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Abstract

Phase noise is a topic of theoretical and practical interest in electronic circuits,
as well as in other fields such as optics. Although progress has been made in
understanding the phenomenon, there still remain significant gaps, both in its
fundamental theory and in numerical techniques for its characterisation. In this
paper, we develop a solid foundation for phase noise that is valid for any oscil-
lator, regardless of operating mechanism. We establish novel results about the
dynamics of stable nonlinear oscillators in the presence of perturbations, both
deterministic and random. We obtain an exact, nonlinear equation for phase
error, which we solve without approximations for random perturbations. This
leads us to a precise characterisation of timing jitter and spectral dispersion,
for computing which we develop efficient numerical methods. We demonstrate
our techniques on practical electrical oscillators, and obtain good matches with
measurements even at frequencies close to the carrier, where previous tech-
niques break down.

1 Introduction

Oscillators are ubiquitous in physical systems, especially electronic
and optical ones. For example, in radio frequency (RF) communica-
tion systems, they are used for frequency translation of information
signals and for channel selection. Oscillators are also present in digital
electronic systems which require a time reference, i.e., a clock signal,
in order to synchronise operations.

Noise is of major concern in oscillators, because introducing even
small noise into an oscillator leads to dramatic changes in its frequency
spectrum and timing properties. This phenomenon, peculiar to os-
cillators, is known as phase noise or timing jitter. A perfect oscilla-
tor would have localized tones at discrete frequencies (i.e., harmon-
ics), but any corrupting noise spreads these perfect tones, resulting in
high power levels at neigbouring frequencies. This effect is the major
contributor to undesired phenomena such as interchannel interference,
leading to increased bit-error-rates (BER) in RF communication sys-
tems. Another manifestation of the same phenomenon, jitter, is impor-
tant in clocked and sampled-data systems: uncertainties in switching
instants caused by noise lead to synchronisation problems. Charac-
terising how noise affects oscillators is therefore crucial for practical
applications. The problem is challenging, since oscillators constitute a
special class among noisy physical systems: their auronomous nature
makes them unique in their response to perturbations.

Considerable effort has been expended over the years in under-
standing phase noise and in developing analytical, computational and
experimental techniques for its characterisation (see Section 3 for a
brief review). Despite the importance of the problem and the large
number of publications on the subject, a consistent and general treat-
ment, and computational techniques based on a sound theory, appear
to be still lacking. In this work, we provide a novel, rigorous theory
for phase noise and derive efficient numerical methods for its charac-
terisation. Our techniques and results are general; they are applicable
to any oscillatory system, electrical (resonant, ring, relaxation, etc.)
or otherwise (gravitational, optical, mechanical, biological, eic.). The
main ideas behind our approach, and our contributions, are outlined in
Section 2. We apply our numerical techniques to a variety of practical
oscillator designs and obtain good matches against measurements.

The paper is organised as follows. In Section 2, we present some
preliminaries and an overview of the main results of the paper, and in
Section 3, we give a brief review of the previous work. In Section 4, we
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consider the traditional approach (linearisation) to analysing perturbec
nonlinear systems, and show how this procedure is not consistent foi
autonomous oscillators. In Section 5, we derive a nonlinear equatior
that exactly captures how perturbations result in phase noise. In Sec-
tion 6, we solve this equation with random perturbations and arrive a
a stochastic description of phase deviation, from which we derive tim-
ing jitter. Next, in Section 7, we use this stochastic characterisatior
to calculate the correct shape of the oscillator’s spectrum with phase
noise. In Section 8, we derive several quantities commonly used ir
oscillator design to quantify jitter and spectral properties. In Section 9.
we address the problem of computing these quantities efficiently and
develop numerical methods that can easily be implemented in existing
simulators. Finally, in Section 10, we apply our methods to practical
electrical oscillators. All proofs and discussion of mathematical back-
ground are omitted due to space limitations.

2 Preliminaries and overview :
The dynamics of any autonomous system without undesired perturba-
tions can be described by a system of differential equations:!

x= f(x) &y

where x € IR" and f(-) : R"=IR". We assume that f(-). satisfies
the conditions of the Picard-Lindeldf existence and uniqueness theo-
rem for initial value problems [2]. We consider systems that have ar
asymptotically orbitally stable? periodic solution x,(¢) (with period T’
to (1), i.e., a stable limit cycle in the n-dimensional solution space
We are interested in the response of such systems to a small state-
dependent perturbation of the form B(x)b(r) where B(-) : R"—IR"*F
and b(-) : R—IR?. Hence the perturbed system is described by

X= f(x)+Bx)b(t) (2

Let the exact solution of the perturbed system in (2) be z(¢).

Although our eventual intent is to understand the response of the"
oscillator when b(¢) is random noise, it is useful to consider first the
case when b(¢) is a known deterministic signal. We carry out a rigorous
analysis of this case in Section 5 and obtain the following results:

1. the unperturbed oscillator’s periodic response x;(¢) is modified
to xs(t + o(t)) + y(¢) by the perturbation, where:

(a) oft) is a changing time shift, or phase deviation, in the
periodic output of the unperturbed oscillator. '

(b) y(t) is an additive component, which we term the orbital
deviation, to the phase-shifted oscillator waveform.

2. o(t) and y(¢) can always be chosen such that:

(a) a(r) will, in general, keep increasing with time even if the
perturbation b(¢) is always small. .

(b) the orbital deviation y(¢), on the other hand, will always
remain small.

!For notational simplicity, we use the ODE formulation throughout the paf)er to de-
scribe the dynamics of an autonomous system. The results and the numerical methods
we present can be extended [1] for the MNA (Modified Nodal Analysis) formulation (i.e.,
DAE formulation) given by d/dt q(x) + f(x) = 0.

2After any small disturbance that does not persist, the system asymptotically settles
back to the original limit cycle. See {2] for a precise definition of this stability notion.
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“hese results concretise existing intuition amongst designers about os-
illator operation. Our proof of these facts is mathematically rigor-
us; further, we derive equations for o(t) and y(¢) which lead to qual-
tatively different results about phase noise compared to previous at-
smpts. This is because our results are based on a new nonlinear per-
urbation analysis that is valid for oscillators, in contrast to previous
;pproaches that rely on linearisation. We show in Section 4 that analy-
is based on linearisation is not consistent for oscillators and results in
ion-physical predictions.

Next, we consider the case where the perturbation b(¢) is random
1oise — this situation is important for determining practical figures of
nerit like zero-crossing jitter and spectral purity (i.e., spreading of the
jower spectrum)?. Jitter and spectral spreading are in fact closely re-
ated, and both are determined by the manner in which o(t), now also a
andom process, spreads with time. We consider random perturbations
n detail in Sections 6 and 7, and establish that:

1. the average spread of the jitter (mean-square jitter) increases

precisely linearly with time.

the power spectrum of the perturbed oscillator is a Lorentzian
about each harmonic.
asingle scalar constant c is sufficient to describe jitter and spec-
tral spreading in a noisy oscillator.

4. the oscillator’s output is a stationary stochastic process.
These results have important implications. The Lorentzian shape of
he spectrum implies that the power spectral density at the carrier fre-
tuency and its harmonics has a finite value, and that the total carrier
rower is preserved despite spectral spreading due to noise. Previous
inalyses based on linear time-invariant (LTI) or linear time-varying
LTV) concepts erroneously predict infinite noise power density at the
arrier, as well as infinite total integrated power. That the oscillator
utput is stationary is surprising at first sight, since oscillators are non-
inear systems with periodic swings, hence it might be expected that
wutput noise power would change periodically as in forced systems.
{owever, it must be remembered that while forced systems are sup-
lied with an external time reference (through the forcing), oscillators
re not. Cyclostationarity in the oscillator’s output would, by defini-
ion, imply a time reference. Hence the stationarity result reflects the
undamental fact that noisy autonomous systems cannot provide a per-
ect time reference.
Previous work
\ great deal of literature is available on the phase noise problem. Here
ve mention only some selected works. Most investigations of elec-
ronic oscillators aim to provide insight into frequency-clomain prop-
rties of phase noise, in order to develop rules for designing practi-
al oscillators; well-known references include {4, 5, 6, 7, 8]. Usually,
hese approaches apply linear time-invariant (LTI) analysis to high-
) or quartz-crystal type oscillators designed using standard feedback
opologies. Arguments based on deterministic perturbations are used

o show that the spectrum of the oscillator response varies as 1/ fz
imes the spectrum of the perturbation. While often of great practi-
al importance, such analyses often require large simplifications of the
roblem, and skirt fundamental issues such as why noisy oscillators
:xhibit spectral dispersion whereas forced systems do not.

Attempts to improve on LTI analysis have borrowed from linear
.. me-varying (LTV) analysis methods for forced (nonoscillatory) sys-
2ms (e.g., [9, 10, 11, 12]). LTV analyses can predict spectra more
:ccurately than LTI ones in some frequency ranges; however, LTV
->chniques for forced systems retain nonphysical artifacts of LTI anal-
ysis (such as infinite output power) and provide no real insight into the
~asic mechanism generating phase noise.

Possibly the most general and rigorous treatment of phase noise to
¢ ate has been that of Kértner [13]. In this work, the oscillator response
i3 decomposed into phase and magnitude components, and a differen-
tial equation is obtained for phase error. By solving a linear, small-time
¢pproximation to this equation with stochastic inputs, Kértner obtains
the correct Lorentzian spectrum for the power spectral density due to
rhase noise. Despite these advances, certain gaps remain, particularly
v/ith respect to the derivation and solution of the differential equation
for phase error.

2. 4

3.

)

3The deterministic perturbation case is also of interest, for, e.g., H:henomena such as
riode locking in forced oscillators. We consider this case elsewhere [3].

A Lorentzian is the shape of the squared magnitude of a one-pole lowpass filter transfer
f inction.

Recently, Hajimiri [14] has proposed a phase noise analysis based
on a conjecture for decomposing perturbations into two (orthogonal)
components, generating purely phase and amplitude deviations respec-
tively. While this intuition is similar to Kértner’s approach [13], other
aspects of Hajimiri’s treatment (e.g., stochastic characterisation for
phase deviation and the spectrum calculation) are essentially equiv-
alent to LTV analysis. Unfortunately, the conjecture for orthogonally
decomposing the perturbation into components that generate phase and
amplitude deviations, while intuitively appealing, can be shown to be
invalid [15]. Design intuition resulting from the conjecture about noise
source contributions can also be misleading.

In summary, the available literature often identifies basic and use-
ful facets of phase noise separately, but lacks a rigorous unifying the-
ory clarifying its fundamental mechanism. Furthermore, existing nu-
merical methods for phase noise are based on forced-system concepts
which are inappropriate for oscillators and can generate incorrect pre-
dictions.

4 Perturbation analysis using linearisation

The traditional approach to analysing perturbed nonlinear systems is
to linearise about the unperturbed solution, under the assumption that
the resultant deviation® will be small. Let this deviation be w(r), i.e.,
z(t) = x5(t) + w(t). Substituting this expression for z(¢) in (2), replac-
ing f(xs(t) + w(z)) by its first order Taylor series expansion, and ap-
proximating B(x) with B(xs) (assuming w(z) “small”), we obtain

W _]g%x) w(t) + B(xs(£))b(t) = A(t)w(r) + B(xs(t))b(t) (3)
xs(t)
where the Jacobian A(r) = sz}g—) ® is T-periodic. Here, we used the
x(t

fact that x,(¢) satisfies (1). Now, we would like to solve for w(z) in (3)
to see if our assumption that it is small is indeed justified. For this, we
use results from Floquet theory [2, 16] as follows®.

The state transition matrix for the homogeneous part of (3) is given
by

®(1,5) = U(r) exp(D(t ~ )V (5) = gumz)exp(m(r—s»vf (5) @

where U(t) is a T-periodic nonsingular matrix, V(1) = U~!(z) and
D = diag[u, ... ,un), Where p; are the Floguer (characteristic) expo-
nents. exp (u;T) are called the characteristic multipliers. u;(t) are the
columns of U(¢) and v/ (¢) are the rows of V(1) = U~ (¢).

Remark 4.1 {u;(t),u2(t),...,un(t)} and {vi(t),v2(1),...,va(t)}
both span IR" and satisfy the biorthogonality conditions
vI(t)u;(t) = 8;j for every t. Note that, in general, U(t) itself is
not an orthogonal matrix.

Let us first consider the homogeneous part of (3), the solution of which
is given by

n

Y wi(t) exp(uit)v] (0)w(0)

i=l

wr (1) 3)

where w(0) is the initial condition. Next, we will show that one of the
terms in the summation in (5) does not decay with £.

Lemma 4.1
o The unperturbed oscillator (1) has a non-trivial T-periodic so-
lution x4(t) if and only if the number 1 is a characteristic multi-
plier of the homogeneous part of (3), or equivalently, one of the
Floquet exponents satisfies exp (u:T) = 1.

o The time-derivative of the periodic solution xs(t) of (1), i.e.,
%s5(1), is a solution of the homogeneous part of (3).

5By deviation we refer to the difference between the solutions of the perturbed and
unperturbed systems.

SThe reader who is unfamiliar with Floquet theory is encouraged to review it before
continuing.
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Remark 4.2 One can show that if 1 is a characteristic multiplier,
and the remaining n — 1 Floquet exponents satisfy |lexp(iT)| < 1,i=
2,...,n, then the periodic solution xs(t) of (1) is asymptotically or-
bitally stable, and it has the asymptotic phase property [2].7 More-
over, if any of the Floquet exponents satisfy |exp (p;T)| > 1, then the
solution x(t) is orbitally unstable.

Without loss of generality, we choose uj = 0 and u) () = %s(¢).
Remark 4.3 With u(t) = x(t), we have vI(t)i(t) = 1 and
v (t)uj(t) =0, j=2,...,n. vi(t) will play an important role in the
rest of our treatment.
Next, we obtain the particular solution of (3), given by
n !
wp(t) = Zui(t)/o exp(ui(t =)V} (NB(xs(r)b(r)dr  (6)
i=1
The first term in the above summation is given by
up (2) fEvT (9)B(xs(r))b(r)dr, since w; = 0. If the integrand has
a nonzero average value, then the deviation w(r) in (3) will grow
unbounded. Hence, the assumption that w(r) is small becomes invalid
and the linearised perturbation analysis is inconsistent.
When the perturbation b(t) is a vector of uncorrelated white noise
sources, one can show that the variances of the entries of w(f) can grow

unbounded. Thus, the assumption that the deviation w(t) stays small®
is also invalid for the stochastic perturbation case.

5 Nonlinear perturbation analysis for phase deviation
As seen in the previous section, traditional perturbation techniques do
not suffice for analysing oscillators. In this section, a novel nonlinear
perturbation analysis suitable for oscillators is presented.
The new analysis proceeds along the following lines:
1. Rewrite (2) with the (small) perturbation B(x)b(¢) split into two
small parts by (x,t) and b(x,t):

%= f(x)+by(x,1) +b(x,0) @)

2. Choose the first perturbation term by (x, ) in such a way that its
effect is to create only phase errors to the unperturbed solution.
In other words, show that the equation

X = f(x)+by(x,1) ®

is solved by x, (1) = x4(r + a(z)) for a certain function o(t),
called the phase deviation. It will be seen that o(¢) can grow un-
boundedly large with time even though the perturbation by (x,1)
remains small. ~

3. Now treat the remaining term b(x,t) as a small perturbation to
(8), and perform a consistent traditional perturbation analysis
in which the resultant deviations from x,() remain small. Le.,
show that z(r) = x;(¢ + () + y(¢) solves (7) for a certain y(t)
that remains small for all 1. y(¢) will be called the orbital devi-
ation.

We start by defining oi(r) concretely through a differential equation.

Definition 5.1 Define ot} by

do(t)
dt

Remark 5.1 o(t) can grow unbounded even if b(t) remains small. For
example, consider the case where b(t) is a small positive constant € <
1, B=1, and v (r) is a constant k. Then o(t) = ket.

Having defined o), we are in a position to split B(x)b(t) into by (x,t)
and b{x,1):

"Note that this is a sufficient condition for asymptotic orbital stability, not a necessary
one. We assume that this sufficient condition is satisfied by the system and the periodic
solution x,(z).

8The notion of “staying small” is quite different for a stochastic process than the one for
adeterministic function. For instance, a Gaussian random variable can take arbitrarily large
values with nonzero probability even when its variance is “small”. We say that a stochastic
process is “bounded” when its variance is bounded, even though some of its sample paths
(representing a nonzero probability) can grow unbounded.

=] (t+ () B(xs(r+a(n))b(r), a0)=0 (9
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Definition 5.2 Ler
bl (xvt) = (X7t)u1 (t +0L(l)),

B(x,1) = B)b() — b1 (1) = _fzzcmx,t)ui(wa(r)),

where the scalars ¢;(x,t) = v (t +a(t))B(x)b(t)

(10

and

ar

Note that by (x,t) is obtained by projecting the original perturbatior.
along the time-varying direction uj(t + o(t)). uj,v; are the Floque,
vectors in Remark 4.1. '
Lemma 5.1 x,(t) = xs(t +at)) solves (8).

Lemma 5.1 states that the by (x,7) component causes deviations only
along the limit cycle, i.e., phase deviations. Next, we show that the re-
maining perturbation component b(x,t) perturbs x,(t) only by a small
amount y(r), provided b(¢) is small.

Lemma 5.2 For b(t) sufficiently small, the mapping t v+ t + a(t) it
invertible.

Definition 5.3 Let b(t) be small enough that {(t) = t + a(t) is invert-
ible. Then define b(-) by b(f) = b(t), and y(t) by

5(6) = X) [ expali =)W (BB (12

i=2
where [ =t + 0t).

Remark 5.2 Note that the index of the summation in (12) starts from
2. Since |exp (uiT)| < 1,i > 2 (due to asymptotic orbital stability), this
implies that y(t) is within a constant factor of b(t), hence small.

Theorem 5.1 If b(t) is small (implying that y(t) in Definition 5.3 is
also small), then z(t) = x,(t) + y(t) solves (7) to first order in y(t).

6 Stochastic characterisation of the phase deviation o

We now find the probabilistic characterisation of the phase deviation
o (Definition 5.1) as a stochastic process when the perturbation b(z) is
a vector of uncorrelated® Gaussian white noise sources. We will treas
(9) as a stochastic differential equation [17, 18].

We will follow the below procedure to find an adequate probabilis-
tic characterisation of the phase deviation o for our purposes:

1. We first calculate the time-varying probability density function
(PDF) po.(n,t) of o defined as

BP(OL&(;])Sn) (>0

where P (.) denotes the probability measure, and show that it
becomes the PDF of a Gaussian random variable asymptoti-
cally with . A Gaussian PDF is completely characterised by
the mean and the variance of the random variable. We show
that o(¢) becomes, asymptotically with time, a Gaussian ran- '
dom variable with a constant (as a function of ) mean and a
variance that is linearly increasing with time.1? ‘

2. The time-varying PDF pq(m,#) does not provide any correlation
information between o(z) and (s + 1) that is needed for the
evaluation of its spectral characteristics. We then calculate this
correlation to be

pa(T,t) =

E [o(t)e(r +17)] = m? 4 cmin(z,z +7)

where m and ¢ are scalar constants.

3. We then show that o(t;) and of;) become jointly Gaussian
asymptotically with time, which does not follow immediately
from the fact that they are individually Gaussian.

9The extension to correlated noise sources is trivial. We consider uncorrelated noise
sources for notational simplicity. Moreover, various noise sources in electronic devices
usually have independent physical origin, and hence they are modeled as uncorrelated
stochastic processes.

'0The fact that &(¢) is a Gaussian random variable for every t does not imply that a is
a Gaussian stochastic process. Individually Gaussian random variables are not necessarily
jointly Gaussian.



Starting with the stochastic differential equation (9) for «, one can de-
rive a partial differential equation, known as the Fokker-Planck equa-
tion (18, 19], for the time-varying PDF pq(n,¢). The Fokker-Planck
equation for o(¢) takes the form

pa(t) _ 3 (4 o 2 (147
S = ——  Mpa(M, 1) (1 +1)
o %l}nag on ) (13)
+ 35 (VT(Z +n)v(t +n)P(x(nz"))

where v7 (t) = V] (£)B(xs(t)), and 0 < A < 1 depends on the definition
of the stochastic integral [18] used to interpret the stochastic differen-
tial equation in (9). We would like to solve (13) for py(n,t). It turns
out that p (N, ¢) becomes a Gaussian PDF asymptotically with linearly
increasing variance. We show this by first solving for the characteristic
function F(w,t) of a(t), which is defined by

F(o,1) = Eexp(oa(t)] = [ exp(jom) pu(n, )i

Since both v1 (. ) and B(x;(.)) are T-periodic in their arguments, v7 (.)
is also periodic in its argument with perlod T. Hence we can expand
vT' (1) into its Fourier series: v/ (¢) = X3 _, VT exp(jitor) where wg =
2n/T.

Lemma 6.1 The characteristic function of at), F(w,t), satisfies

oF (w,1)
ot

=3 3 VIV exp(jan(i- k)

== k=—o0

) a4
(—M)oiw— 50)2) F(owg(i— k) +o,1)
where * denotes complex conjugation.

Theorem 6.1 (14) has a solution that becomes the characteristic func-
tion of a Gaussian random variable asymptotically with time:

) ) 0?c2(t)
Jim F(o,1) = exp (jou(r) - =) 1s)
solves (14), where p(t) = m is a constant, and 6*(t) = ct where
1 /T,
= — 1
T/o ' 1o

The variance of this Gaussian random variable increases linearly with
time, exactly as in a Wiener process.

Remark 6.1 o(t) becomes, asymptotically with t, a Gaussian random
variable with mean u(t) = m and variance 6%(t) = ct.
Lemma 6.2

E
E

o (1)

o?(t+1)]

if 1>0
if 1<0

B a)ote+9) = {

Corollary 6.1 Asymptotically with t

E [o(t)a( +1)] = m? + emin(z,1 +7)

Definition 6.1 Two real valued random variables ¥y and ¥ are
called jointly Gaussian if for all a1,a; € IR, the real random variable
a¥1 +ar¥; is Gaussian.

Theorem 6.2 Asymptotically with time, o(t;) and (ty) become

jointly Gaussian.

The stochastic characterisation of the phase deviation o we ob-
tained in this section can be summarized by Remark 6.1, Lemma 6.2,
Corollary 6.1 and Theorem 6.2. These provide adequate information
for a practical characterisation of the effect of phase deviation o on the
signal generated by an autonomous oscillator, e.g., its spectral proper-
ties, as we will see in Section 7 and Section 8.
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7 Spectrum of an oscillator with phase noise

Having obtained the asymptotic stochastic characterisation of o, we
now compute the power spectral density (PSD) of x,(t + a(r)). We
first obtain an expression for the non-stationary autocorrelation func-
tion R(t,7) of xs(r + a(f)). Next, we demonstrate that the autocor-
relation becomes independent of ¢ asymptotically. This implies our
main result, that the autocorrelation of the oscillator output with phase
noise contains no non-trivial cyclostationary components, confirming
the intuitive expectation that a noisy autonomous system cannot have
periodic cyclostationary variations because it has no perfect time ref-
erence. Finally, we show that the PSD of the stationary component is
a summation of Lorentzian spectra, and that a single scalar constant,
namely c in (16), is sufficient to characterize it.
We start by calculating the autocorrelation function of xs(r + a(r)),
given by
R(t,7) =

E [xs(t +a(e)) 2t (t+14 aft +1))] (17

Definition 7.1 Define X; to be the Fourier coefficients of xs(t): xs(t) =
Y . Xiexp{jioot).

Lemma 7.1

R(t,7) = Z Z XX exp (j(i — k)wot) exp (— jkwoT)

=00 k=00

(18)
E [exp (jwoBi (2,7))]

where By (t,1) = iot) — kot + 7).

To evaluate the expectation in the above Lemma, it is useful to consider
first the statistics of By (¢, 7).

Lemma 7.2
,ll)n:,E [Blk(n‘t)} - (l_k)m (19)
lim £ [ (Ba(r,0)?] = (B [Ba(t, 7)) = (=Rt tiet o

~2ikemin(0,7)
where m and c are defined in Theorem 6.1. Also, By(t,7) becomes
Gaussian asymptotically with t.

Using the asymptotically Gaussian nature of B(¢,1), we are now able
to obtain a form for the expectation in (18).

Lemma 7.3 If ¢ > 0, the characteristic function of By (t,7) is asymp-
totically independent of t and has the following form:

_ . _fo fifk
tll’nlE [exp (JwOBik(th))] - {exp( k2(,‘|T|) tfl =k (21)
Lemma 7.4
lmR(,D) = 3, XX exp(—jiogtexp(~ J03ielt)  (22)

f==—00

The spectrum of xs(¢ + o(f)) can now be determined as follows:

Lemma 7.5 The spectrum of xs(t 4+ o(t)) is determined by the asymp-
totic behaviour of R(t,t) as t — oo. All non-trivial cyclostationary
components are zero, while the stationary component of the spectrum
is given by:

(D%izc

23
gi4c? + (w+ip)? 23)

XX
- 3w

f=—o0

There is also a term Xo X 8(®) due to the DC part of xs(t), which is
omitted in (23).



8 Phase noise/timing jitter characterisation
Single-sided spectral density and total power

The PSD S(w) in (23) (defined for —ee < @ < oo, hence called a double-
sided density) is a real and even function of ®, because the periodic
steady-state x;(¢) is real hence its Fourier series coefficients X; in Def-
inition 7.1 satisfy X; = X ;. The single-sided spectral density (defined
for 0 < f < o0) is given by

fitc
m2f it + (f +ifo)?

where we substituted ® == 21tf and wg = 2nfy. The total power (i.e.
the integral of the PSD over the range of the frequencies it is defined
for) in Sss(f) is the same as in S(2xf), which is

Sss(f)=28(2nf) =2 i XX

j=—o00

24)

P,or = Total power in Sgs(f) = /OwSSS(f)df = 22 X2 @5
i=1

Remark 8.1 The phase deviation o(t) does not change the total
power in the periodic signal xs(t), but it alters the power density in
frequency, i.e., the power spectral density. For the perfect periodic sig-
nal xs(t), the power spectral density has & functions located at discrete
frequencies (i.e., the harmonics). The phase deviation aft) spreads
the power in these 8 functions in the form given in (24), which can be
experimentally observed with a spectrum analyzer.

Single-sideband phase noise spectrum in dBc/Hz

In practice, we are usually interested in the PSD around the first har-
monic, i.e., Sss(f) for f around fy. The single-sideband phase noise
L(fm) (in dBc/Hz) that is very widely used in practice is defined as

SSS(f0+fm))

For “small” values of ¢, and for 0 < f;, < fp, (26) can be approximated

21X |2
as

Furthermore, for Tf§c < fin < fo, £(fm) can be approximated by

L{fm) & 10logyg ((;—:)2 C)

Notice that the approximation of L( f;x) in (28) blows up as f— 0. For
0< fu<m fgc, (28) is not accurate, in which case the approximation
in (27) should be used.

Timing jitter

In some applications, such as clock generation and recovery, one is
interested in a characterisation of the phase/time deviation o(z) itself
rather than the spectrum of xs(¢ + o.(¢)) that was calculated in Sec-
tion 7. In these applications, an oscillator generates a square-wave like
waveform to be used as a clock. The effect of the phase deviation o(t)
on such a waveform is to create jitfer in the zero-crossing or transition
times. In Section 6, we found out that e(t) (for an autonomous oscil-
lator) becomes a Gaussian random variable with a linearly increasing
variance 02(1‘) = c¢t. Let us take one of the transitions (i.e., edges) of
a clock signal as a reference (i.e., trigger) transition and synchronize
it with £ = 0. If the clock signal is perfectly periodic, then one will
see transitions exactly at &y = kT, k=1,2,... where T is the period.
For a clock signal with a phase deviation a(r) that has a linearly in-
creasing variance as above, the timing of the kth transition 7; will have
a variance (i.e., mean-square error) E [(lk —kT)Z] = ckT. The spec-
tral dispersion caused by o/(¢) in an oscillation signal can be observed
with a spectrum analyzer. Similarly, one can observe the timing jitter
caused by a(r) using a sampling oscilloscope. McNeill in [20] experi-
mentally observed the linearly increasing variance for the timing of the
transitions of a clock signal generated by an autonomous oscillator, as
predicted by our theory.

L(fm) = 101logyg ( (26)

foe

—_— 2
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L(fim) ~ 101og;g (

(28)
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Noise source contributions
The scalar constant ¢ appears in all of the characterisations we dis
cussed above. It is given by

e= 3 [ A @B (0w (e @9

where B(.) : R"—IR"*? represents the modulation of the intensities o
the noise sources with the large-signal state. (29) can be rewritten as

14 T ’
=3y 1 30

=Y =
ST o

W @B Pdr= S e
i=1

where p is the number of the noise sources, i.e., the column dimensior
of B(xs(.)), and B;(.) is the ith column of B(xs(.)) which maps the itt
noise source to the equations of the system. Hence, ¢; represents the
contribution of the ith noise source to ¢. Thus, the ratio

¢ .
s 31,
c= 2,‘=1 Cy

can be used as a figure of merit representing the contribution of the itk
noise source to phase noise/timing jitter.

Phase noise sensitivity

One can define

k 1 T Al
cg ) = T/O b (7) e]? dr (32
(where 1 < k < nand e, is the kth unit vector) as the phase noise/timing
Jjitter sensitivity of the kth equation (i.e., node), because e; represents
a unit intensity noise source added to the kth equation (i.e., connected
to the kth node) in (1).

9 Numerical methods

From Section 6, Section 7 and Section 8, for various phase noise char-
acterisations of an oscillator, one needs to calculate the steady-state
periodic solution x4(¢), and the periodic vector vi(¢) in (29). Without
providing details, we will present the outline of a time-domain method
for computing the periodic vector v; (z)l 1 The procedure for calculat-
ing v (¢) in the time domain is as follows:

1. Compute the large-signal periodic steady-state solution xs(z) for
0 <t < T by numerically integrating (1), possibly using a tech-
nique such as the shooting method [21].

. Compute the state-transition matrix ®(7,0) by numerically in-
tegrating ¥ =A(¢)Y, Y(0) =1, from0to T, where the Jacobian
A(t) is defined in (3). Note that ®(7T,0) =Y (T).

. Compute u1(0) using #;(0) = %(0). Note that u;(0) is an
eigenvector of ®(T,0) corresponding to the eigenvalue 1.

. v1(0) is an eigenvector of ®7 (T,0) corresponding to the eigen-
value 1. To compute v;(0), first compute an eigenvector of
<I)T( T,0) corresponding to the eigenvalue 1, then scale this
eigenvector so that v (0)7 11 (0) = 1 is satisfied.

. Compute the periodic vector vy (r) for 0 < < T by numerically
solving the adjoint system

y=—AT(r)y

using v1(0) = v (T') as the initial condition. Note that v; (¢) is a
periodic steady-state solution of (33) corresponding to the Flo-
quet exponent that is equal to 0, i.e., y; = 0. It is not possible to
calculate vj (¢) by numerically integrating (33) forward in time,
because the numerical errors in computing the solution and the
numerical errors in the initial condition v;(0) will excite the
modes of the solution of (33) that grow without bound. How-
ever, one can integrate (33) backwards in time with the “initial”
condition v;(T) = v1(0) to calculate vi(¢t) for 0<¢r<T ina
numerically stable way.
6. Then, ¢ is calculated using (29).

(33)

'we also developed a frequency domain numerical method based on an harmonic bal-
ance formulation.



0 Examples
)scillator with a bandpass filter and a nonlinearity [22]

his oscillator (Figure 1) consists of a Tow-Thomas second-order
andpass filter and a comparator [22]. If the OpAmps are considered to
e ideal, it can be shown that this oscillator is equivalent (in the sense
f the differential equations that describe it) to a parallel RLC circuit in
arailel with a nonlinear voltage-controlled current source (or equiva-
:ntly a series RLC circuit in series with a nonlinear current-controlled
oltage source). In [22], authors breadboarded this circuit with an ex-
:rnal white noise source (intensity of which was chosen such that its
ffect is much larger than the other internal noise sources), and mea-
ared the PSD of the output with a spectrum analyzer. For Q = 1 and
o = 6.66 kHz, we performed a phase noise characterisation of this
scillator using our numerical methods, and computed the periodic os-
illation waveform x(t) for the output and ¢ = 7.56 x 1078 sec? Hz.
igure 2(a) shows the PSD of the oscillator output computed using
24), and Figure 2(b) shows the spectrum analyzer measurement!2
‘he single-sideband phase noise spectrum using both (27) and (28)
s in Figure 3 . Note that (28) can not predict the PSD accurately be-
ow the cut-off frequency fo ==x fozc = 10.56 Hz (marked with a * in
figure 3 ) of the Lorentzian.

Figure 1: Band-pass filter and a comparator

i
§ o
2
(a) Computed PSD (4 harmonics) (b) Measured PSD) [22]
Figure 2: Computed and measured PSD
3. i
i T
N
i i
Figure 3: L(fm) computed w1th both (27) and (28)
Ring oscillator

The ring oscillator circuit is a three stage oscillator with fully differ-
ential ECL buffer delay cells (differential pairs followed by emitter
followers). This circuit is from [20]. [20] and [23] use analytical
techniques to characterize the timing jitter/phase noise performance
of ring-oscillators with ECL type delay cells. Since they use analytical
techniques, they use a simplified model of the circuit and make sev-
eral approximations in their analysis. [20] and [23] use time-domain

2The PSDs are plotted in units of dBm.

K. p IEE Jo c

Q) | (Q | (@A) || MHz) | (sec2.Hzx10715)
500 | 58 | 331 || 167.7 0.260

2000 | 38 | 331 74 0.149

500 1650 | 331 94.6 0.686

500 58 450 169.5 0.182

500 58 600 169.7 0.151
500 | 38 715 167.7 0.142

(a) Phase noise characterisation

(@ pil o2 ¢ (radA2Hz)

300 950 400 450 500 S50 600 650 700 750 800
IEE (uA)

(b) Phase noise performance versus Irg

Figure 4: Ring-oscillator

Monte Carlo noise simulations to verify the results of their analytical
results. They obtain qualitative and some quantitative results, and offer
guidelines for the design of low phase noise ring-oscillators with ECL
type delay cells. However, their results are only valid for their spe-
cific oscillator circuits. We will compare their results with the results
we will obtain for the above ring-oscillator using the general phase
noise characterisation methodology we have proposed which makes
it possible to analyze a complicated oscillator circuit without simpli-
fications. We performed several phase noise characterisations of the
bipolar ring-oscillator. The results are shown in Figure 4(a), where R,
is the collector load resistance for the differential pair (DP) in the delay
cell, rp, is the zero bias base resistance for the BJTs in the DP, Igg is
the tail bias current for the DP, and f, is the oscillation frequency for
the three stage ring-oscillator. Note that the changes in R, and ry, affect
the oscillation frequency, unlike the changes in /g . Figure 4(b) shows
a plot of (2nf,)? ¢ versus Igg using the data from Figure 4(a). This
prediction of the dependence of phase noise/timing jitter performance
on the tail bias current is in agreement with the analysis and experi-
mental results presented in [20] and [23] for ring-oscillators with ECL
type delay cells. Note that larger values for (2rf,)? ¢ indicate worse
phase noise performance.
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