mn) pulse (%) @

Y(t1,%2), a bi-variate form of y(1), is shown in Figure 2. Notice that
it is easy to represent y accurately using relatively few numerical sam-
ples, in contrast to y(¢) in Figure 1. The number of samples does not
depend on the separation of the two time scales, which merely deter-
mines the scaling of the axes. Moreover, y(¢) can be easily obtained by
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Figure 2: §(t1,1)
interpolation from samples of §(11,#), using the fact that y(¢) = §(¢,1)
and that §(t1,#2) is periodic in each argument.

This observation is the basis of the MPDE formulation, in which
all the waveforms in a circuit are represented in their bi-variate forms
(or multivariate forms if there are more than two time scales). The key
to efficiency is to solve for these waveforms directly, without involving
the numerically inefficient one-dimensional forms at any point. To do
this, it is necessary to first describe the circuit’s equations using the
multivariate functions. The traditional form of a circuit’s equations,
used in all simulators, is the Differential-Algebraic Equation (DAE):

4(x) + f(x) = b(1) 3

x(¢) is the vector of circuit unknowns (node voltages and branch cur-
rents); g denotes the charge/flux terms and f the resistive terms; b(t)
is the vector of excitations to the circuit (typically from independent
voltage/current sources). It can be shown [Roy98] that if £(z1,#,) and
B(tl ,12) denote the bi-variate forms of the circuit unknowns and exci-
tations, then the following MPDE is the correct generalization of (3) to
the bi-variate case:

(%) | 9q(%)

o T + f(®) =b(n,n) @

More precisely, if b is chosen to satisfy b(t) = b(t,1), and £ satisfies (4),
then it can be shown that x(¢) = £(¢,¢) satisfies (3). Also, if (3) has a
quasi-periodic solution, then (4) can be shown to have a corresponding
bi-variate solution.

By solving the MPDE numerically in the time domain, strong non-
linearities can be handled efficiently. The following new methods have
been developed for solving (4):

1. Quasi-periodic time-domain methods (MFDTD and HS):
Quasi-periodic solutions are found by enforcing bi-periodic
boundary conditions on the MPDE. In the Multivariate Finite
Difference Time Domain (MFDTD), (4) is discretized on a grid
in the #; -t plane by approximating the differentiation operators
with a numerical differentiation formula. The resultant system
of nonlinear equations, together with the bi-periodic boundary
conditions, is solved using a nonlinear solution method. The
grid is refined adaptively so that the solution is captured
efficiently. Another purely time-domain method, Hierarchical
Shooting (HS), is a generalization of the traditional shooting
method to multiple time scales. Both MFDTD and HS are
appropriate for signals with strongly nonlinear activity in every
component, such as in power converters.

2. Quasi-periodic mixed frequency/time method (MMFT): In
some circuits, the slow-scale signal path is often almost lin-
ear, while the fast-scale action is highly nonlinear. Linearity in
the signal path can be exploited by expressing the slow scale
components in a short Fourier series, and solving the mixed
frequency/time system of equations. This Multivariate Mixed
Frequency Time (MMFT) method is often more efficient for
switched-capacitor filters and switching mixers.

3. Time domain envelope methods (TD-ENV): Envelope-type
solutions can be generated from the MPDE by applying mixed
initial/periodic boundary conditions.  Novel time-domain
methods based on FDTD or shooting along the fast time scale,
and transient integration along the slow time scale, have been

devised. These techniques are capable of handling circuits
with nonlinearities on a fast time scale, e.g., power converters,
switched-capacitor filters, switching mixers, etc..

The above numerical techniques generate sparse matrices with near
diagonal or block-diagonal structure, which makes it convenient to use
iterative linear solution methods (e.g., [Saa96, MFR95]) to solve large
circuits efficiently.

4 MPDE-based compact modelling of LTV systems

Another useful application of the MPDE is for reduced-order mod-
elling of linear time varying (LTV) systems. Existing reduced-order
modelling techniques for linear time invariant (LTI) systems [PR90,
FF95] have proven to be powerful tools for analyzing large systems
efficiently. These methods produce a compact description of a large,
complex system that captures the important aspects of its input-output
behaviour accurately. A similar capability for LTV systems is very de-
sirable, for many RF and communication subsystems can be modelled
as linear time-varying — phenomena such as frequency translation and
cyclostationary noise are captured by LTV representations. Compact
descriptions of complex subsystems can be used to make bottom-up
system-level design of large systems practical.

A difficulty in extending LTI reduction techniques to LTV systems
has been the interference of the time-variations of the system and the
input. In this section, it is shown how the MPDE can be used to over-
come this difficulty and enable reduced-order modelling for LTV sys-
tems.

The time-varying small-signal equations for (3) around any large-
signal excitation bs(?) and corresponding solution x,(¢) are given by:

C(1)i(t) + G(t)x(t) = ru(t)
y(1)=d"x(1)

For (5), the perturbation about the large excitation is assumed to be
in the form ru(t), where u(t) is the scalar input. A scalar output
y(¢) = dTx(t) is also defined. C(¢) and G(t) are the derivative matrices
of g(xs(r)) and f(xs(z)). If the above equation is Laplace-transformed
(analogous to the procedure for LTI systems), the system time variation
in C(¢) and G(¢) interferes with the I/O time variation through a con-
volution. The LTV transfer function H(¢,s) is therefore hard to obtain;
this is the difficulty alluded to earlier. The problem can be avoided by
casting (5) as an MPDE:

&)

C(n) [;Tx;(tl,tz) + gt—i(tl ,12)] +G(t1)x(t,1) = ru(n)

Jnp)=d #(t,n),  y(6)=3(,0)

(6) can also be derived from (4) by setting @(t; 1) = bg(t1) + ru(s).
Notice that the input and system time variables are now separated. By
taking Laplace transforms in # and eliminating £, the time-varying
transfer function H(#y,s) is obtained:

©)

Y(t1,5) = {dT [C(zl) { % + s} +6(n )] - [r]} us)

H(t,8)

H(11,s) can be rewritten in the form:

H(r,s) = dT {14411 [7(n)] ®

where A[z(1y)] = [cm)a—‘;’; +G( )] Chym)] — ©
2 -1

and 7(t1) = [C(rl>5;+c(n)] g 10)

(8) can be used directly by operator versions of reduced-order mod-
elling techniques to obtain a time-varying reduced-order model for
H(1,s) in the form:

Soaln)s & cn)
X obin)s) S+ piln)

H(t,s) ~ (11)
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whete ¢ is a small number, much smaller than the dimension » of the
original system in (6).

As an illustration, consider an explicit moment matching proce-
dure. (8) can be expanded into a Taylor series in s with time-varying
coefficients, i.e., the moments m;(t1):

H(n,s) = dTi(n) —s dTA[7(")] +s* dTA[A[F()] - -

moft1)

12)

my(h) ma(n)

Calculating the moments amounts to a few applications of the operator
A[-], which corresponds to time-varying linear solution of (9). This is
an efficient operation that already forms the inner loop of steady-state
methods like shooting or harmonic balance. Once the moments ;{11 )
are available, 1 is set to a fixed value and any LTI model reduction
technique that uses explicit moments (e.g., AWE [PR90]) can be used
to obtain the coefficients in (11) at #;. This is repeated over a range of
values of 7] to obtain the complete reduced model.

Hence explicit moment-matching for LTV reduction is achieved
easily by combining existing LTI reduction techniques with efficient
linear solutions of the circuit in steady state. Other reduction tech-
niques, based on Krylov subspace methods, can also be applied to (8);
these procedures have better numerical conditioning than explicit mo-
ment matching.

5 Application to wireless system components

In this section, the MPDE-based numerical methods described above
are applied to several multi-rate circuits arising in wireless and portable
applications.

5.1 Mixer simulation using MMFT

A double-balanced switching mixer and filter circuit was simulated for
intermodulation distortion using the MMFT method. The RF input to
the mixer was a 100kHz sinusoid with amplitude 100mV; this sent it
into a mildly nonlinear regime. The LO input was a square wave of
large amplitude (1V), which switched the mixer on and off at a fast
rate (900Mhz).

Three harmonics were taken in the RF tone f; = 100kHz (corre-
sponding to the #; variable). The LO tone at f, = 900MHz was handled
by shooting in the #; variable. The output of the algorithm is a set of
time-varying harmonics that are periodic with period T = 7‘; The first

harmonic is shown in Figure 3(a). This plot contains information about
all mix components of the form fi +ify, i.e., the frequencies 900.1
Mhz, 1800.1 Mhz, etc.. The main mix component of interest, 900.1
Mhz, is found by taking the fundamental component of the waveform
in Figure 3(a). This has an amplitude of 60mV.

§ 88
Vo

(a) First harmonic (b) Third harmonic

Figure 3: Switching Mixer: MMFT output

The third harmonic is shown in Figure 3(b). It contains information
about the mixes 3 fj +if3, i.e., the frequencies 900.3 Mhz, 1800.3 Mhz,
etc.. The amplitude of the 900.3 Mhz component can be seen to be
about 1.1mV; hence the distortion introduced by the mixer is about
35dB below the desired signal.

The circuit was also simulated by univariate shooting for compar-
ison. The output from shooting is shown in Figure 4. This run, using
50 steps per fast period, took almost 300 times as long as the new al-
gorithm.

mixer output X 1073

! | 1
300.00 —

200.00 — -
100.00 — -
-0.00 — -
-100.00 — -
-200.00 — -
-300.00 — \ -

! I I ‘ time x 100
4.00 10.00

0.00 2.00 8.00

ure 4: Mixer output from univariate shooting

Fi
52 S-C ﬁll%er simulation using MFDTD

A switched-capacitor filter circuit was simulated using the MFDTD
method. The input to the circuit was a sinusoid with 10ms period
(100Hz), and the switching period was 10~5s (100kHz). The slow
time scale was taken to be #;, and the fast time-scale was ;. Bi-variate
forms of the input and output voltages are both shown in Figure 5(a)
(the larger waveform is the input). The variation along the slow time
scale is apparent; note the absence of fast-time-scale variation at the
output, indicating that the switching frequency has been eliminated by
filtering (the input, by definition, has no fast variation). Note also the
phase shift of the output with respect to the input. In contrast to the
filtered output, the switches exhibit strong fast scale variation, since
fast switching is key to the proper operation of the circuit. The bi-
variate form of the voltage at the one of the switch capacitors is shown
in Figure 5(b). Note the variation along both slow and fast time-scales.
The slow time-scale variation is similar to the input, as expected, but
the fast time-scale variation displays charging/discharging behaviour
associated with internal losses in the switch, due to the relatively fast
switching speed.

The second harmonic distortion, obtained by Fourier analysis of the
output voltage along the ; direction, was 28dB below the fundmental.

6.00

(a) input and output voltages

(b) voltage at switching capacitor

Figure 5: Switched-capacitor filter: bi-variate solutions

5.3 PWM power converter simulation with TD-ENV

A boost-type DC-DC converter with PWM feedback for output voltage
stabilization was simulated by TD-ENV. A simplified diagram of the
circuit is shown in Figure 6(a). When the switch closes, the inductor
current rises linearly until the switch opens, after which the current is
diverted through the diode into the load resistor. The peak current of
the inductor is related to the amount of time the switch is closed, i.c.,
the duty cycle of the switch control. This current determines the output
voltage at node 3.

The negative feedback loop operates by comparing the output volt-
age at node 3 with a reference to obtain an error voltage, which is used
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to control the duty cycle of the control to the switch. If the output
voltage is lower than the reference, the duty cycle is increased, and
vice-versa. For the simulation, the input power source E was centered
at 1.4V, but with a ripple of 0.8V at 100Hz added. The reference volt-
age for the output was also set at 1.4V. The switching rate was 100kHz.
The bivariate forms of the input and output voltages are shown in Fig-
ure 6(b); the large changes are for the input waveform, and the small
ones for the regulated output. Note the relative absence of fast scale
variation (i.e., along the 1, axis) of the output, indicating low ripple.
The current through the inductor is shown in Figure 7. This waveform
provides a useful visualisation of the operation of the converter. Note
the linear charging of the inductor and the somewhat nonlinear dis-
charge. Note also that the converter is operating in continous mode,
for the current does not ever reach zero despite the fluctuations of the
source battery. When the load is increased (not pictured), the inductor
discharges completely for part of the fast time scale.

A

(b) input and output volt-

{a) circuit
i ages

Figure 6: PWM DC-DC converter

Figure 7: PWM DC-DC converter: inductor current

The dynamics of the feedback mechanism are also evident in the
shape of the control voltage to the switch, shown in Figure 8. This
voltage is a fast pulse train with varying duty cycle. The pulse nature of
the signal is evident from the variation in the #, direction. The change
of the duty cycle along the slow time scale can also be readily seen.
This is due to feedback, which modifies the pulse width to keep the
output voltage stable despite large input fluctuations.

Figure 8: PWM DC-DC converter: switch control

6 Conclusion

We have presented efficient MPDE-based numerical simulations of
switching mixers, switched-capacitor circuits and switching power
converters, circuits that are difficult to simulate by traditional meth-
ods. The new methods are much faster than previous ones (e.g., 300x
speedup) and also more accurate. Further, they can provide results
in three-dimensional form, which is a powerful new way of visual-
izing the operation of circuits with widely separated time scales. We
have also shown how the MPDE can be used for LTV model reduction.
This capability enables compact system-level abstraction of RF circuit
blocks, with significant application in hierarchical design methodolo-
gies for wireless systems.
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