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Cyclostationary Noise Analysis of Large
RF Circuits with Multitone Excitations

Jaijeet Roychowdhury, David Long, and Peter Feldm&emior Member, IEEE

Abstract—This paper introduces a new, efficient technique for this paper can analyze noise efficiently in large circuits with
analyzing noise in large RF circuits subjected to true multitone  multitone large-signal inputs.
excitations. Noise statistics in such circuits are time-varying, Being periodic or quasi-periodic, the statistics of cyclo-
hence cyclostationary stochastic processes, characterized bgr- tati b d in Fouri . Th
monic power spectral densitieHPSD’s), are used to describe stauonary propesse_s Can be EXp'_’esse In Fourner Ser!e_s' ¢
noise. HPSD's are used to devise a harmonic-balance-baseddresent technique is formulated in terms of the coefficients
noise algorithm with the property that required computational of the Fourier series, termedyclostationary components
resources grow almost linearly with circuit size and nonlinearity. The cyclostationary components, which the new algorithm
Device noises with arbitrary spectra (including thermal, shot, and computes efficiently, are useful in system-level analysis as

flicker noises) are handled, and input and output correlations, as ivalent . del f RE circuit blocks. Th |
well as individual device contributions, can be calculated. equivaient noise models o circuit blocks. They also

HPSD-based analysis is also used to establish the nonintuitive Provide an intuitive yet mathematically rigorous visualization
result that bandpass filtering of cyclostationary noise can result of RF noise propagation, which can contribute to design
in stationary noise. insight.

Results from the new method are validated against Monte ; ; s
Carlo simulations. A large RF integrated circuit (>300 nodes) The. algorlthm,. an extension of the approachl ofOBtr.
driven by a local oscillator (LO) tone and a strong RF signal is and Signell [3], is based on a novel block-mat.rlx re'lat'lon
analyzed in less than two hours. The analysis predicts correctly between the cyclostationary components of noise within a
that the presence of the RF tone leads to noise folding, affecting circuit. The algorithm can be used to compute the total noise

the circuit’s noise performance significantly. at a specific output, correlations between noise at different
Index Terms_Cydostationary noise’ harmonic ba|ance, har- Outputs, and a|SO indiVidual Contributions from eaCh noise
monic power spectral density, HPSD, mixer noise, nonlinear noise generator to a specific output. Moreover, bias-dependent white
analysis, RF noise. and colored noise sources (e.g., thermal, shot, and flicker
noises) are treated naturally, even when they are correlated. All
computations are performed efficiently, i.e., the algorithm can
o o handle large circuits with many nonlinearities with reasonable
PREDICTING ‘noise in RF circuits is a more compleX;me and memory requirements. Efficiency is maintained under
task than in linear circuitry, because the former typically,iitone large-signal excitations. A two-tone+noise analysis
undergo large-signal (quasi-)periodic variations in their Opt an RF mixer circuit with more than 300 nodes is presented,
eration, unlike the latter. Therefore the statistics of the Fﬂ:redicting noise folding due to the strong RF input tone.
circuit's noise also vary (quasi-)periodically in time, leading |, 5 separate application of the block-matrix relation, it is
to important effects such as up- and down-conversion gfon that one-sided (or single-sideband) filtering of cyclo-
noise spectra. Such effects cannot be predicted by traditiogaliionary noise removes cyclostationary components to leave
SPICE-like noise simulations, which are based on linear-timge(ionary noise. This nonintuitive result is confirmed using
invariant (LTI) analysis of stationary noise. In order to addresge new algorithm and also through extensive Monte Carlo
such effects, the time-varying nature of noise, as well as thg,1ations.
variations of the circuit due to its large signal swings, must be The remainder of the paper is organized as follows. In
considered. In this paper, a new RF noise formulation argd tion |1, the need for cyclostationary analysis is motivated
glgonthm is pre;ented_whmh uses cyclostationary Stoch%th a simple example, and the concept of harmonic power
tic process and linear-time-varying concepts to capture tindgectra| densities introduced. The cyclostationary formulation,
variation. _ _ _ block-matrix relation, and algorithm for large circuits are then
Most previous algorithms [1]-{3] that model time-varyingyresented in Section I1l. In Section IV, the effect of single-
noise are limited to designs containing relatively few nonline@fyepand filtering of cyclostationary noise is investigated. In

elements, characteristic of microwave circuits. These methogéction V, the new algorithm is verified against Monte Carlo
are impractical for integrated RF circuits where nonlinear dgjmylations. and circuit examples presented.

vices are numerous. Recently, an algorithm [4] was proposed
that can analyze large circuits efficiently, but it is limited
to single-tone excitations only. The technique presented in [l. CYCLOSTATIONARY NOISE AND HPSD's
i ) i The circuit of Fig. 1 consists of a mixer, followed by a band-
Manuscript received August 5, 1997; revised November 10, 1997. . . . . e .
The authors are with Bell Laboratories, Murray Hill, NJ 07974 USA. pass filter, fo”qwed by another m'xer' This 'S_ a S|mpI|f|c§t|on .
Publisher Item Identifier S 0018-9200(98)01711-9. of, e.g., the bias-dependent noise generation mechanism in
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Stationary  Mixer Mixer R.. (1) are termedharmonic autocorrelation functionsThe
noise periodically time-varying power of(¢) is its autocorrelation

| O | Bangpass [ Y °®  function evaluated ar = 0, i.e., R..(¢,0). The quantities
g fiter [} l R, (0) represent the harmonic components of the periodically
|
I
I
!

varying power. The average power is simply the value of the
dc or stationary componenfz.,(0).! The frequency-domain
representation of the harmonic autocorrelations are termed
I harmonic power spectral densitigslPSD’s) S..(f) of z(¢),
14 / defined as the Fourier transforms

LO=cos(2 Pi {0 1) \ s
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=i 116_ inputs and outputs of various circuit blocks. By solving these
2f0 -2f0 -0 f0 2f0 equations, any HPSD's in the circuit can be determined.

Consider, for example, the circuit in Fig. 1. The input and
output HPSD'’s of a perfect cosine mixer with unit amplitude
an be shown [8] to be related by

\
\
\ 1 / ] ] e
\\ ﬂ é] Equations can be derived that relate the HPSD’s at the
; 1
1 1 1
fo

-2f0 —fo

Fig. 1. Mixer-filter-mixer circuit: najie analysis.

semiconductor devices [6]. Both mixers multiply their inputg

by a local oscillator (LO) of frequencyp, i.e., bycos(2m fot). ¢ () = Sup_s(f = fo) n Su (f = fo) + Su, (f + fo)

The bandpass filter is centered aroyfgcand has a bandwidth 4 4

of B < f,. The circuit itself is noiseless, but the input to 4 Supio (f + fo) 3)
the first mixer is stationary band-limited noise with two-sided 4

bandwidth B. (v and v denoting the input and output, respectively). The

A naive attempt to determine the output noise power wouldpsp relation for a filter with transfer functioH( f) is [8]
consist of the following analysis, illustrated in Fig. 1. The first

mixer shifts the input noise spectrum hyf, and scales it Su () =H(=YH(f + kfo) Su, (f)- 4)
by 1/4. The resulting spectrum is multiplied by the squarefhe HPSD's of the circuit are illustrated in Fig. 2. Since
magnitude of the filter's transfer function. Since this spectrufge inpuyt noisei(t) is stationary, its only nonzero HPSD is
falls within the passband of the filter, it is not modified. Finally;ne stationary componertt;, (f), assumed to be unity in the
the second mixer shifts the spectrum againdbgy and scales frequency band—B/2, B/2], as shown. From (3) applied to
it by 1/4, resulting in the spectrum with three componentge first mixer,three nonzero HPSD's .., , S, and S, ,
shown in the figure. The total noise power at the output, i-&pnown in the figure) are obtained foft). These are generated
the area under the speictru.m', is 1/4 that.at'the mput. by shifting the input PSD bytf, and scaling by 1/4; in
This common but _S|mpllst|c analysis is inconsistent WitRontrast to the rise analysis, the stationary HPSD is not
the following alternative argument. Note that the bandpagse only spectrum used to describe the upconverted noise.
filter, which does not modify the spectrum of its input, cagrom (4), it is seen that the ideal bandpass filter propagates
be |gnored. The input t.her? passes through only the ™WRe three HPSD's of:(¢) unchanged tay(t). Through (3),
successive mixers, resulting in the output noise vol@#@e=  the second mixer generates five nonzero HPSD’s, of which

i(t) cos?(2m fot). The output power is only the stationary componest,, (f) is shown in the figure.
2,0 2,03, cos(2m2fot) + cos(2md fot) This is obtained by scaling and shifting not only the stationary
o) =) gt 2 ' HPSD ofy(t), but also the cyclostationary HPSD’s, which in

fact contribute an extra 1/4 to the lobe centered at zero. The

i ;2
The a;/herage_outtput pot\_/ver consists tOf only ﬂz& (*) ttr(]erm, average output noise (the shaded area ute(f)) equals
since the cosine terms time-average to zero. Hence, the average "o inht noise.

output power is 3/8 of the input power, 50% more than that This simple example illustrates how the HPSD approach

predicted by the previous he analysis. This is, however, thecan be used to analyze RF noise rigorously yet conveniently.

correct result.' . HPSD’s are in fact a powerful tool: incorporating a nonideal
The contradiction between the arguments above underscq{ﬁ:gr in Fig. 1 is simple using (4), and noise propagation

the need for_ a more rigorous qnalysus. Mode_lmg Circult nOISgig, ugh circuits is easy to visualize; this can result in insights
as stochastic processes provides the required generality are otherwise difficult to obtain (e.g., see Section 1V). The

ngor. Smpe the local o_scHIator. IS pe_rlqd|c, the PrOCESSES &G mylation is useful not only for hand calculations and proofs,
cyclostationary[5], [7], i.e., their statistics vary periodically but also for simulating large circuits, since the HPSD's of

with time. The autocorrelation function of any cyclostationarxircuit unknowns obey a block-matrix relation. This equation,

proce;‘&(t) (define_d k. (¢t 7) = E[Z(t)?(t—’_T)]’ With E[:] together with an efficient algorithm to compute it for large
denoting expectation) can be expanded in a Fourier series Drcuits. is described in Section Iil

o>
.. (t ’r) — Z R (T)einﬂ'fgt (1) 1 Stationaryprpcesses area special case of cyt_:lo_stationary processes, where
22\ ] i : the autocorrelation function (hence the power) is independent of thettime
=—00 it follows thatR.,(7) = 0 if i # 0.
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A. Propagation of Noise Through a Linear

i(t) Sio() Time-Varying (LTV) System
stationar
PSD y 1 1 , 1 ] The input—output relation of the LTV system described by
-2f0 —f0 fO 2f0 (6) is
f i
x(1), y(t) —1/4 4 328 z(ts) = / h(ta,t1)u(ts) dty. (7)
HPSDs . n H ) —oo
20 1o fo 210 The objective of this section is to obtain a relation between
Sx_, () Sx,(f) the statistics of, andz if they are stochastic processes. As-
H1/4 -0 Sy20| 174 suming that they are nonstationary processes, their covariance
1 : 1 1 L 1 : 1 matrices are defined as [5], [7], [9]
-2f0 -0 0 2f0 -2f0 0 fo 2f0
o ' Ryp(ti, t2) = E[p(t1)p” (t2)] (8)
Sg,(h . . . .
ot at‘i’éﬂary ? Ili/4 wherep is v or z. A straightforward analysis establishes the
PSD =8, L e following relation betweerR,, and R,
—2f0 —fo fo 2f0

Roz(t1,t2) I/ / h(t1, 71) Ruu(71, T2)h T (t2, To)dridrs.

Most nonlinear systems of interest involve periodic wave-
forms. If 2*(t), the unperturbed solution of (5), is periodic with
periodT’, thenC(t) andG(¢) of (6) are alsdl-periodic. Hence

The equations of any nonlinear circuit can be expressed;{%’tl) describes a lineaperiodic time-varying (LPTV)
the form system, and(t2, t1) is periodic with respect to displacements
of T in both its arguments, i.e.,

Fig. 2. HPSD’s of mixer-filter-mixer circuit.

I1l. EFFICIENT CYCLOSTATIONARY
NoISE COMPUTATION ALGORITHM

G(x(8)) + f(x(®) + b(t) + Au(t) = 0 () h(ts +T,t1 +T) = h(ta, t1). (10)

wherez(t) are the time-domain circuit variables or unknownslhe periodicity of » implies that it can be expanded in a
b(t) is a vector of large-signal excitations, antl and ¢ Fourier series

represent the “resistive” and “dynamic” elements of the circuit, oo 9

respectively. The last teru(t) represents “small” perturba- h(to,t1) = Z hi(ts — tl)ejiwotz7 wo = Gl (11)
tions to the system, e.g., from noise sources in devices. All i=—oo T

these quantities are vectors of dimensiom(t) has dimension . . . . .
m, representing the number of noise sources in the circiit. h; in the above equation are functions of one variable and will

is an incidence matrix of size x m which describes how be referred to as thiearmonic impulse response$the LPTV
these noise sources are connected to the circuit. system. Moreover, their Fourier transforms will be denoted by

Since the noise sourcegt) are small, their effects can beHi and referred to as thkarmonic transfer functionsf the

analyzed by perturbing the noise-free solution of the circultPTV system, i.e.,

Letz*(¢) represent the large signal solution of (5) witft) set o0 o
to zero. Performing a time-varying linearization of (5) about Hi(w) —/ hi(t)e™ " dt. 12)
z*, the following linearized small-signal differential equation e
is obtained: Next, two-dimensional power spectral densities are defined
by taking two-dimensional Fourier transforms®f, andR,,.,
C(t)i + G(t)x + Au(t) = 0. 6) [B1 [°]
Spp(wi,wa) = Ryp(ty,ta)e 0t e™i2t2 gt dt,,
z(t) in (6) now represents the small-signal deviations of the bp(w1;w2) /—oo/—oo ppli1 fa)e ‘ e
perturbed solution of (5) from the noise-free solutign C(t) . . . - (13
and G(t) are the derivative matrices ¢f(-) and ¢(-). By Fourier transforming (9) and using the definitions in

Equation (6) is a linear differential equation with time{12)—(13), an expression relatify., and S, is obtained
varying coefficients. It therefore describes a linear time—S
varying (LTV) system with inputu(t) and outputz(t). The xm(wl’fO?)

LTV system is characterized completely by its time-varying _ Z Hj (w1 — kwo)Suu (w1 — kwo,ws — iwo) (14)
impulse response (or kernel)t,, t;), ann x m matrix. The HI (w2 — iwp).

dependence ok on C(t), G(¢t), and A will be examined in

Section 1lI-B; the propagation of noise through LTV systems The assumption that both input and output noisescgcto-

is analyzed next. stationaryis now introduced. The cyclostationary assumption

i,k=—o0



ROYCHOWDHURY et al. CYCLOSTATIONARY NOISE ANALYSIS OF LARGE RF CIRCUITS WITH MULTITONE EXCITATIONS 327

implies thatR,,. and R, do not change ifl" is added to both obtained for the two-dimensional power spectral denshigs

arguments, i.e., and S... [5]:
ti+ T to+T) = t1,ta). 15 =
RPP( 1 + s L2 + ) RPP( 1, 2) ( ) Spp(wwa) _ Z Sppi(_wl)é(wl +C(J2 _ 'LCUO) (18)
Hence both can be expressed as Fourier series i=—o00
00 - Using (18), the relation between the two-dimensional power
Rpyp(ty,t2) = Z Ryp. (ta — t1)e’*0", (16) spectral densities [(14)] is rewritten in terms of the (one-
i=—00 dimensional) harmonic PSD'S,,., and S,,,,,
R,», and R,,, are functions of one variable and will be S (—w)
referred to as thharmonic covariancesf the output and input T ) )
noise, respectively. Their (one-dimensional) Fourier trans- — Z Hy(w = 1wo) Sy, (—w + iwo) (19)

forms will be denoted byS,, andS,,, and referred to as HE (w0 + (i + k)wo)”

harmonic PSD’sor HPSD’s i.e.,

k,i=—o0

- Equation (19), relating the harmonic PSD’s of the input and
Spp. (@) :/ Ry (B9t dt. (17) output noise, is an extension to cyclostationary noise inputs
—o0 of a similar equation by Shim and Signell [5]. An interesting
The harmonic covariances and PSD’s have simple physi@éﬂd useful obse_rvation about (1ST3) is that the output harmonic
interpretations.R.. (¢, ¢) represents the time-varying power. @Ppears only in the last terd;_, ;. This suggests that
of the cyclostationary noise; hence by (1B (0) (the (1_9) can be_ V\_/ntt(_en in block ma_ltrlx fo_rm. It can be venﬂed_ by
harmonic covariances evaluated at zero) represent the FoufispCt multiplication that (19) is equivalent to the following
components of the periodically varying noise power. In parti@/0ck matrix equation:
ular, R, (0) is the average \(a_llue, or stationary ccomponent, Spa(w) = H(W)Su (w)YH (w) (20)
of the power. From the definition of the harmonic PSD’s, it
follows that the harmonic covariances evaluated at zero avbere{* denotes the Hermitian df(. S,.., S.., andH are
equal to the corresponding harmonic PSD’s integrated ovdock matrices with an infinite number of blocks, shown at
the entire frequency axis. Henc®,,, (w) integrated equals the bottom of the page in (21)—(23) (denotimg- kwo by w*
the stationary component of the output noise powey,, and for conciseness).
Suu, Will be therefore be termedtationary PSD’s Equation (20) expresses the relation between the output
When theT-periodic assumption of (15) and the definitiong&nd input harmonic PSD’s compactly using block matrices.
of (16) and (17) are applied to (13), the following form iNote from (22) that the output harmonic PSD’s evaluated

HO w2 Hl(wl) HQ(CUO) Hg(w_l) H4(w_2)
H_l(wQ) Ho(wl) Hl(wo) Hg(w_l) Hg(w_Q) cee
H(w) = H_y(w?) Hoi(w!) Ho(w’) Hi(w™) H(w™?) - (21)
H_g(w2) H_g(wl) H_l(wo) Ho(w_l) Hl(w_Q)
H_4(w2) H_g(wl) H_g(wo) H_, w_l) Ho(w_Q)
Swwo(‘“’? Swwl(‘“’?) sz(_WQ) sz(_WQ) Swm(_wQ)
Sﬂ?l‘—l(_wl) Sl‘l‘o(_wl Sl‘l‘l(_wl) Sl‘l‘z(_wl) Sl‘l‘s(_WQ)
Spa(w) = Sww_z(_wo) Sm_l(_wo) Smo(_wo) Sml(_wo) Swwz(_wo) (22)
sz_s(_w_l) Sm_z(_w_l) Sm‘_l(_w_l Smo(_w_l) Swwl(_w_l)
Swa:_4(_w_2) Sm_s(_w_Q) sz_z(_w_Q) sz_l(_w_Q) Swwo(_w_Q)
Suuo(_w2 Suul(_w2) Suuz(_w2) Suuz(_w2) Suu4(_w2)
Suu_l(_wl) Suuo(_wl Suul(_wl) Suuz(_wl) Suuz(_WQ)
Suu(w) = Suu_z(_wo) Suu_l(_wo) Squ(—wO) Suul(_wo) Suuz(_wo) (23)
Suu_z(_w_l) Suu_z(_w_l) Suu_l(_w_l) Squ(—w_l) Suul(_w_l)
Suu—4(_w_2) Suu—s(_w_Q) Suu—z(_w_Q) Suu—l(_w_Q) Suuo(_w_Q)
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at w (=w®) are given by the central block-row &,,. The
HPSD's of the self- and cross-powers of fith outputz, are w-Llr
available in thq;th row of this block. Denote the transpose ok)(.,) = WO (30)
this row by S%, Ze (0. ; this is obtained by transposing (20) LT
and postmultlplylng E)y a unit block-vecta¥, followed by .
the pth unit vectore, - -
She (@) = HWSLH @) Eoe,  (24) A
A
here
where: A= A (31)
; 0 — 1st entry A )
0
Eo = | Lixn ep=|: (25) i i
OX « Oth block % 1 « pth entry J(w) is known as theconversion matrix10] of the circuit;
0 : h J(0) is the Jacobian matrix of the harmonic balance equations
: ol ™ nth entry at the circuit's steady state*.

For numerical computation, the infinite block matrices in
where I,,,, represents the x n identity matrix. Note that (21)—(23) and (28)—(31) are truncated to a finite number of

Eye, is a vector. Hence the computation Sfx( 0,

(W)

blocks N = 2M + 1. M is the largest positive harmonic

in (24) can be performed by matrix-vector products with theonsidered. For the purposes of the analysis, it is assumed

block matrices”, ST

wu?

and 7. Despite the fact that thesethat no significant harmonic PSD of degree greater thif2

matrices are, in general, dense, products with them can @sts for the input noise(t) or the output noise:(t). Since
performed efficiently, as discussed next in Sections 1lI-B aritie energy content of thegh harmonic is always a diminishing
function ofs in practical RF circuits, a value fa¥/ can always

l-C.

B. Fast Application of#* and H
Exploiting Harmonic Balance

To applyH* and efficiently to a vector, it is necessary to

represent{ in terms ofC(¢), G(t), and A [refer to (6)]. Since

be found satisfying this assumption.

With this assumption, it can be shown that the Toeplitz
block structure in the above matrices can be approximated

C(t) and G(t) are T-periodic, they are expanded in FouriePlocks can be approximated gy given by

series

=)
— E jiwot
= C’iej 0,

i=—00

o>
— § Gz ejiwot

i=—00

(26)

The Fourier coefficients’; and G; will be referred to as the
harmonics ofC(t) and G(t), respectively. It can be shown

[10] that H can be expressed in terms of these harmonics as

by circulant block structure without loss of accuracy in the
matrix-vector product. For examplé€, truncated toN = 7

r Co C_1 C_o C_g Cs Cy Cy T
Ci Cy C1 Co C_3 O3 Oy
o C, Cp Cy C4 Co C_5 (s
C=|Cs Cy C Cy C_; Co C-3|. (32
C3 Cy3 Cy C Cy C_; C.
C, C3 C3 Cy ¢ Cy C_
lIC1 C, C3 C3 Co Cp Cp

(27) Note that the fourth, fifth, and sixth sub- and super-diagonals

H(w) = JHw)A4, J(w) =G+ jQuw)C
where

CO 0_1 C_Q 0_3 0_4
Ci Co C_1 C_o C_3

C= C, C; Cy C_1 C_y (28)
Cy Cy ¢ Cy C_
04 03 02 Cl C(0
Gy G_1 G_o G_3 G_4
Gy Gy G-1 G_p G_3

g = G2 Gl Go G_l G_2 (29)
Gs G Gi Gy G
G4 Gg G2 Gl G(0

of C differ from those ofC truncated to seven blocks. Matrix-
vector products with€ and the truncated, however, produce
identical results up to the first harmonic location if the vector
being multiplied contains no significant components in the
second and third harmonic locations.

The ut|I|ty of the circulant approximation is that it enables

C and g to be decomposed into products of sparse block-
diagonal matrices, permutations, and Fourier transform (DFT)
matrices [11]-[13]. This enables matrix-vector products with

C andg to be performed as a sequence of products with sparse
block-diagonal matrices(X(nN) operations), permutations
(no cost), and Fourier transform&(nN log N) operations);
hence the overall computation@(nN log /V). Further, since
only the sparse block-diagonal matrices need to be stored,
the memory requirement i©(nN). Note thatQ(w) is a
diagonal matrix witha priori known entriesw®, hence its
application to a vector i©(nN) in computational cost, with
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no memory required for its storage. The net effect of tharcuits operating in time-varying steady state, unfortunately,

circulant approximation, therefore, is thafw) can be applied there are as yet no stochastic models for the nonstationary

to a vector inO(nN log N) computation and>(nN) memory. noise generation process that are well established. Neverthe-
From (27), it follows that to obtain the required matrixdess, there is general consensus that for white processes like

vector product with#{(w), matrix-vector products wittd and shot and thermal noise, the time variation is generated by

J~1(w) are necessary. Sincd is a sparse block-diagonalmodulating stationary white noise by the (deterministic) time-

matrix with identical blocksA (the noise source incidencevarying large-signal steady state. For the diode shot noise

matrix), it can be applied i¥(nN) time andO(n) memory. example above, (34) generalizes to

Iterative linear solver414], [15] can obtain the matrix-vector

product with /=1 using only matrix-vector products with up(t) = VIpw(t), Swwlw)=2q (35)

J. The use of iterative linear techniques, together with the ) ) )

decomposition of/ allowing its application inO(nNlog ') Where In(t) is a time-varying waveform. Arguments sup-

time, is the key to the fast harmonic balance algorithms perting this deterministic modulation _model are based on the

Rosch [12], [13], [16] and Melvilleet al. [11]. With suitable shprt—term nature of the autocorrelations of thermal and shot

preconditioning included in the iterative solution, the numb@lCiS€; see, e.g., [3], [18], and [19]. .

of J-vector products required to computdat-vector product ~ FOr noise with long-term correlations (notably flicker

is small and approximately independent of the sizé dflence noise), t.here is a .general pellef that thg apove deterministic-

the J—!-vector product can be computed in approximate?mduIat|on—of—;tauonary—nmse modell is madequatg (e.g.,

O(nN log N) time andO(n.N) memory, leading to the same 20]). The physical processes responsible for generating long-

computation and memory requirements for the desired prod@fm noise correlations, it is argued, are themselves modified
with . by the large-signal waveforms which change on a relatively

From Section Ill-A, products are required with? and faster scale. Unfortunately, neither theoretical analyses nor

7 for cyclostationary noise computation. Application B experimental data are available at this time, to the authors’
is carried out using the same decomposition and iteratif@owledge, to aid in formulating a generation mechanism
linear methods as fok, but using transposes of the matricef0r such noise. In the absence of an established alternative,

involved. The product with is carried out using the relation P€mir [18] has used the modulated stationary noise model
Hr = Hz. for analyzing nonstationary flicker noise, and this approach

also appears common among designers of RF circuits. The
modulated stationary noise model is therefore reluctantly
adopted in this work for all cyclostationary noise generators.

The principal sources of noise in circuits are thermal, shot, ynder this noise generation model, the noise inp@ in
and flicker (1/f) noises from devices. When the linearizedg) can be expressed as

small-signal circuit [(6)] is time-invariant (i.e., the circuit

is in dc steady state), these noise sources are stationary w(t) = M(#)us(t) (36)
stochastic processes with known power spectral densities.

Thermal and shot noises are white, i.e., their PSD values avbere u;(¢) is an m-dimensional vector of stationary noise
constant, independent of frequency; flicker noise PSD’s exhilsiburces and (t) is anm x m diagonal matrix of/-periodic

a + variation with frequency. The expressions for the poweteterministic modulations.

spectral densities of these noise sources (see, e.g., Van der Ziélquation (20) can be used to analyze the relation between
[17]) typically involve some component of the dc solutionstatistics ofu(t) andw,(t) by recognizing that (36) represents
for example, the PSD of the shot noise currept(t) across an LTV system with inputu,(t) and outputu(t). The time-

a diode’s p-n junction is proportional to the dc currdiat varying impulse response of the LTV system is

through the junction, i.e.,

C. Fast Application ofS%,

Supun (@) = 2¢Ip 33) Ptz t) = 8(t2 — t1)M(ta) = Y Mib(ts — t1)e/™"
whereS, ., (w) is the (stationary) PSD of the shot noise and _ N @7
¢ is the electronic charge. where M; denote the Fourier coefficients of the periodic

From the viewpoint of second-order statistics, the diode®80dulationM (¢). The harmonic transfer function3, (w) are
shot noise is equivalent to the hypothetical process generaf@gdePendent of and simply equal toM;. Equation (20)
by multiplying a white noise process(¢) of PSD value2q applied to this LTV system results in the following block-

by a constant factor of/Tp matrix relation between the harmonic PSD’suf) andw,(¢):
up(t) = VIpw(t), Sww(w)=2g. (34) Suu(w) = MSyu, (WM (38)

For this reason, shot noise is often said, in a loose sensemuere S, ., (w) represents the block Toeplitz matrix of the

be proportional toy/Ip. harmonic PSD’s of the stationary noise sources. Since the

For circuits operating in dc steady state, expressions fawurces are stationary, all their harmonic PSD’s are zero except
PSD’s of stationary noise generators are well established frdon the stationary PS[3,, .., (w); henceS,, ., (w) is block di-
theoretical considerations and/or through measurement. Bgonal with diagonal entrigs. . , S, .., (—w?), Sy, u,, (—w!),
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Suueo (=) Sususy (=0, Suju,, (=w7?), .. ] Min (38) H(w+2w0)
is block Toeplitz withM; in the diagonals

: : : : : -3wl -wl 0
Mo M1 M2 M3 M4

|
|
o M., My M, M, Ms -- H(WJ'WO)% [\
M=o My My My M, My - |.(39) N
coo M_3 M_y M_, My M, - —2w0 0
M.y, M3 M., My My - U THMW

: |
. . . . . } :
-
Using (38), the product ofS,, with a vector can be w0 0 w0 |
performed through matrix-vector products with the matri-
ces M, M*, and S,,.,,,. Products with the block-Toeplitz
matrices M and M* can be performed irO(mN log N) r’]
time and O(mN) memory, approximatingM by a block-
circulant matrix and applying the same decomposition as for

|

l
0 L 2wo

|
G in Section IlI-B. Application of the block-diagonal matrix ! H(w-2w0)
Su,u.(w) is equivalent toN matrix vector products with rﬂ I\h
Su.u.,(+). If the device noise generators are uncorrelated, 0 wo 3wl
Su.u.,(+) is diagonal; if correlations exist, they are usually o , o ,
between small groups of noise generators, hefige, (-) 93 H(w)overlaid with H(w o) for i = 2.1, —1 and—2.
is sparse. In either case, each product with . () is

O(m) in computation with no storage required. Hence matrix- H(w+2w0)
vector products withsS,_,,,,O(Nm) time andO(1) memory.
The overall matrix-vector product witl§,,, can therefore be N I
performed inO(mN log N) time andO(m.N) memory. —3wo -wo 0

It should be noted that the noise modulatidf(¢) can be S S
absorbed into the circuit equations [(5)]. The noise inpu(ts Lo HW I
to the circuit can then be assumed to be stationary without loss | ' ‘ |
of generality. This procedure, however, increases the size of i ! F i

1

the harmonic balance system for obtaining the steady state w0 0 wo
To avoid this and to separate the implementation of the noise !
algorithm from the harmonic balance steady state algorithm, !
the formulation of this section is preferred. !

IV. BANDPASS FILTERING OF CYCLOSTATIONARY NOISE

Strdm and Signell [5] have shown that low-pass filtering'g' 4. One-sided!
of cyclostationary noise results in stationary noise if the
bandwidth of the low-pass filter is less than half the frequendyote that theith harmonic PSD of the output is determined
of cyclostationaritywy. This result has been used by Hullcompletely by the corresponding harmonic PSD of the input,
and Meyer [21] to simplify their analysis. In this section, thghaped by the product of the filter functiéh(w) with a shifted
effect of LTI bandpass filtering on cyclostationary noise igersion of itselfH” (w+iwy). For the scalar input—output case
considered. It is shown that if cyclostationary noise is passatder consideration, the relation simplifies to
through a one-sided (i.e., single-sideband) bandpass filter of

(w) overlaid with H (w + iwq) for i = 2 and—2.

bandwidth less thanug/2, the output noise is stationary. Sra; (W) = H(—w)H(w + iwg) Snn, (w). (41)
This result is obtained using a simple visualization of the
propagation of harmonic PSD’s. Since the magnitude off (w) for a real filter is symmetric

Denote the input noise to a bandpass filter /o) and about zero,H(—w) has the same magnitude characteristic as
the output noise byz(t). Assume that the inpuk(t) is H(w). By overlaying the magnitudes éf (w) and H (w + iwo)
cyclostationary with period” = 27 /wo. Denote the transfer for different values ofi (illustrated in Fig. 3), it can be
function of the bandpass filter by (w). The relationship seen that the produdi (—w)H (w + iwo) is nonzero only for
between the harmonic PSD’s eft) andz(t), derived from ¢ = 0,2, and -2 if the bandwidth ofH (w) is less thanvg/2.
(24) by using the fact that{ is block diagonal for an LTI For all other values of, there is no frequency at whidt (—w)
network, is and H(w + iwo) are both nonzero, hence their product is

identically zero.
S, (W) = H(=w)Spn, (W) HY (w + iwp). (40) This immediately implies the following.
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Mixer
Stationary Mixer output Filter output
Input noise noise x(1) i t
n(t) High-Q noise y(t)
————— bandpass [r——--
filter
Local Oscillator
Cos(2 PifO 1)
Fig. 5. Mixer and bandpass filter.
H(f) x 1073 Noise power x 10718
| i | Set 0 | | Sct 0

500.00 —

5.00 — —
450.00 - 4.50 — -
400.00 - 4.00 — -
350.00 — 3.50 — —
300.00 — 3.00 — —
250.00 — _ 2.50 — —
200,00 - - 200 — -
150.00 - 1.50 = -

1.00 — —
100.00

0.50 — —
50.00 —
0.00 — -
0.00 — | _
| | i | I Hzx 106 I I I Hzx 100
1.50 155 1.60 1.65 1.70 1.00 1.20 1.40 1.60 1.80 2.00

Fig. 6. Bandpass filter characteristic. Fig. 7. Syy,(f) with fo = 1.592 MHz (double-sideband filtering).

Result 1: Bandpass filtering with bandwidth less thagy2 circuit, consisting of an I-channel buffer and mixer, driven by
eliminates all harmonic PSD’s except the stationary and se&we0 strong tones (a signal and an LO).
ond harmonic PSD'’s.

Moreover, if the bandpass filter is one-sided with respest Mixer and Bandpass Filter
to wo, then the producH (w)H (w + iwp) Is identically zero
also fori = 2 and—2, as illustrated in Fig. 4. In this case, th
bandwidth of the filter can be greater tha/2 but should be

Motivated by the result of Section IV, a mixer and bandpass
Silter circuit (Fig. 5) is analyzed for cyclostationary noise
) ropagation. The mixer is an ideal multiplier that modulates
less thanwy. The only nonzero PSD of the output is then thg, s "incoming stationary noise with a deterministic LO os-
stationary PSD. T.h|s |mpI|e§ Resglt 2. . cillator signal cos(27 fot). The filter has a higl bandpass

Result 2: Qne-3|ded (or smgle-&debapd) bandpass f'lter'r@waracteristic (illustrated in Fig. 6) with a center frequency of
_(W|th b_andW|dth less thgwo) of cyclostationary noise reSUItSapproximater 1.592 MHz and a bandwidth of about 50 kHz.
in stationary output noise. The stationary input noise is bandlimited with double-sided

bandwidth of about 200 kHz.
V. RESULTS Two simulations are carried out, witfy set to 1.592 MHz

The fast cyclostationary noise algorithm of Section Ill haand 1.5 MHz, respectively. In the first situation, the bandpass
been prototyped in a Bell Labs internal simulator. In thiflter is centered at the LO frequency; in the second, the
section, the algorithm and the single-sideband-filtering resufier characteristic is offset to the right of the LO frequency,
of Section IV are first verified against Monte Carlo noisstrongly attenuating the lower sideband with respectfgo
simulations with 60 000 sample waveforms, to an accuracy while passing the upper sideband. Harmonic PSD’s at all nodes
within 2%. Noise analysis results from two circuits are theim the circuit were computed over frequencies from 1 MHz to
presented—a mixer excited by a single LO tone, and a largeMHz.
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Noise power x 10718

5.00 —
450 —
4.00 —
3.50 —
3.00 —
250 —
2.00 —
1.50 —
1.00 —
0.50 —

0.00 —

J

Set 0

| ! |
1.00 1.20

1.40 1.60

1.80

Hz x 109
2.00

Fig. 8. Syy_,(f) with fo = 1.592 MHz (double-sideband filtering).

Noisc power x 10721
|
550.00 —

500.00 —
450.00 —
400.00 —
350.00 —
300.00 —
250.00 —
200.00 —
150.00 —
100.00 —

50.00 —

0.00 —
| |
1.40

.00 1.20

i Set 0

-

1.60

I Hzx 108

1.80 2.00

Fig. 9. Syy,(f) with fo = 1.5 MHz (single-sideband filtering).
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Noise power x 102!
950 — |

9.00 —
8.50 —
8.00 —
7.50 —
7.00 —
6.50 —
6.00 —
5.50 —
5.00 —
4.50 —
4.00 —

3.50 —
3.00 —
2.50 —

2.00 —
1.50 —
1.00 —
0.50 —

0.00 —
| | |
1.00 1.20 1.40

1.60

| = Sct0

Hz x 100

1.80 2.00

Fig. 10. Syy_,(f) with fo = 1.5 MHz (single-sideband filtering).

power x l()’3

220
2.10
2.00
1.90 —
1.80 -
1.70
Lo —
1.50
1.40 -
130 —
1.20 -
110 -
1.00
0.90
.80
0.70
0.60
0.50 -~
0.40 —
0.30 -
0.20
0.10
0.00 —
010 | I :

0.00 20.00 40.00
Fig. 11. Time-varying filtered noise
fo = 1.592 MHz (double sideband).

Using the results of Section IlI-A, it can be shown that only
the stationary and second harmonic PSD’s of the mixer outgut

60.00

power

Set 0

time x 106

80.00 100.00

from Monte Carlo:

ve the same magnitude, hence there is a large cyclostationary
component in the noise. The same PSD’s forfe- 1.5 MHz
case (single-sideband filtering) are shown in Figs. 9 and 10.

x(t) are nonzero, related to the PSD of the stationary input

Shng (W — wo) + Spng(w — wo)

Srz (W) = :
(@) ( ) 4 The second harmonic PSD can be seen to be about two orders
Shng (W — wo —— i i
Spw_ (W) = 0 . Sws (@) = See_ (—w). qf magmtgdg smaller than. the statlonary PSP. Hepce the
4 filtered noise is virtually stationary, as predicted in Section IV.

The stationary and second harmonic PSD’s of the filtdihe second harmonic PSD is not identically zero because the
output y(¢) for fo = 1.592 MHz (double-sideband filtering) nonideal single-sideband filter does not perfectly eliminate the
are shown in Figs. 7 and 8. It can be seen that both PSdsver sideband.
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power x 106 cyclostationarity of the noise in the double-sideband case can
| : : | sao-  be seen from the variation of the power between zero and its
- maximum value of about 0.0022. In the single-sideband case,
_ the power approaches a steady value of about 23009,
with a cyclostationary variation of about 10%. Accounting
for the normalization of the input PSD, these values are in
excellent agreement with the total integrated nois€of (f)
andsS,,_,(f) (Figs. 9 and 10); Monte Carlo simulation results
are within 2% of the results produced by the new algorithm.

150.00 —
140.00
130.00 —
120.00 -
110.00
100.00 —
90.00
80.00 — ) .
000 B. Mixer Analysis
60.00 — _ The mixer in Fig. 13 was analyzed for cyclostationary noise
to investigate the effect of large-signal LO variations on the
output noise. The LO signal of amplitude 1.5 V is applied at
the base of the first transistor, as shown. The RF input signal
is applied through the current source, which is held at a dc
value of 2 mA (i.e., no RF signal) for the noise analysis.
Two simulations were performed: a stationary analysis with
. ‘ ~~ . noLO present to obtain the noise of the quiescent circuit, and
0.00 2000 000 6000 $0.00 woo ' acyclostationary analysis with the LO amplitude at 1.5 V. The
Fi ) . ) . former simulation took a few seconds and the latter (with 25
ig. 12. Time-varying filtered noise power from Monte Carlo: . . .
fo = 1.5 MHz (single sideband). large-signal harmonics) 40 seconds per frequency point. The
stationary PSD is shown in Fig. 14, and some nonstationary
HPSD’s in Fig. 15.

50.00

40.00 —

30.00 —

20,00 —

10.00

i From Fig. 14, it can be seen that the presence of a large
LO signal reduces the average noise power at the output. This
20n 20n is a known property of switching mixers. Fig. 15 shows the
1K 1K first six harmonic PSD’s of the noise at the output when the

:|_ —|: LO is 1.5 V.

From a knowledge of the HPSD's, it is possible to create

L system-level macromodels for functional blocks like the mixer.

output All the noise of the circuit can then be concentrated in an

equivalent noise source with the same HPSD’s. While only
12~ 1.2K = the stationary PSD determines the average noise power, the
ac nonstationary HPSD’s must be included because they can

— contribute to the stationary component of some other block,

Zero RF as discussed in Section II.

input i 2mA

C. I-Channel Buffer and Mixer Circuit

The next example is a portion of the W2013 RFIC, con-
Fig. 13. Mixer cell. sisting of an I-channel buffer feeding a mixer. The circuit
consisted of about 360 nodes and was excited by two tones—a
The above results were also verified by simulations usihgcal oscillator at 178 MHz driving the mixer and a strong RF
the Monte Carlo method. The nonlinear differential equatiorssgnal tone at 80 kHz feeding into the I-channel buffer. Two
of the circuit in Fig. 5 were solved numerically with 60 00(hoise analyzes were performed. The first analysis included
samples of the input noise(¢) [22]. The input noise PSD both LO and RF tones (sometimes called a three-tone noise
was normalized to one to avoid corruption of the resul&nalysis). The circuit was also analyzed with only the LO tone
by numerical noise generated during differential equatidn determine if the RF signal affects the noise significantly.
solution. The 60000 samples of the mixed and filtered noiSée two-tone noise simulation, using a total of 525 large-
y(t) were squared and averaged, on a per-timepoint basissignal mix components, required 300 MB of memory and
obtain the noise power at the output as a function of tim@ar each frequency point, took 40 min on an SGI machine
The variation of noise power with time is shown in Figs. 1{200-MHz R10000 CPU). The one-tone noise simulation,
and 12 for the double-sideband and single-sideband casesing 45 harmonics, needed 70 MB of memory and took 2 min
When analyzed in the time domain, the circuit requires sonper point.
time to reach large-signal steady state, hence the steady stafehe stationary PSD’s of the mixer output noise for the
noise power is approached toward= 100 ms; in contrast, two simulations are shown in Fig. 16. It can be seen that
harmonic balance calculates this steady state directly. Tife presence of the large RF signal increases the noise by
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Stationary PSDs for no LO and LO=1.5V

power

le-17 —

le-18 —
7

5 —

37
2 — LR
15 — [

le-19 — | . | |

le+00 le+01 le+02 1e+03 le+04 1e+05

Fig. 14. Mixer: stationary PSD at output.

Harmonic PSDs for LO=1.5V
power
5— | ! | — 1st harmonic PSD

4, 2nd harmonic PSD

fc-18 —

le-19 —

le-21 —
! ! ! ! ! !
ic+00 le+01 1e+02 le+03 le+04 1e+05

freq

Fig. 15. Mixer: harmonic PSD’s at output.
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VA2/Hz x 10718 (2]
27.00 —
26.00 — -
25.00 — -
24.00 — -
23.00 — -
22.00 — _
21.00 — _
20.00 — - [5]
19.00 —

K]

(4]

(6]

17.00 — | | 1
200.00 300.00 400.00

(7]
(8]

Fig. 16. Stationary PSD’s for the I-Q mixer/buffer circuit.

about 1/3. This is due taoise folding the result of devices g,
being driven into nonlinear regions by the strong RF input

tone. This effect is difficult to predict with the technique of[1%
e.g., [4]. The peaks in the two waveforms, located at the L[y
frequency, are due to up- and down-conversion of noise from
other frequencies. (12]

VI. CONCLUSION (13]
A frequency-domain formulation and algorithm has beepny
presented for computing noise in nonlinear circuits. The
method uses cyclostationary components and harmonic PS
in its formulation to capture time-varying noise statistics. A16]
block-structured matrix equation for the output noise statistics
is the central result enabling fast computation. The algorithpy,
is efficient for large circuits with several large tones and can
generate information useful for noise macromodels. (18]
The new formulation has been used to prove that one-sided
bandpass filtering of cyclostationary noise produces stationd#§!
noise. This extends a previously known result for low-pass
filtering. [20]
The algorithm been verified against Monte Carlo simu-
lations. Results from a mixer cell and a large I-channi%l]
buffer and mixer RF integrated circuit have been presented,
predicting the fact that the presence of multiple tones cé&t]
significantly affect the noise performance of a circuit.
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