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Abstract

Behavioral modelling of blocks is an important step in wireless system verifi-
cation. In this paper, we describe the application of an automated technique
for macromodel extraction. Called TVP, the technique works directly from de-
tailed transistor-level descriptions (e.g., SPICE) of a block to produce system-
level macromodels (e.g., suitable for MATLAB). A key property of TVP is that
it can reduce blocks with switching, sampling or frequency-translation prop-
erties. TVP is efficient for large circuits and can automatically tailor the size
of the macromodel to meet a specified accuracy. TVP also produces dominant
poles and zeros without need for lengthy simulations. We present applications
to RF mixers and switched-capacitor filters, to obtain size reductions of more
than two orders of magnitude with no appreciable loss of accuracy.

1 Introduction

An important task in communication system design is hierarchical ver-
ification of functionality at different levels, starting from individual
circuits up to block representations of full systems. A key step in this
process is the creation of small macromodels that abstract, to a given
accuracy, the behaviour of much bigger subsystems. For systems with
“nonlinear” blocks like mixers and switched-capacitor filters, this is
typically achieved by using results from detailed nonlinear simulations
to construct macromodels manually. This process has disadvantages.
Nonlinear simulation does not provide parameters of interest (such as
poles and zeros) directly; to obtain them by inspection, frequency-
response plots with many points are often computed. This can be
very time-consuming for large subsystems, since nonlinear blocks re-
quire a steady-state solution at each point. Also, the macromodelling
step, critical for reliable verification, is heuristic, time-consuming and
highly reliant on detailed internal knowledge of the system under con-
sideration.

In this paper, we illustrate the use of a recently-developed algo-
rithmic technique [Roy98c] for abstracting smail macromodels from
detailed descriptions of many kinds of “nonlinear” subsystems encoun-
tered in communication systems. Named TVP (Time-Varying Pad¢),
the method reduces a large linear time-varying (LTV) system to a small
one. The LTV model is adequate for many apparently nonlinear sys-
tems, like mixers and switched-capacitor filters, where the signal path
is designed to be linear, even though other inputs (e.g., local oscillators,
clocks) may cause “nonlinear” parametric changes to the system. The
use of LTV descriptions is key, because they capture frequency trans-
lation and sampling/switching behaviour, unlike linear time-invariant
(LTI) models.

TVP has several useful features. The computation/memory re-
quirements of the method scale almost linearly with circuit size, thanks
to the use of factored-matrix computations and iterative linear alge-
bra [RA92, MFR95, RLF98]. TVP provides the reduced model as a
LTT system followed by a memoryless mixing operation; this makes
it easy to incorporate the macromodel in existing circuit and system
level simulators. TVP itself can be implemented easily in a number
of existing simulation tools, including nonlinear time-domain simula-
tors like SPICE, nonlinear frequency-domain domain simulators us-
ing harmonic balance, as well as linear time-varying simulators like
SWITCAP and SIMPLIS. Time-domain computations, moreover, do
not necessarily require obtaining or using a steady state of the sys-
tem. Existing LTI model reduction codes can be used as black boxes
in TVP’s implementation. Like its LTI counterparts, TVP based on
Krylov methods is numerically well-conditioned and can directly pro-
duce dominant poles and residues.

Most importantly, by providing an automated means of generating
reduced-order models to any desired accuracy, TVP enables macro-
models of communication subsystems to be coupled to detailed real-
izations much more tightly and quickly than previously possible. This

can significantly reduce the number of iterations it takes to settle on a
final design.

In Section 2, we provide a brief description of how TVP works.
The application of TVP to macromodel RF mixers and switched-
capacitor filters is presented in Section 3.

2 Overview of TVP

In this section, we provide an overview of the TVP algorithm; a more
detailed exposition may be found in [Roy98c]. The basic difficulty in
formulating model-reduction techniques for LTV systems has been the
interference of system time variations with input time variations. A key
step in TVP is to separate the two time-scales, using recent concepts of
multiple time variables and the MPDE [BWLBG96, Roy97a, Roy98a],
resulting in forms for the LTV transfer function that are suitable for
model reduction. Once the time scales have been separated, it becomes
easy to obtain a useful expression for the LTV transfer function of the
system.

We start with a nonlinear system described by a set of differential
equations, such as those obtained from a SPICE-type description. We
assume that the system driven by a large signal b;(¢) and a small input
signal u(t), to produce an output z(¢). Let the differential equations of
the circuit be:

3‘1((_)9;(‘)) + () = bi(e) + bu(e), z() =dTy(r)

¢V
y(¢) is a vector of node voltages and branch currents; g() and f() are
nonlinear functions describing the charge/flux and resistive terms, re-
spectively, in the circuit. b and d are vectors that link the input and
output to the rest of the system.

We now move to the MPDE (multirate partial differential equa-
tion [BWLBG96, Roy97a, Roy98a)) form of (1). Doing so enables the
input and system time-scales to be separated and, as will become ap-
parent, leads to a form of the LTV transfer function useful for reduced-
order modelling. The move to the MPDE (2), below, is justified by the
fact that (1) is exactly equivalent to (2).

a a a~
_gfll) + a_g,%) + f(3(t1,12)) = by(11) + bu(ry) (2)

a(,0) =dT5(t,0), () =2(t)

The hatted variables in (2) are bivariate (i.e., two-time) forms of the
corresponding variables in (1).

To obtain the output component linear in «, we perform a lineariza-
tion around the solution of (2) when u(#;) = 0. Let this solution be
¥*(¢1) (note that we can always select y* to be independent of ;). Lin-
earization about y* yields the linear MPDE:

3(C(f1)f(t1,t2))+3(C(h)f(f1,t2)))
on oty
in,n)=d"n,n), () =21)

+G(t1)%(t1,12) = bu(tz) 3

In (3), the quantities £, £ and z are the small-signal versions of ¥, 2,

and zy, respectively; C(t1) = a—%-(yf—) o) and G(t;) = igiyﬂ ) are
pAU! *{n

time-varying matrices.

Note that the bi-variate output 2(¢1,22) is linear in the input u(t2),
but that the relationship is time-varying because of the presence of 7;.
To obtain the time-varying transfer function from u to Z, we Laplace
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La(t)
Figure 1: Specialized Floquet form of a LPTV system
transform (3) with respect to #;:

3 +sC(11)X(t1,s)+G(t]))?(tl,s)=bU(S)

Z(tl N dT}?(tl,s)

In (4), s denotes the Laplace variable along the ¢, time axis; the capital
symbols denote transformed variables.
We can rewrite (4) as

(ED;; [] +SC(11)+G(I])) }?(tl,s) = bu(s)

_3Cm)
ot 1

and obtain an operator form of the time-varying transfer function
H(ty,s):

A(C(t)X(n1,s))
it @

©)]

2(ty,s) = de((tl,s), where g— v
1

D -1
Hty,s) = dT(d—,] 0+5Ce) + G(zl)) 18], 2(11,5) = H(t1,5) U(s) (©)

This LTV transfer function (6) is still in operator form, involving
symbolic differentiation. The next step in TVP is to remove the opera-
tors, and cast the LTV transfer in terms of a number of linked LTI trans-
fer functions. This step can be achieved using either frequency-domain
techniques (e.g., harmonics of the LO frequency) or time-domain ones
(e.g., samples of a clock signal). Once an equivalent system of LTI
transfer functions has been obtained, TVP uses existing Padé approx-
imation techniques for LTI systems to generate a reduced model that
approximates the input-output relationship of the original, to any de-
sired level of accuracy.

TVP has a number of useful properties:

o The reduced mode! produced by TVP has a special form known
as the Floquer form, illustrated in Figure 1. In the Floquet
form, the dynamics of the system are separated from the time-
variation; hence the LTV system becomes equivalent to a LTI
system, followed by a memoryless multiplication. This feature
makes the reduced model very easy to incorporate in existing
simulation tools, such as a SPICE or MATLAB model; further-
more, it also provides insight for hand-calculations with the re-
duced model, since the poles and zeros of the LTI block capture
dynamics of the system. These poles and zeros can be obtained
directly from eigenvalue analysis of the reduced model, without
the need for transient simulations.

e Krylov-subspace algorithms such as Lanczos and Arnoldi, used
for the reduction step of TVP, require matrix-vector multiplica-
tions, but no matrix inversions or direct linear system solutions.
This property makes these computations scale almost linearly
with the size of the circuit, since iterative linear algebra and
factored-matrix methods (e.g., [MFR95, TKW95, RLF98] are
used. Thus the TVP algorithm is practical for reducing very
large blocks.

o A system with several inputs and outputs can be macromodelled
by TVP much more efficiently than by considering all combi-
nations of input-output pairs. This is especially useful for, e.g.,
simultaneous macromodelling of a system’s transfer character-
istics as well as its input and output driving point behaviour.

3 Application to wireless blocks

In this section, we present three applications of TVP. The first is a sim-
ple example, for the purpose of verifying TVP against hand calcula-
tions. The second is a RFIC upconverter consisting of an I-channel
buffer and mixer. The third is a switched-capacitor integrator cir-
cuit. The latter two circuits were reduced directly from their extracted
SPICE descriptions, together with information.identifying the input
sources and output nodes. The reduced model was produced for MAT-
LAB, in which further calculations (like plotting transfer functions and
computing poles) were performed.
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Figure 2: Lowpass filter—smixer—two bandpass filters

i—

[ Original system | ~TVP,g=2 TVP, g=73
-4.98e3 - j3.88e3 | -4.96e3 - j3.91e3 | -4.98e3 - j3.88e3

-1.59¢4 - j3.90e3
-9.95e4
-5.72e4 - j2.00e7
-3.59e4 - j1.99e7

Table 1: Poles (Hz) of H (s), original and reduced systems
3.1 A hand-calculable example

Figure 2 depicts an upconverter, consisting of a low-pass filter, an ideal
mixer, and two bandpass filter stages. The component values were
chosen to be: Ry = 160Q, Ry = 1.6kQ, R3 =500Q,C; =C; =C3 =
10nF, and L; = L3 = 25.35nH. These values result in a low-pass filter
with a pole at 100kHz, and band-pass filters with a center frequency of
10MHz and bandwidths of about 10kHz and 30kHz respectively. The
LO frequency for the mixer was chosen to be 10Mhz.

The baseband-referred transfer functions of interest in this case are
Hi(s) and H_;(s) (the fundamental components of the time-varying
transfer function), since they appear in the desired up- and down-
conversion paths. It can be shown that H_;(s) = H;*(—s), hence it
suffices to consider only Hj(s) here. The expression for Hj(s) can be
derived easily using intuitive frequency-translation concepts; it is:

-1.56e4 - j3.49e3 | -1.59e4 - j3.90e3

-9.95e4

(s+jewo)Ly (s+jwo)Ls
0.5 1+{s+ jo)?1,C; 1+(s+,jo)*LsCs

TsC s+ joo) Ly s+je)L.
+sC1Ry R2+ﬁs+—ja;)2rgzz~; R3+ﬁ§s¢jﬁ)lfli,@

(7) is plotted for positive and negative frequencies in Figure 3.1. Also
plotted are the transfer functions obtained from TVP with ¢ = 2 and
g = 3. It can be seen that for g = 2, TVP produces a reasonable ap-
proximation, whereas for ¢ = 3, the match is perfect, even though the
original system is of order 5.

The poles of the original system and those from TVP are shown
in Table 1. Note that the dominant pole is contributed by the lowpass
RC filter at about 100kHz.

3.2 RFIC mixer block

Next, we apply TVP to a portion of the W2013 RFIC from Lucent
Microelectronics, consisting of an I-channel buffer and mixer. The
circuit consisted of about n = 360 nodes, and was excited by a local
oscillator at 178Mhz driving the mixer, while the RF input was fed into
the I-channel buffer. The time-varying system was obtained around a
steady state of the circuit at the oscillator frequency; for this circuit,
harmonic balance with N = 21 harmonics was used to find the steady-
state operating point. Appropriately, a frequency-domain version of
TVP was used for macromodelling this circuit.

Figure 3.2 shows frequency plots of Hy (), the upconversion trans-
fer function. The points marked '+’ were obtained by direct computa-
tion of the full system, while the lines were computed using the TVP-
reduced models with ¢ =2 and g = 10, respectively. Even withg=2, a
size reduction of two orders of magnitude, the reduced model provides
a good match up to the LO frequency. When the order of approxima-
tion is increased to 10, the reduced model is identical upto well beyond
the LO frequency. Evaluating the reduced models was more than three
orders of magnitude faster than evaluating the transfer function of the
original system. N

The poles of the reduced models for Hj(s) are shown in Table 2.

3.3 Switched-capacitor integrator block

Our third application is macromodelling a switched-capacitor integra-
tor block. The integrator is lossy, designed for X-A applications with
a bandwidth of about 200kHz. The circuit was designed in a 0.35u
CMOS process, and modelled using a Lucent MOS model (ASIM3)
specifically intended for high-accuracy analog simulations. Compris-
ing more than 150 MOS devices, it includes biasing, common mode
feedback and slew-rate enhancement sections.

Hy(s) =

Q)]
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Figure 4: I-channel buffer/mixer Hy(s): TVP vs full system, +ve and -ve frequencies

| TVE, =2 T TVPg=10 ]
-5.39516+06 -5.30516+06
-6.9196e+07 - j3.00856+05 -9.4175€+06

-1.5588e+07 - j2.5296e+07
-1.56588e+07 + j2.5296e+07
-6.2659e+08 - j1.6898e+06
-1.0741e+09 - j2.2011e+09
-1.0856e+09 + j2.3771e+09
-7.5073e+07 - j1.4271e+04
-5.0365e+07 + j1.8329e+02
-5.2000e+07 + j7.8679e+05

Table 2: Poles of H; (s) for the I-channel buffer/mixer

The clock signal to the SC filter had a time-period of 78ns, but
some sections of the circuit were fed at twice that frequency, about
25.6MHz. The steady state waveform of the output node of the circuit
(in the absence of input) is shown in Figure 5. The steady state was
obtained by time-domain techniques akin to shooting.

The output node did not have switching activity filtered out. Fig-
ure 6 depicts a multi-time scale plot of the waveform at the output
node in the presence of a 10kHz sinusoidal input. (For details on how
to interpret multi-time plots of waveforms, see [Roy98b] or [Roy97a].
For the present purpose, it suffices to use the fact that a cross-section
parallel to the signal time scale represents the envelope of the signal
riding on the switching variations. By moving these cross-sections to
different points along the clock time-scale, the signal envelope at dif-
ferent points of the clock waveform can be chosen). The time-variation
of the circuit is apparent from the change in the signal depending on
the phase of the fast clock. Note how the sinusoidal signal is transmit-
ted in the region between 60ns and 78ns on the clock time scale, but
is cut out (because switches are off) between about 0-20ns and 40ns-
60ns. For macromodelling, we chose to sample the output at 70ns on
the clock time scale, i.e., in the middle of the clock phase in which
the signal is being transmitted. In other words, the transfer function
being modelled is that between the input and the waveform obtained
by taking a cross-section, parallel to the signal time scale, at 70ns on
the clock time scale in Figure 6.

A time-domain version of TVP was applied to reduce this transfer
function. Running TVP for the order 10 reduced model took about 10s
on a Sun UltraSparc machine. Table 3 shows the poles of the transfer
function, obtained from an eigenvalue analysis on reduced models of
size 3 and 10 respectively. The dominant pole is at 206kHz, close to
the designed value of 200kHz.

Figure 7 depicts the input-to-output transfer functions from the two
macromodels. As can be seen, even a tiny behavioral model (of size
3) is sufficient to capture the frequency-response upto well beyond the
dominant pole, while a size 10 model details behaviour to frequencies
orders of magnitude higher.

-2.06e5 -2.06e5

-1.42e6 -1.39e6

-2.64e10 -2.65e6
-5.22e6

-2.49e6+j1.29e7
-2.49e6-j1.29e7
-1.08e7
-2.04e7
-1.16e8
-7.34e10

Table 3: Poles (in Hz) of switched-capacitor integrator transfer function
4 Conclusion

We have presented applications of TVP, a technique for reduced-order
modelling of linear time-varying systems. The technique is useful for
macromodelling and hierarchical verification of communication sys-
tems, including noise. An RF mixer and a switched-capacitor integra-
tor have been macromodelled with equivalent systems more than two
orders of magnitude smaller, resulting in corresponding speedups.
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Figure 5: Steady state output of SC integrator (with zero input)
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