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Phase Noise in Oscillators: A Unifying Theory and
Numerical Methods for Characterization

Alper Demir, Amit Mehrotra, and Jaijeet Roychowdhury

Abstract—Phase noise is a topic of theoretical and practical in- phenomenon, jitter, is important in clocked and sampled-data
terest in electronic circuits, as well as in other fields, such as optics. systems. Uncertainties in switching instants caused by noise
Although progress has been made in understanding the phenom- 654 o synchronization problems. Characterizing how noise

enon, there still remain significant gaps, both in its fundamental . . . . L
theory and in numerical techniques for its characterization. In this affects oscillators is therefore crucial for practical applications.

paper, we develop a solid foundation for phase noise that is valid The problem is challenging, since oscillators constitute a
for any oscillator, regardless of operating mechanism. We establish special class among noisy physical systems. Their autonomous
novel results about the dynamics of stable nonlinear oscillators in nature makes them unique in their response to perturbations.
the presence of pertgrbatlons, b_oth deterministic and r_andom.We Considerable effort has been expended over the years in
obtain an exact nonlinear equation for phase error, which we solve . - . . .

without approximations for random perturbations. This leads us unde_rstandmg phasg noise and |n_ developmg analytlcal_, C‘?m'
to a precise characterization of timing jitter and spectral disper- Pputational and experimental techniques for its characterization
sion, for computing which we develop efficient numerical methods. (see Section Il for a brief review). Despite the importance
We demonstrate our techniques on a variety of practical electrical of the problem and the large number of publications on the
oscillators and obtain good matches with measurements, even atsubject, a consistent and general treatment and computational

frequencies close to the carrier, where previous techniques break - - -
down. Our methods are more than three orders of magnitude faster techniques based on a sound theory appear to be still lacking. In

than the brute-force Monte Carlo approach, which is the only pre-  this work, we provide a novel, rigorous theory for phase noise
viously available technigue that can predict phase noise correctly. and derive efficient numerical methods for its characterization.
Index Terms—Circuit simulation, Fokker-Planck equations, Our techniques and results are general. They are applicable

nonlinear oscillators, oscillator noise, phase noise, stochastict0 any oscillatory system, electrical (resonant, ring, relax-
differential equatioons, timing jitter. ation, etc.) or otherwise (gravitational, optical, mechanical,

biological, etc.). The main ideas behind our approach and our
contributions are outlined in Section Il. We apply our numerical
techniques to a variety of practical oscillator designs and obtain
SCILLATORS are ubiquitous in physical systems, espgood matches against measurements. Our computations are
cially electronic and optical ones. For example, in radiefficient. Speedups of a factor of 1800 were obtained against

frequency (RF) communication systems they are used for fie Monte Carlo method, which is the only previously available
quency translation of information signals and for channel sgechnique needed to produce similar results.
lection. Oscillators are also present in digital electronic systemsThe paper is organized as follows. In Section Il we present
which require a time reference, i.e., a clock signal, in order tm overview of the main results of the paper and in Section IlI
synchronize operations. we give a brief review of the previous work. In Section IV

Noise is of major concern in oscillators, because introducifnge introduce some basic mathematical notions about os-
even small noise into an oscillator leads to dramatic changsiators. In Section V we consider the traditional approach
in its frequency spectrum and timing properties. This phénearization) to analyzing perturbed nonlinear systems and
nomenon, peculiar to oscillators, is known as phase noisegbiow how this procedure is not consistent for autonomous
timing jitter. A perfect oscillator would have localized tonegscillators. In Section VI we derive a nonlinear equation that
at discrete frequencies (i.e., harmonics), but any corruptiegactly captures how perturbations result in phase noise. In
noise spreads these perfect tones, resulting in high pov@iction VII we solve this equation with random perturbations
levels at neighboring frequencies. This effect is the majand arrive at a stochastic description of phase deviation, from
contributor to undesired phenomena such as interchanpglich we derive timing jitter. Next, in Section VIII, we use
interference, leading to increased bit error rates (BER’s) in Rhis stochastic characterization to calculate the correct shape
communication systems. Another manifestation of the sarpethe oscillator's spectrum with phase noise. In Section IX we
derive several quantities commonly used in oscillator design to
quantify jitter and spectral properties. In Section X we address
. . . . _ the problem of computing these quantities efficiently, even for
Manuscript received April 29, 1998; revised August 17, 1999. This paperwr’ala?rge circuits. We develop both time- and frequency-domain
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Fig. 1. Oscillator and waveforms.

design methodologies. Appendices A—C describe several mathmathematically rigorous. Furthermore, we derive equations

ematical concepts, definitions, and results used throughout fbe «(¢) and y(¢) which lead to qualitatively different results

paper. about phase noise compared to previous attempts. This is
because our results are based on a new nonlinear perturbation

Il. OVERVIEW AND MAIN CONTRIBUTIONS analysis that is valid for oscillators, in contrast to previous
approaches that rely on linearization. We show in Section V that
In this section, we first outline the flow of the rest of the papegnalysis based on linearization is not consistent for oscillators

and describe the basic concepts behind our treatment of phgsg results in nonphysical predictions.

noise. We then discuss how our approach has a natural stateyext, we consider the case where the perturbaligi is

space or phase-plane interpretation. We summarize the na¢gldom noise. This situation is important for determining prac-

aspects of our work at the end. tical figures of merit such as zero-crossing jitter and spectral pu-
rity (i.e., spreading of the power spectrum)itter and spectral
A. Outline of Main Results spreading are, in fact, closely related and both are determined by

Consider the oscillator shown in Fig. 1(a), consisting of &€ manner in whiclx(t), now also a random process, spreads
lossy LC circuit with an amplitude-dependent gain provided B@l'th time. We consider randpm perturbat'lons in detail in Sec-
the nonlinear resistor. The nonlinear resistor has a negative #80s VIl and Vill and establish the following.
sistance region which pumps energy into the circuit when the 1) The average spread of the jitter (mean-square jitter) in-
capacitor voltage drops, thus maintaining stable oscillation. A creases precisely linearly with time.
current sourcé(t) is also present, representing external pertur- 2) The power spectrum of the perturbed oscillator is a
bations due to noise. When there is no perturbation, fi(é), Lorentziardi about each harmonic.
is zero, the oscillator oscillates with a perfectly periodic signal 3) A single scalar constantis sufficient to describe jitter
x,(t) (a vector consisting of the capacitor voltage and the in-  and spectral spreading in a noisy oscillator.
ductor current), shown in Fig. 1(b). In the frequency domain, 4) The oscillator's output is a stationary stochastic process.
the unperturbed waveform consists of a series of impulsesTatese results have important implications. The Lorentzian
the fundamental and harmonics of the time period, as showrsimape of the spectrum implies that the power spectral density
Fig. 1(c). (PSD) at the carrier frequency and its harmonics has a finite

Although our eventual intent is to understand the responsewaflue and that the total carrier power is preserved despite spec-
the oscillator wherb(t) is random noise, it is useful to considettral spreading due to noise. Previous analyses based on linear
firstthe case whel(¢) is a known deterministic signal. We carrytime-invariant (LTI) or linear time-varying (LTV) concepts
out a rigorous analysis of this case in Section VI and obtain teeroneously predict infinite noise power density at the carrier,
following results. as well as infinite total integrated power. That the oscillator

1) The unperturbed oscillator's periodic responsét) is Output is stationary is surprising at first sight since oscillators
modified toz, (t+(t)) +y(t) by the perturbation where are nonlinear systems with periodic swings, hence, it might be
the following holds. expected that output noise power would change periodically as

An forced systems. However, it must be remembered that while

the periodic output of the unperturbed oscillator. forced systems are supplied with an external time reference

b) y(t) is an additive component, which we term théthrough the forcing), oscillators are not. Cyclostationarity in

orbital deviation, to the phase-shifted oscillatthe oscillator’'s output would, by definition, imply a time ref-
erence. Hence, the stationarity result reflects the fundamental

a) «(t) is a changing time shift or phase deviation i

waveform.
act that noisy autonomous systems cannot provide a perfect
2) «ft) andy(¢) can always be chosen such that the fo{-. y Y P P
/ ime reference.
lowing holds.

o . ) o Next, in Section X, we apply the theory above to develop
a) a(t) will, ingeneral, keep increasing with time evenyorect computational techniques that are efficient for practical

if the perturbatiorb(t) is always small. _ circuits. We present two new numerical methods (in the time
b) The orbital deviatiory(¢), on the other hand, will
always remain small. 1The deterministic perturbation case is also of interest, for, e.g., phenomena

. L . such as mode locking in forced oscillators. We consider this case elsewhere [1].
T,hese results ancret'ze eX|§t|ng Intuition - amongst de'2A Lorentzian is the shape of the squared magnitude of a one-pole lowpass
signers about oscillator operation. Our proof of these fadtser transfer function.
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Fig. 2. Oscillator trajectories.

and frequency domains) for jitter/spectral dispersion, with the
following features.

1) The methods require only a knowledge of the steady state
of the unperturbed oscillator and the values of the noise
generators.

2) Large circuits are handled efficiently, i.e., computa-
tion/memory scale linearly with circuit size.

3) The separate contributions of noise sources and the sen-
sitivity of phase noise to individual circuit devices and
nodes can be obtained easily.

Finally, in Section Xl, we use our theory and numerical

methods to analyze several oscillators and compare the results

against measurements. We obtain good matches, everri@ts. Limitcycle and excursion due to perturbation.
frequencies close to the carrier, unlike most previous analyses.

Our numerical methods are more than three orders of magpi- L . . .
tude faster than Monte Carlo simulations, the only alternativ@|'s: this time or p_hase shift results in the difference between
method for producing qualitatively correct predictions. Th e unperturbed point,(t) and the phase componeny(t +

brute-force Monte Carlo technique is the only previousl%(t ) of the perturbed trajectory. The orbital deviatigt) due

)
available analysis method, apart from ours, that is not based r{h.e perturb_atlon IS also shown. .
linearization. Itis shown in Section VI that(t) grows very much like the

integral of the perturbation. For a constant perturbation, for ex-

B. State-Space Interpretations of Phase and Orbital DeviatiéhnPle.«(t) is approximately a linear ramp. This indicates how
The ph d orbital deviati h intuitive int tati the frequency of the oscillator can change due to perturbations,
h etﬁ ase al? tor, ltaldeviations have :jn .u't'\ée |ntetrpre allogs; 5 linearly increasing phase error is equivalent to a frequency
when he oscifialor's response 1s viewed In the state-spacepf,, v 5150 suggests why cycle-to-cycle (i.e., per cycle) timing
phase plane. In Fig. 2, the voltagét) across the capacitor is

plotted against the currenft) through the inductor. The trace]Itter 's & constant quantity.
for the unperturbed oscillator forms a closed curve since thi
waveform is perfectly periodic. When the oscillator is perturbed;,
this periodicity is lost. For stable oscillators, however, the per- Our treatment contains a number of advances over the pre-
turbed trajectory remains within a small band around the unp&fous state of the art. The main ones are the following.
turbed trajectory, as shown. * We present a rigorous nonlinear analysis of the perturbed
The closeness of the perturbed and unperturbed trajectories in  oscillator. In contrast, previous analyses rely purely on lin-
the phase plane does not imply that the time-domain waveforms earizations. Our approach leads to a nonlinear differential
are also close to each other. The points on the perturbed and equation for the phase shifi(t) that is qualitatively dif-
unperturbed trajectory corresponding to a given tinvll, in ferent from those based on linear analyses. We show, in
general, be far from each other, as illustrated in Fig. 2. However, fact, that linear analyses are not consistent (Section V).
the waveform of the perturbed oscillator does remain close to « Our analysis and results apply to any oscillatory
the unperturbed waveform after it is time shifteddy). In the system described by differential equations, while

. Main Contributions
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previous analyses are usually for special cases @escriptions of phase noise have been obtained for certain sys-
classes of oscillators. tems. In the seminal work of Lax [14], for example, an equation

« We analyze the case of random perturbations rigorousdgscribing the growth of phase fluctuations with time is obtained
and show that the following holds. for pumped lasers. The fact that a Wiener phase noise process

The average spread of the phase error grows exadads to Lorentzian power spectra is also well established, e.g.,
linearly with time. [15] and [16]. However, a general theory is apparently not avail-

The oscillator output with phase noise is stationary. able even in this field.

A single scalar constant suffices to characterize the Possibly the most general and rigorous treatment of phase
timing jitter and spectral broadening due to phase noiseoise to date has been that of Kartner [17]. In this work, the os-

» We develop efficient computational methods in the timeillator response is decomposed into phase and magnitude com-
and frequency domains for predicting phase noise. Oponents and a differential equation is obtained for phase error.
techniques are practical for large circuits. We obtain godgly solving a linear small-time approximation to this equation
matches between spectra predicted using our technigui¢h stochastic inputs, Kartner obtains the correct Lorentzian
and measured results, even at frequencies close to the spectrum for the PSD due to phase noise. Despite these advances
rier and its harmonics, where most previous techniquesrtain gaps remain, particularly with respect to the derivation
break down. Our numerical techniques are much fastand solution of the differential equation for phase error.

(three orders of magnitude) and also more accurate tharRecently, Hajimiri [18], [19] has proposed a phase noise

the Monte Carlo methods. analysis based on a conjecture for decomposing perturbations
into two (orthogonal) components, generating purely phase
and amplitude deviations, respectively. While this intuition is
similar to Kartner's approach [17], other aspects of Hajimiri's

A great deal of literature is available on the phase noieatment (e.g., stochastic characterization for phase deviation
problem. Here we mention only some selected works from ta@d the spectrum calculation) are essentially equivalent to
fields of electronics and optics. Most investigations of ele¢-TV analysis. Unfortunately, the conjecture for orthogonally
tronic oscillators aim to provide insight into frequency-domaidecomposing the perturbation into components that generate
properties of phase noise in order to develop rules for designipgase and amplitude deviations, while intuitively appealing,
practical oscillators; well-known references include [2]-[6)can be shown to be invalid [20]. Design intuition resulting from

Usually, these approaches apply LTI analysis to high-Q &te conjecture about noise source contributions can also be

quartz-crystal type oscillators designed using standard feedb#&tigleading.

topologies. Arguments based on deterministic perturbationsln summary, the available literature often identifies basic

are used to show that the spectrum of the oscillator resporal useful facets of phase noise separately, but lacks a rigorous

varies asl/f? times the spectrum of the perturbation. Whileinifying theory clarifying its fundamental mechanism. Further-
often of great practical importance, such analyses often requir@re, existing numerical methods for phase noise are based on
large simplifications of the problem and skirt fundamentdprced-system concepts which are inappropriate for oscillators
issues, such as why noisy oscillators exhibit spectral dispersind can generate incorrect predictions.

whereas forced systems do not.

Attempts to improve on LTI analysis have borrowed from IV. PRELIMINARIES
LTV analysis methods for forced (n_onoscnlatory) systems (e'g"The dynamics of any autonomous system without undesired
[7]-[10]). LTV analyses can predict spectra more accurate:lﬁv

I1l. PREVIOUS WORK

than LTI ones in some frequency ranges, however, LTV tec erturbations can be described by a system of differential equa-

niques for forced systems retain nonphysical artifacts of Lnfms' For notational simplicity, we use the state equation for-
q Y pny “mulation throughout the paper to describe the dynamics of an

analysis (such as infinite output power) and provide no real 0

sight into the basic mechanism generating phase noise. ;
Oscillators that rely on abruptly switching elements, e.g., rir%

and relaxation oscillators, are more amenable to noise analy:

Perturbations cause variations in element delays or alter the ti

taken to reach switching thresholds, thus directly determining

timing jitter. References [11]-[13] predict phase noise by using = f(2) (1)

analytical techniques on idealized models of specific oscillator

circuits. The mechanism of such oscillators suggests the fun%ﬁerex € R" and f(.): R"—R". We assume thaf(-) satis-

mental intuition that timing or phase errors increase with timﬁes the conditions of the Picard—Lind@ékxistence and unique-
Howeyer, this intuition does not extend naturally to other typ%sess theorem for initial value problems [23]. We consider sys-
of oscnlators._ . . . . . tems that have an asymptotically orbitally stal{keee Appendix

More sophisticated analysis techniques predominate in t Zperiodic solutionz, (¢) (with period ) to (1), i.e., a stable
domain of optics. Here, stochastic analysis is common and it i ) T

well known that phase noise due to white noise perturbations i
P P §After any small disturbance that does not persist, the system asymptotically

Qesgribed by ?-Wienerv or random walk, proces;. AI_thOUQh jusgie'ttles back to the original limit cycle. See the Appendix A for a precise defini-
fications of this fact are often based on approximations, precis of this stability notion.

onomous system. The results and the numerical methods we
esent can be extended for the modified nodal analysis (MNA)
rmulation (differential-algebraic equations with index one)
Wen byd/dt q(x) + f(«) = 0. Please see [21] and [22] for
ails. We have
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limit cycle in the n-dimensional solution space. We are interwherew(0) is the initial condition. Next, we will show that one
ested in the response of such systems to a small state-dependftiite terms in the summation in (5) does not decay with
perturbation of the fornB(z)b(t) whereB(-): R*—R"*? and Lemma 5.1:

b(-): R—RP. Hence, the perturbed system is described by « The unperturbed oscillator (1) has a nontrivial T-periodic
] solutionz4(¢) if and only if 1.0 is a characteristic multi-
&= f(x) + B(x)b(t). @) plier of the homogeneous part of (3) or, equivalently, one

of the Floquet exponents satisfiesp (11;77) = 1.0.

» The time-derivative of the periodic solutian(t) of (1),
i.e.,a,(t), is a solution of the homogeneous part of (3).
Proof: Sincez,(¢) is a nontrivial periodic solution of (1),
The traditional approach to analyzing perturbed nonlinearsatisfiess,(¢) = f(x,(¢)). Taking the time derivative of both

systems is to linearize about the unperturbed solution, undgudes of this equation, it follows immediately thatt) satisfies

the assumption that the resultant deviatiovill be small. Let i = A(¢)w, the homogeneous part of (3). Thus

this deviation bew(t), i.e., z2(t) = z,(¢) + w(t). Substituting N

_thIS expression for(t) |n_(2), replam_ngf(a:s(t) + w(t_)) by (1) = Z wi(t) exp(put)ol (0)i4(0).

its first-order Taylor series expansion, approximatiBgz)

with B(z,), [i.e., we use only the zeroth-order Taylor series _ o

term B(z,) b(t) which captures the modulation of the noiseinced, (t) is p_er!odlc, it follows that at least one of the Floquet

sources with the large signal steady state. Note that we ign§¥Ponents satisfiesp(p;7) = 1.0. _ .

the first-order term in the expansion B{z) b(t) aroundz, (%), Rgm_ark 5.2:0ne can §h0w that if 1.0 is a Characte_rlstlc

i.e.,dB(z,)/dx w(t) b(t). This term is a high-order effect thatmultiplier and the remaining — 1 Floquet exponents satisfy
captures the modulation of the noise sources by themselves &ieP(#i1)| < 1.0, 4 = 2, ---, n, then the periodic solution
can be neglected for all practical purposes] and assuming tfat?) of (1) is asymptotically orbitally stable and it has the

w(t) is small, we obtain asymptotic phase property (see Appendix A) [23Jloreover,

if any of the Floquet exponents satidfyxp (1;7)| > 1.0, then

Let the exact solution of the perturbed system in (2} f®.

V. PERTURBATION ANALYSIS USING LINEARIZATION

=1

. af(x) the solutionz (%) is orbitally unstable.
YT o 22 (1) w(t) + Bls (£)0() Without loss of generality, we choogge = 0 andwu,(t) =
= A(t)w(t) + B(x.(£))b(t 3) (- .
() + Bla.(0)0) B Remark 5.3:With us(f) = i.(t) we havesT(£)i(f) —
where the Jacobiar(t) = (9f(z)/dz)|., ) is T-periodic. 1.0 andvi (H)u;(t) = 0, j = 2,---, n. vi(t) will play an

Here, we used the fact that (¢) satisfies (1). Now, we would important role in the rest of our treatment. _
like to solve forw(t) in (3) to see if our assumption that it is Next, we obtain the particular solution of (3) given by
small is indeed justified. For this, we use results from Floquet

t
theory [23], [24] as follows (see Appendix B). wp(t) = / U(t)exp(D(t — ) V(r)B(zs(r))b(r) dr
The state transition matrix for the homogeneous part of (3) is 0 .
given by (see Theorem B.1) _ Z ui(t)/ exp(pii (t — 7)) vE (1) B, (r))b(r) dr.
P 0
®(t, 5) = U(t) exp(D(t — 5))V (5) ©) ' ®)
whereU(t) is aT-periodic nonsingular matriX/ (t) = U"*(t) The first term in the above summation is given by
andD = diagu, -- -, pin], wherey; are the Floquet (charac-,, (1) fof oI (") B(ws(r))b(r) dr since u; = 0. If the inte-
teristic) exponents:xp(y; 1) are called the characteristic mul-grand has a nonzero average value, then the deviatjenin
tipliers. . (3) will grow unbounded, even for smal(¢). Hence, the as-
Remark 5.1: Let “i(t)lbe the columns ol/(¢) andv; (#) be  symption thatw(t) is small becomes invalid and the linearized
the rows ofV(¢) = U~7(¢). Then{uy(t), us(t), -+, un()}  perturbation analysis is inconsistent.
and {vi(t), va(t), ---, va(t)} both spanR™ and satisfy the * Now, we consider the case where the perturbali@i is a

biorthogonality conditions;” (¢) u; () = 6, for everyt. Note  yector of uncorrelated white noise sources, i.e.,
that, in generall/(¢) itself is not an orthogonal matrix.

Let us first consider the homogeneous part of (3), the solution E[b(t)b" (t2)] = L,6(t1 — t2) @)

of which is given b
g Y where E[.] denotes the probabilistic expectation oper-

wi(t) =U(t) exp(Dt)V(0)w(0) ator. It can be shown that the variance-covariance matrix
K(t) = E[w(t)w” (t)] of the solution of (3) is given by

t
=t K(t) =/ O(t, 7)B(w, (1) BT (x,(1)®(t, 7)T dr
4By deviation we refer to the difference between the solutions of the perturbed 0
and unperturbed systems. 6Note that this is a sufficient condition for asymptotic orbital stability, not a

SThe reader who is unfamiliar with Floquet theory is encouraged to read Apecessary one. We assume that this sufficient condition is satisfied by the system
pendix B before continuing. and the periodic solutiom, (t).
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for the initial conditionX (0) = 0. If we substituted(¢, 7) from solves (8) for a certaig(t) that remains small for a.
(4), we get y(t) will be called the orbital deviation. Note that we will
indeed perform a linearized perturbation analysis for the
ui (B (¢) orbital deviatiory(t). However, in this case we prove that
1 this linear analysis is correct and consistent by showing
t that the orbital deviation indeed stays small for small per-
U exp((pi + ) (t — 7))vd (1) turbations. In the traditional linear perturbation analysis
0 presented in Section V, the response deviation for the
- B(s(7)) BT (5 (7)) (1) d’/':| ) §ystem do'es not stay small fpr small perturb_ations, hence
itis not valid. We also would like to reemphasize that even
though the perturbation analysis for the orbital deviation
, is linear, we derive a nonlinear equation for the phase de-
T T T viation, hence, we perform a nonlinear perturbation anal-
(B () [/0 v (N Bles(r)B @ (r))uu() dT} ysis for the overall deviation, i.e., the phase deviation and
the orbital deviation.

sinceu; = 0. The integrandf (1) B(x, (7)) BT (2, (7))v1 (1) . , , )
(which is a nonnegativescalar that is periodic in) has a pos- z\éistart by definingy(#) concretely through a differential equa

itive average value, hence, this term grows unbounded #vith Definition 6.1: Define a(#) b
Thus, the assumption that the deviatioft) stays smaflis also " y
invalid for the stochastic perturbation case because the varlanc%( )

The term in the summation above foe j = 1 is given by

of the entries ofu(t) can grow unbounded. pn = v (t+ a(®)B(zs(t+ a(H)b(t),  «(0)=0.
(12)
VI. NONLINEAR PERTURBATION ANALYSIS FOR PHASE Remark 6.1: The existence and uniqueness theorem for dif-
DEVIATION ferential equations guarantees th#t) exists and is unique.

Remark 6.2: a(t) can grow unbounded evenlift) remains
mall. For example, consider the case whi€tgis a small pos-

|Iave constant: < 1, B = 1 andwv;(¢) is a constant. Then
( ) = ket.

As seen in the previous section, traditional perturbation tech-
nigues do not suffice for analyzing oscillators. In this section,
novel nonlinear perturbation analysis suitable for oscillators is

presented. . . . . .
. Lo Having defineda(t), we are in a position to spliB3(x)b(t)
The new analysis proceeds along the following lines. into by (z, ¢) andb(z, 1).

1) Rewrite (2) with the (small) perturbatioli(z)b(t) split Definition 6.2 Let
into two small parts, (z, t) andb(z, t) o

b= f(2) + by, £) + b(a:, ). ®) bi(z, t) = o1 (w, i (t + alt)) (13)

2) Choose the first perturbation te#m(z, t) in such away and
that its effect is to create only phase errors to the unper- n
turbed solution. In other words, show that the equation  i(z, ) = B(x)b(t) — by (x, t) = Z iz, Dt + ot))
1=2

&= f(z)+bi(z, 1) C) (14)
where the scalars(z, t) = vl (t + «(t))B(z)b(t). Note that
b1 (z, t) is obtained by projecting the original perturbation along
2,(t) = z,(t + a(t)) (10) th_e time-varying dire_ctiom]L (t + «(¥)). Ui, v; are the Floquet
eigenvectors of Section V and Appendix B.
for a certain functiona(t) called the phase deviation. Lemma 6.1:x,(t) = z;(t + «(t)) solves (9).
It will be seen thatx(¢) can grow unboundedly large Proof: Substitutinge(t + a(t)) in (9) and usingg, (t) =
with time, even though the perturbatié(z, ¢) remains () we obtain

is solved by

small.
3) Now treat the remaining terbfz, t) as a small perturba- Ts(t+ at)) (14 &(t)
tion to (9) and perform a consistent traditional perturba- — f(a:s(t + () +oF (t + a(t))

tion analysis in which the resultant deviations frap{¢
remain small, i.e., show that o Blas(t + alO))p(tyua (t + a(?))

= alt)us (t + oft))
(1) = zs(t + a(t)) + y(t) (11) = o7 (t + a(t)) Bz, (t + a(t)b()us (t + at)).

"B(x(7))B7(x,(7)) is a positive semidefinite matrix. .

8The notion of staying small is quite different for a stochastic process than tNaote that O‘( ) and ¢ (t) are scalars, whileu, (t) and
one for a deterministic function. For instance, a Gaussian random variable ecar{t) are vectors. Also for anyt, all the entries of
take arbitrarily large values with nonzero probability even when its vananceis ) and, hence,u; (t) cannot be simultaneously Z€ero,

small. We say that a stochastic process is bounded when its variance is boundé erwi h il il il H
even though some of its sample paths (representing a nonzero probability) 8H€rWIse the oscillator will cease to oscillate. Hence,

grow unbounded. a(t) = vI'(t + () B(as(t + a(8))b(t). [ |
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With Lemma 6.1, we have shown that théx, ) component From (12), note thad is bounded to within a constant multiple
causes deviations only along the limit cycle, i.e., phase deviaf-4(t), hence|a| < 1 if |b(t)| < 1. Hence, we can approxi-
tions. Next, we show that the remaining perturbation componentitel + ¢ by one to obtain
b(z, t) perturbsz,(t) only by a small amoung(t), provided @
b(t) is small. dy(t) __ N\ d N 2
(Bemma 6.2: For b(t) sufficiently small, the mapping — i A, (0)3(0) + bs (7). ) (19)
t + «(t) is invertible.

Proof: It suffices to show that(t) = ¢ + «(t) is strictly
monotonic. The derivative of this function is+ ¢&(¢). Now
a(t) = vt + a(t)B(xs(t+ a(t))b(t). The termsyf () and n ;
B(z.(-)) are both bounded because they are periodic with 4(f) Z e / exp Nz(t )) viT(7’)5(xS(7>), r)dr.
Hence|&(t)| can be made less than oné(t) is small enough. im1

Equation (19) is of the same form as (3), hence, its solution is
of the form of (6)

Since the derivative of the mapping will then be strictly greater (20)
than zero, the mapping— ¢ + «(t) will be invertible. Consider thet = 1 term of (20). Sincg.; = 0, the integrand
Definition 6.3: Letb(t) be small enough thaft) = t+a(t) €duals the? (r)b(z,(r), r). From its definition ob in (18) and
is invertible. Then definé(-) by (14) it is clear thab, expressed in the bas{s;(-)}, contains
o now; component. Therefore, by biorthogonality{ef;(-) } and
b(t) = b(?). (15)  {w;()}, vT(r)b(x4(r), r) is identically zero, hence, the= 1
_ ) term vanishes. The expression igr) then becomes
Definition 6.4: Define
y(t) =9()

=S uilh) [ exp i — 1) o () Baa(r)ir) dr ; A
; / . > i /exp 15(F = 1)) o (s (), ) dr

[
M:

<
||

wheret = t + a(t).

Remark 6.3:Note that the index of the summation starts= y(¢)
from two. Since| exp (11,7)| < 1.0, ¢ > 2 (due to asymptotic
orbital stability), this implies thaj(¢) is within a constant factor
of b(t), hence, small.

Theorem 6.1:1f 4(t) is small [implying thaty(¢) in Defini-
tion 6.4 is also small], then(t) = z,(¢) + y(¢) solves (8) to
first order iny(t). R

Proof: Consider (9) perturbed iz, t) to obtain (8). As-  We now find the probabilistic characterization of the phase

xp (it = 1)) o] () B, (r))b(r) dr.

M:

VIl. STOCHASTIC CHARACTERIZATION OF THE PHASE
DEVIATION «

sume the solution to bg(¢). Then we have deviation« (Definition 6.1) as a stochastic process when the
. . perturbatiorb(¢) is a vector of uncorrelatédvhite noise sources
p(t) +9(8) = f(@p(t) +y(8) + bu(wp(t) +y(2), 1) as in (7). We assume thatt) is stationary. White cyclosta-
+ bz, (t) +y(t), ) tionary (i.e., modulated white) noise sources are captured with
. af - the state-dependent modulati®t{x) in (2). In this paper, we
= y(t) = or y(t) +(wp(t), ) consider only white and modulated-white noise sources, such

@e () as shot and thermal noise. Please see [21] for a treatment of col-
lignoring higher order terms it¢) andy(¢) and using Lemma ored and modulated-colored noise sources, sudi Asoise.

6.1] We will treat (12) as a stochastic differential equation [25],
] . [26]. The stochastic process is a family {«(t): t € R4}
= y(t) = Az (t + a(B)y(t) + bz (E + a(h), 1) of random variables indexed by tinteand taking values ifR.
with A(z) = (3f/02)]a. Evaluation of the random variable(¢) at some time yields a

number inR and an evaluation of for all ¢t € R is called a
realization or sample path of the stochastic proeeSthe com-
plete collection of the sample paths of the stochastic pragess

Now definet(t) = ¢ + a(t) and apply Lemma 6.2 to invert
#(t) in order to define

i(t) = y(t) (17) s called the ensemble. The() (for different values ot) are
not independent, in general.df= [¢1, to, -- -, t,] IS @ vector
taking values iR, then the vectofa(ty), a(tz), -, a(t,)]
- NN T - has the joint distribution functiof, t): R™ — [0, 1] given
b (D), 1) = b (), ). ag oo ") alm. ) 0-119
Then we have
o Fy(n, t) =P (a(ty) <mu, ooy altn) <)
dy(t) ~ A AN lA) N OF . . . L. .
= 7 ~ (xs (t))y(t) + (xs (t)v t) 9The extension to correlated noise sources is trivial. We consider uncorre-
dA(A) lated noi_se sources for notation_al simplicity. Moregver, v_arious noise sources in
(1 —l—d(t)) Y %A(a:s(f))g)(f) + lAJ(a:s(tA), f). electronic devices usually have independent physical origin and, hence, they are

modeled as uncorrelated stochastic processes.
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where P(.) denotes the probability measure. The collectiop, (7, t) becomes a Gaussian PDF asymptotically with linearly
{F(n, t)}, ast ranges over all vectors of members®f of increasing variance. We show this by first solving for the char-
any finite length, is called the collection of finite-dimensionahcteristic functionF'(w, ¢) of «(t), which is defined by
distributions (FDD’s) ofa. In general, the knowledge of the oo

FDD’s of a processy does not yield complete information F(w, t) = E[exp(jwa(t))] :/ exp(jwn)pa(n, t) dn.
about the properties of its sample paths [27]. Nevertheless, the —o0

FDD'’s provide more than adequate iqformationto calc_ulate t@?nce botho?(.) and B(,(.)) are T periodic in their argu-
second-order (e.g., spectral) properties of a stochastic procgﬁémsva(') is also periodic in its argument with peridfl.

since they capture the correlation information betwe€f\) |once we can expand (¢) into its Fourier series
anda(tg) for all t1, 12 € R+. '

In this section, we will follow the below procedure to find an - = N 27
adequate probabilistic characterization of the phase deviation vt (1) = Z Vi' exp(jiwot), wo =T
for our purposes. i=—00
1) We first calculate the time-varying probability density Lemma 7.1:The characteristic function of(¢), F(w, t),
function (PDF)p,(n, t) of « defined as satisfies
_ 9P(aft) <) IF(w, 1) = = T o
paln, t) = a7 t2>0 o i;m k_z_: Vi Vi exp(jwo(i — k)t)
and show that it becomes the PDF of a Gaussian random (Awpiw — 20?) Flwo(i — k) +w, t)  (22)

variable asymptotically with. A Gaussian PDF is com-
pletely characterized by the mean and the variance of thderex denotes complex conjugation.

random variable. We show thatt) becomes, asymptot- Proof: LetX(n) be a smooth function. For notational sim-
ically with time, a Gaussian random variable with a corplicity we will drop the explicit dependence of.(n, t), h(n),
stant (as a function of) mean and a variance that is lin-andv” (¢ +7) onz andt from now on. Then from (21) we have
early increasing with timé

2] o T
2) The time-varying PDB, (7, t) does not provide any cor- / %h dn = / _9 <)\paaLU> hdn
relation information between(t) and a(t + 7) that is —oo Ot —oo O In
needed for the evaluation of its spectral characteristics. n / = 19w upa) hd
We then calculate this correlation to be oo 2 On? K
Ela(t)a(t+7)] = m? + ¢ min (¢, t +7) The term on the left-hand side is the time derivative of
ER(a(t))] = [72 pal(n, t)h(n)dn. The first term on the
wherem andc are scalar constants. right-hand side is
3) We then show thaty(t;) and «(t;) become jointly
. . . N . 00 g avT
Gaussian asymptotically with time, which does not / 9 <)\p ’_U> hdy.
follow immediately from the fact that they are individu- e O “ on
ally Gaussian. . .
. , o , Integrating this by parts we get
Starting with the stochastic differential (12) for, one can
derive (see Appendix C) a partial differential equation, known g \ T hd
as the Fokker—Planck equation [26], [28] for the time-varying o O p"a—nv n
PDF p.(7, t). The Fokker—Planck equation fes(t) takes the 9T | ~ an  9uT
form = — A\po—uvh +/ A—Do——v dn.
Opal(n, 1) 9 o7 (t + 1) W e S O
Dol (Y
Tg =~ <)\pa(77, t)TnU(t +77)> The first term above, on the right-hand side, is zero at both

52 the limits, because the PDF of a well-defined random variable
—— (vT(t + n)v(t +n)pa(n, t)) (21) should be zero at-oo. The second term can be written as an
In expectation, i.e.,

< dh ot dh vt
S pa—uvdn =E | A\——u| .
/_oo )\dnp an vdn [Ada e U}

1
3

where
v¥(t) = of (1) B(x,(1))

ando < \ < 1 depends on the definition of the stochastic inte2imilarly (using integration by parts twice) it can be shown that

gral [26] used to interpret the stochastic differential equation in /oo 1 9(vF vp.,) 1 { 2h }
= ——v

(12). We would like to solve (21) fap,(n, t). It turns out that hdn=-E T2

oo 2 OR? 2
10The fact thatx(¢) is a Gaussian random variable for evegoes not imply
thata is a Gaussian stochastic processs a Gaussian process if its FDD'’s areHence
multivariate Gaussian distributions. Individually Gaussian random variables are T 2
o : : : : dE[h] dh dv 1 _[d*h
not necessarily jointly Gaussian. In this step, we only calculate the time-varying - vl +=E oIy
PDF ofx(#) which is only a partial characterization of its FDD's [27]. dt da Oa 2 )
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We will now substitutéh(«) = exp(jwa) and the Fourier series Expandingexp(—wwo (i — k)o?) in a power series and equating
representation of to obtain a differential equation for the charthe coefficients ofu on both sides we obtain

acteristic function. The left-hand side term is the time derivative
of the characteristic functioR'(w, ) of a(t)

= Z Z VIV exp(juwoli — k)t)

ot . -exp(jwo(i — k)p) exp(—3 wi(i — k)*0?) (—Awoi)
. Ov . 1, 57 .
— A explivn) + 5 (o7 expliva)
da 2 or

= > > VIV exp(jwoli — k)HE du

i=—o00 k=—o00 Z Z FAweiVEVE exp(fwoli — k)t)

. [(—)\woLw — 2 w?) exp(jwoli — k)o + jwar)] i=—o0 k=—oco

> . VI 12/ a2 2

— Z Z ViTV’: eXp(jUJo(i _ k‘)t) eXp(JWO(L k)ﬂ) exp( 2 wO(L k) g ) (26)

i=—o0 k=—o0

(= dwoiw — L w?) Flwo(i — k) + w, t).

For larget and, hence, large?, exp(—1/2w3(i — k)?0?) be-
comes vanishingly small for all # k. Fori = k the above
equation becomes

]
Theorem 7.1:(22) has a solution that becomes the charac- oo
teristic function of a Gaussian random variable asymptotically dy _ Z JAwoi VAV
with time d
) . w?o?(t) AT deT ()
thjgo F(w, t) =exp <qu(t) - T) (23) =7 /0 p v(t) dt
i 204\ _ A dvt ()v(t)
solves (22) wherg(t) = m is a constant and*(¢) = ct where AN 2N o
c= 1 /T ol (t)(t) dt. (24) = ivT(t)v(tﬂT
T Jo 27 0

The variance of this Gaussian random variable increases linearly

with time, exactly as in a Wiener process. _ where we used the fact that) and hence” (¢)v(t) is T peri-
Proof: The characteristic function of a Gaussian randowdic in evaluating the integral. Hence, asymptotically, the mean

variable with meanyu(t) and variances?(t) is given by (t) becomes a constant.

exp(jwu(t) — 1/2w?02(t)) [27]. Substituting this expression  Equating the coefficients af? on both sides of (25) we obtain

in (22) for the characteristic function we obtain

do? = -
Cdp w?do? . 1 55 o Z Z (1= 2\i(i — K)o VTV
o . jwolt — k)t jwolt — k
= Z Z ViTV,: exp(jwo(i — k)t) (—)\woiw -3 wQ) Pl el "

i=—o0 k=—o0o -exp(—% wi(i — k)202) . 27)

-exp(j(w + wo(i — k))p) exp(— 3 (w + wo(i — k))*0?) _
Using the same arguments as above we can show that fortlarge

where we dropped the explicit dependencg@f ands>(¢) on
t. Or equivalently

d )
. L i=—00
<‘1 2 dt ) 1 *

oo _1 / (o) dt = ¢
Z o . 2 T/,

Z VIV exp(jwoli — k)t) (—dwoiw — S w

." o . ) which is the time average of (¢)v(t). This shows that, asymp-
: eXP(JWO('L — k)p) exp(—wwo(i — k)o~) totically, the variance is growing linearly withand the slope is
-exp(—3 wi(i — k)?0?). (25) the time average af” (t)v(t). The differential (26) and (27) for

o2(t) andyu(t) form a pair of coupled differential equations and
This equation should be valid for all values ©f Hence, the can be solved numerically to obtain the final vatlueo which
coefficients of equal powers af on both sides should be equal u(¢) settles.
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Now, we examine the coefficients of* in (25) forn > 2. cumulants of a random variablg are defined as the coeffi-
Equating the coefficients af”, n > 2 on both sides of (25), we cients in the Taylor series expansion of its cumulant generating
obtain function which is, in turn, defined by

oo

K, =log Elexp(60)] = > 1' ki (1)6°

0= Z Z i1 !
t=—00 k=—00
e 21 o 22 wherek; () is theith-order cumulant [27]. A random variable
| —=Awoi - is Gaussian if and only if its cumulants of order higher than two
(i ity e R e
. . (”'_ )! e (n —2)! vanish [26]. In the proof, we also use the fact thét,) and
Vit Vi exp(jwo(i — k)t) exp(jwo(i — k) ) a(tz) become individually Gaussian asymptotically with m

~exp(— 3 wi(i — k)?0?). (28)  The stochastic characterization of the phase deviatiove
obtained in this section can be summarized by Remark 7.1,

For larget, o%(t) becomes large (increasing linearly with Lemma7.2, Corollary 7.1, and Theorem 7.2. These do not com-
henceexp(—1/2w3(i — k)?0?) becomes vanishingly small for pletely specify the FDD’s of as a stochastic process. However,
all < # k. The term on the right-hand side of the above equatidhey provide adequate information for a practical characteriza-
with ¢ = k is identically zero. Hence, (28) becomes consistetion of the effect of phase deviatian on the signal generated
asymptotically in time with.(t) = m ando?(t) = ct. Now, by an autonomous oscillator, e.g., its spectral properties, as we
given the derivation above, it s trivial to show that the charactewll see in Sections VIl and IX.
istic function of the Gaussian distribution with meaft) = m
and variance?(t) = ct asymptotically satisfies (22). [ VIIl. SPECTRUM OF ANOSCILLATOR WITH PHASE NOISE

Remark 7.1:«(¢) becomes, asymptotically witht, a

. . . X Having obtained the asymptotic stochastic characterization
Gaussian random variable with mea(t) = m and variance

of «, we now compute the PSD af, (¢ + «(t)). We first ob-

2 —
v I(_t) - Ct'7 5 tain an expression for the nonstationary autocorrelation func-
emma 7.z tion R(¢, 7) of z;(t + «(¢)). Next, we demonstrate that the
_ autocorrelation becomes independent asymptotically. This
Efa(t)at +7)] = E[o?(t)] if 7>0 implies our main result, that the autocorrelation of the oscil-
o E[a?(t+7)] ifr<0’ lator output with phase noise contains no nontrivial cyclosta-

tionary components, confirming the intuitive expectation that

Sketch of Proof:The proof is trivial if we interpret (12) a noisy autonomous system (with white and modulated-white
using Ito’s definition of the stochastic integral [25] [correnoise sources in this paper, please see [21] for a generalization
sponding toA = 0 in (21)] because then, using the integrabf these results to colored noise sources) cannot have periodic
form of (12) that definesy, one can write for- > 0 cyclostationary variations because it has no perfect time refer-
ence. Finally, we show that the PSD of the stationary component
is a summation of Lorentzian spectra and that a single scalar
constant, namely; in (24), is sufficient to characterize it.

We start by calculating the autocorrelation function:ofz +

a(t)) given by

a(t+7) = a(t) + (a(t +7) — a(t)) = aft) + (¢, 7)

where{(t, 7) is uncorrelated withx(¢). The proof is more in-
volved for the cas® < A < 1, for which we use the integral
form of (12) and the fact that’ (t + «(#)) is bounded for any R(t, ) =Elzs(t+at))zi(t+7+a(t+7))]. (29)

stochastic process [29]. [ |
Corollary 7.1: Asymptotically with¢ Definition 8.1: Define X; to be the Fourier coefficients of

z5(t)
E[a(t)a(t +7)] = m? 4 ¢ min(t, t + 7). (1) = i X, exp(jiwot).

1=—00

Proof: Follows trivially from Lemma 7.2 and Remark
7.1. m The following simple Lemma establishes the basic form of the

Definition 7.1: Two real valued random variabldg andW¥, autocorrelation.
are called jointly Gaussian if for all; , a» € R, the realrandom Lemma 8.1:

variablea; ¥, + a> V¥, is Gaussian. oo oo
Theorem 7.2: Asymptotically with time (¢, ) ande(t, ) be- R(t,7)= > > XX} exp(i(i — k)wot)
come jointly Gaussian. i=—00 k=—00
Sketch of Proof:The proof is trivial if we interpret (12) - exp(—jhwor)E [expliwofin(t, 7)) (30)

using Ito’s definition of the stochastic integral [25] [corre-

sponding toA = 0 in (21)], as in the proof of Lemma 7.2. Thewhereg,, (¢, 7) = ia(t) — ka(t + 7).

proof is more involved fo0 < A < 1. In this case, we prove Proof: Follows directly from (29) and Definition 8.1.m

this result by showing that the cumulantsty(t; ) + aza(tz) To evaluate the expectation in the above Lemma, it is useful
(for any a1, ax € R) vanish for order higher than two. Theto consider first the statistics @£ (¢, 7).
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Lemma 8.2:

Jim E[fi(t, 7)) = (i — Eym (31)
lim E[(Bin(t, 7)) — (E[Bu(t, 7))
= (i — k)*ct + k*¢er — 2ike min(0, 7) (32)

wherem andc are defined in Theorem 7.1.
Also, 3;.(t, 7) becomes Gaussian asymptotically with
Proof:

tlim E[fi(t, 7)] =4 tlim Ela(t)] — & tlim Ela(t +7)]
= (¢ — k)m (from Remark 7.1)

Jm E (B3¢, 7)]
=2 th_}lc}o E [o?(t)] + &7 th—}lolo E[o*(t+7)]
— 2ik thlglo E[a(t)a(t + 7)]
=% (m® +ct) + k* (m? + ot + 7))
— 2ik (m” + ¢ min(¢, t + 7))
(using Corollary 7.1)
= (i — k)? (m* + ct) + k*cr — 2ike min(0, 7)

= th—glo E [([3zk(t7 7'))2] - (E[ﬁzk(tv 7_)])2
= (i — k)?ct + k*cr — 2ike min(0, 7).

The asymptotic Gaussiannesshf(¢, 7) follows directly from

Theorem 7.2. [ |
Using the asymptotically Gaussian natur@gf(¢, =), we are

now able to obtain a form for the expectation in (30).
Lemma 8.3:1f ¢ > 0, the characteristic function @£ (¢, )

is asymptotically independent efand has the following form:

th_glo Elexp(jwofin(t, 7))]
if i £k

if i = J (33)

0,
= { St aizei).
Proof:
tlim Elexp(jwofir(t, 7))]

= exp(jwo(i — k)m)
. exp(—% wa((i — k)?ct + k?er — 2ike min(0, 7))

using Lemma 8.2 and the form of the characteristic function of a

665

Lemma 8.5: The spectrum of. (¢ + «(¢)) is determined by
the asymptotic behavior aR(t, 7) ast — oo. All nontrivial
cyclostationary components are zero, while the stationary com-
ponent of the spectrum is given by

XX wdi’c
Z i 402 dwom)2
2 wiite? + (w +iwo)

1=—00

(39)

There is also a ternKo X36(w) due to the dc part ok (¢),
which is omitted in (35).

Proof: It can be shown [29] that the cyclostationary com-
ponent [30] of the autocorrelation at any frequengy. is given

by

lim —
T—o0

T
R, (1) = / R(t, 7) exp(jweyot) dt.
0

This expression is determined by the asymptotic forcR@f )

as a function ot, given in (34). Because this becomes indepen-
dent oft, the above limit is identically zero for alb.,. # 0,
whereas for.,. = 0 (the stationary component), it reduces to
(34). The result is obtained by taking the Fourier transform of
(34). [ |

IX. PHASE NOISEHTIMING JTTER CHARACTERIZATION FOR
OSCILLATOR DESIGN

In this section, we discuss several popular characterizations
of phase noise that is used in the design of electronic oscillators
and how they can easily be obtained from the stochastic charac-
terization we obtained in Sections VIl and VIIL.

A. Single-Sided Spectral Density and Total Power

The PSDS(w) in (35) (defined for—oco < w < oo, hence,
called a double-sided density) is a real and even functian of
because the periodic steady stat¢t) is real, hence, its Fourier
series coefficients; in Definition 8.1 satisfyX; = X*,. The
single-sided spectral density (defined fox f < ) is given
by

fQiQC
2f4L4c2 (f+Lf0)2
(36)
where we substituted = 27 f andwg = 27 f. The total power
(i.e. the integral of the PSD over the range of the frequencies it
is defined for) inS,,(f) is the same as I8 (2~ f), which is

Ses(f) =28@2rf) =2 Z X, X}

1=—00

P, = Total power inS,,(f)

Gaussian random variable [27]. The result follows immediately — /OO Ses(f)df
from the asymptotic limits of this expression. [ | 0
Lemma 8.4: s
=) 21X (37)
=1
thjgo R(t, 7) Z X; X exp(—jiwor)

1=—00

(34)

exp(—— wOL C|T|)

Note that the total power in the periodic signalt) (without
phase noise) is also equal to the expression in (37) (excluding
the power in the dc part), as can be easily seen from the Fourier

Proof: The resultis obtained by substituting (33) in (W0D). expansion in Definition 8.1.
The PSD (spectrum) of (¢ + «(¢)) can now be determined Remark 9.1: The phase deviation(t) does not change the

as follows.

total power in the periodic signal,(t), but it alters the power
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density in frequency, i.e., the PSD. For the perfect periodiscillator) becomes a Gaussian random variable with a linearly
signal z4(t), the PSD ha$ functions located at discrete fre-increasing variance
quencies (i.e., the harmonics). The phase deviat{@ihspreads o2(t) = t.
the power in thesé functions in the form given in (36), which
can be experimentally observed with a spectrum analyzer. Let us take one of the transitions (i.e., edges) of a clock signal
) as a reference (i.e., trigger) transition and synchronize it with
B. Spectrum in dBm/Hz t = 0. If the clock signal is perfectly periodic, then one will
For electrical oscillators, the state variable in the oscillatéee transitions exactly & = k7, k = 1, 2, --- whereZ’ is
that is observed as the output is usually a voltage or a currethe period. For a clock signal with a phase deviatidn) that
The spectrum in (36) is expressed as a function of frequenigs a linearly increasing variance as above, the timing ofttie
(f in Hz), then the PSD is in units of voltgHz and amp¥Hz  transitiont;, will have a variance (i.e., mean-square error)
for a voltage and a current state variable, respectively. Then, the 9
spectral density of the expected (i.e., average, assuming that the E[(ts =k T)°] = kT (43)
stochastic process, ( + (%) is ergodic [30]) power dissipated The spectral dispersion causeddft) in an oscillation signal
inal €2 resistor [with the voltage (current) output of the oscilcan pe observed with a spectrum analyzer. Similarly, one can
lator as the voltage across (current through) the resistor] is eqggkerve the timing jitter caused byt) using a sampling oscil-
to the PSD in (36) (in watts/Hz), which is usually expressed jgscope. McNeill in [12] experimentally observed the linearly
dBw/Hz as defined by increasing variance for the timing of the transitions of a clock
) . signal generated by an autonomous oscillator, as predicted by
Sapw(f) = 10 logyo (55(f) in watts/H2). (38) our theory. Moreover; (in $°.Hz) in (43) exactly quantifies the
If S,,(f) is in miliwatts/Hz, then the PSD in dBm/Hz is givenrate of increase of timing jitter with respect to a reference transi-
by tion. Another useful figure of merit is the cycle-to-cycle timing
jitter, i.e., the timing jitter in one clock cycle, which has a vari-
Sapm () = 10 logo (Sss(f) in miliwatts/Hz). (39) ancecT.

) . ) . E. Noise Source Contributions
C. Single-Sideband Phase Noise Spectrum in dBc/Hz ) o
, ) ) The scalar constantappears in all of the characterizations
In practice, we are usually interested in the PSD around the, jiscussed above. It is given by

firstharmonic, i.e.S,.(f) for f aroundf,. The single-sideband LT
phase nois€(f,,) (in dBc/Hz) that is very widely used in prac- c= = / 0T (1) B(as (7)) BT (s (7))o (7) dr (44)
0

tice is defined as r
r — 10 log Sss(fo+ fm) 4 whereB(.): R"—R"*? represents thmodulationof the inten-
(fm) = 0810 2|X, |2 ) (40) sities of the noise sources with the large-signal state. (44) can
be rewritten as
For small values of and for0 < f,,, < fo, (40) can be approx- R, »
H 2
imated as c=> 7 /0 [ (MBi()] dr =" e (45)
fgc i=1 i=1
L(fm) ~10log;y | —22—— . 41 . . .
(fm) 0810 <7r2f§c2 + f2 (41) wherep is the number of the noise sources, i.e., the column

dimension ofB(z,(.)) andB;(.) is theith column of B(z,(.))

2 I- ) . .
Furthermore, forr fc < fm < fo, £(fm) can be approxi which maps théth noise source to the equations of the system.

mated by Hence
J 2 1T T 2
L(fm) = 10 log,, <<f—°> c> : (42) = /0 [vi (1) Bi(7)]” dr (46)
. L . represents the contribution of titl noise source te. Thus, the
Notice that the approximation af(f,,) in (42) blows up as iy

fm—0.For0 < f. < wfic, (42) is not accurate, in which ¢

case the approximation in (41) should be used. -7
Cc = C;

D. Timing Jitter ;

In some applications, such as clock generation and recoveny pe used as a figure of merit representing the contribution of
oneisinterested in a characterization of the phase/time deviatjgg ;th noise source to phase noise/timing jtter.

a(t) itself rather than the spectrum of (¢t + «(t)) that was

calculated in Section VIII. In these applications, an oscillat®® Phase Noise Sensitivity
generates a square-wave like waveform to be used as a cIoclbne can also define

The effect of the phase deviatiar(¢) on such a waveform is

to create deviations or jitter in the zero-crossing or transition ay _ 1 o 2, 48
times. In Section VII, we found out tha(t) (for an autonomous N /0 (o (T)ex]” dr (48)

(47)
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(wherel < k& < n andey, is the kth unit vector) as the phase will excite the modes of the solution of (50) that grow
noise/timing jitter sensitivity of théth equation (i.e., node), without bound (see Remark B.3). However, one can in-
because;, represents a unit intensity noise source added to the tegrate (50) backward in time with the initial condition
kth equation (i.e., connected to thth node) in (1). v1(T) = v1(0) to calculater; () for 0 < ¢t < T in a nu-
merically stable way.
X. NUMERICAL METHODS FORPHASE NOISE 6) Then,cis calculated using (44).
CHARACTERIZATION We implemented the above algorithm in SPICE. We will not

From Sections VII, VIII and IX, for various phase noise Charprese_nt a de_tailed deS(_:ription of thi_s implementation _here, but
acterizations of an oscillator, one needs to calculate the stealh > will men_tlon a few mp_ortant points. ".1 !mplementlng the
state periodic solution:;(¢) and the periodic vector; (¢) in above algorlthm, one can increase the efﬂme_ncy by saving LU
(44). Without providing details, we will present outlines of tWJactor_ed matrices that nged_s to be calculated in Step 2 and reuse
methods for computing the periodic vectg(t): a time-domain Fhem in Step 5. !f the perlodlc' steady statét) o_f the oscillator
one in Section X-A and a frequency-domain one in Section X-B calculated using the shooting method [31]in Step 1, then the

The latter method is well suited for large circuits state transition matrige (7', 0) of the linear time-varying system
' obtained by linearizing the nonlinear oscillator circuit around

the periodic steady state is already available. It can be shown that
. i . o the Jacobian of the nonlinear system of equations that is solved
The procedure for calculating (t) in the time domain is as i, the shooting method (using Newton’s method, to calculate the
follows. initial condition that results in the periodic steady-state solution)
1) Compute the large-signal periodic steady-state solutignequal to®(7’, 0) — I [32], [33]. Moreover, one can avoid cal-
z,(t)for0 < ¢ < T by numerically integrating (1), pos- culating ®(7’, 0) explicitly and use iterative methods both for
sibly using atechnique such as the shooting method [31}he shooting method and at Step 4 to calculate the eigenvector of
2) Compute the state-transition matrix(7', 0) (see Ap- &7(T, 0) that corresponds to the eigenvalue 1 [34]. For high-Q

A. Time Domain Numerical Technique far(¢)

pendix B) by numerically integrating oscillators, the iterative methods can run into problems, because
] ®(T, 0) may have several other eigenvalues which are close
Y =A@®)Y, Y(0)=1, to 1. In our implementation in SPICE, we explicitly calculate

®(T, 0) and perform a full eigenvalue/eigenvector calculation,
from 0 to 7", where the Jacobiar(t) is defined in (3). which allows us to investigate the properties of the state-transi-

Note that tion matrix for various oscillator circuits. Even with a full eigen-
value/eigenvector calculation fér(7", 0), the phase noise char-
(T, 0) =Y (D). acterization algorithm discussed above is still very efficient. The
phase noise characterization comes almost for free once the pe-
3) Computeu;(0) using riodic steady-state solutian, (¢) is computed.
u1(0) = £,(0). B. Frequency-Domain Technique for Calculatingt) Using

Efficient Harmonic Balance

Definition 10.1: Define the matrices/; and V; to be the
Fourier components df (¢) andV (¢), i.e.,

Note thatw;(0) is an eigenvector of®(T, 0) corre-
sponding to the eigenvalue 1 (see Remark B.3).
4) v1(0) is an eigenvector cb? (7", 0) corresponding to the

eigenvalue 1 (see Remark B.3). To computé0), first o0 o
compute an eigenvector & (7', 0) corresponding to the U(t) = Z Uie o™ (51)
eigenvalue 1, then scale this eigenvector so that i=—o0
_ - _Jwott
v (0) Ty (0) = 1 (49) V)= 3 Vit (52)
is satisfied.

o Definition 10.2: Define the block-Toeplitz matricés andV
5) Compute the periodic vectes (¢) for 0 < ¢ < T by as follows:

numerically solving the adjoint system

U Ui Us :
g=—-A(t)y (50) U U U Uy -
U=|U_ Uy Uy Uy 1Us (53)

usingv;(0) = v, (7)) as the initial condition. Note that - U Uy Uy Uy
v1(t) is a periodic steady-state solution of (50) corre- ‘ U Uy Uy
sponding to the Floguet exponent that is equal to zero, Vo Vi 0V .
i.e., u1 = 0 (see Remark B.3). It is not possible to cal- vV, Vo W V5o
culatew; (¢) by numerically integrating (50) forward in vive, vii Vo W W (54)
time because the numerical errors in computing the solu- Ve Vo Vo W

tion and the numerical errors in the initial conditier(0) . - Ve Vo1 W
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R

Lemma 10.1:%/ andV are both invertible since /\/\/\/
(o]
I QR
I Ve AN oup ¥ R
Uy = I . " VWA
I - J;{> L
I }

Sketch of Proof:Follows from the biorthonormality of
U(t) andV(t). ]
Definition 10.3: Define Fig. 4. Oscillator with a bandpass filter and a comparator [36].

It keo) = pio XI. EXAMPLES
Dr(w) = . o
. We now present examples for phase noise characterization of
J(w + kwo) — pin - i '
practical electronic oscillators.
Note Dy, is strictly diagonal.
Remark 10.1:Note thatDy(w) is singular forw = —kwy, if A. Generic Oscillator with a Bandpass Filter and a
the oscillator is asymptotically orbitally stable. Nonlinearity [36]
Definition 10.4: Define This oscillator (Fig. 4) consists of a Tow—Thomas
second-order bandpass filter and a comparator [36]. If the
D(w) op amps are considered to be ideal, it can be shown that this
) oscillator is equivalent (in the sense of the differential equations
Do(w) that describe it) to a parallel RLC circuit in parallel with a
D (w) nonlmear voltage-c_ontrolleql curr_ent source (or equivalently
_ Do(w) ~a series RLC circuit in series Wlth a nonlinear current-con-
D1 (w) trolled voltage spurc;e) as in Fig. 1(@). In [35], thg authors
D_s(w) breadboarded this circuit with an external white noise source
(intensity of which was chosen such that its effect is much
larger than the other internal noise sources) and measured the
PSD of the output with a spectrum analyzer. Epr= 1 and
fo = 6.66 kHz, we performed a phase noise characterization
of this oscillator using the numerical methods in Section X
,and computed the periodic oscillation wavefoun(t) for the
output ande = 7.56 x 10~® s? Hz. Fig. 5(a) shows the PSD
of the oscillator output computed using (36), and Fig. 5(b)
H(w) = UD L (w)V. shows the spectrum analyzer measurernteifitig. 5(c) shows
a blown up version of the PSD around the first harmonic. The
Theorem 10.2:H~1(0) is a singular matrix (with rank-defi- single-sideband phase noise spectrum using both (41) and
ciency one) and the null space of its transpose is spanned by @) is in Fig. 5(d). Note that (42) cannot predict the PSD

Note D is strictly diagonal.
Remark 10.1:Note thatD(w) is singular forw = kwo, k
integer, if the oscillator is asymptotically orbitally stable.
Theorem 10.1:The frequency-domain conversion matri
‘H(w) of the oscillator [35] is related &, D(w) andV’ by

Fourier components af; (¢), i.e., accurately below the cut-off frequengy = 7 f§c = 10.56 Hz
[marked with ax in Fig. 5(d)] of the Lorentzian. The oscillator
ker(H_T(O)) model that was simulated has two state variables and a single
=[1 0 --- 0] stationary noise source. Fig. 5(e) shows a plot of the periodic
e Ve Vo Vo VIV -] nonnegative scalar
=[-- V17:72 fol VEO Vfl Vf2 ---] (55) 2

T T T
vf ()B(as(t) B (zs(t)vi(t) = (vi (1)B)
. -~ T
where V; ; are the Fourier coefficients ofv{ (¢) for some o . . .
L : T oo T i(”) where2 x 1 B is independent of since the noise source is
nonzero scalak, i.e.,kvi (¢) = > .= Vi ,e?*o" . . . .
LT e t=—00 "L, . stationary. Recall from (44) thatis the time average of this
‘H~+(0) is simply the transpose of the harmonic balance Ja- . PR
. . . ) scalar that is periodic in time.
cobian matrix of the oscillator at solution. Its null space can be . . o .
¢ can also be obtained relatively accurately in this case using

found efficient'ly, even for large circuits, by using iterativelinea](/lome Carlo analysis. We simulated the circuit with 10 000
algebra techniques [35]. Hence, a scaled versiarf ¢f) can be random excitations and averaged the results to obtain the

found easily. The scaling constaincan be found by applying i :
T (£)us(t) = 1, ua () having first been obtained by different. Mean-square difference between the perturbed and unperturbed

ating the large-signal steady state solution of the oscillator.  11The PSD’s are plotted in units of dBm as in (39).
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Fig. 5. Phase noise characterization for the oscillator in Fig. 4 (a) Computed PSD (four harmonics). (b) Spectrum analyzer measured PSD [36}e(t) Comp
PSD (first harmonic). (dX( f..) computed with both (41) and (42). (&)7 (¢)B)?. (f) Variance of total deviation (Monte Carlo method).

systems as a function of time. Fig. 5(f) illustrates the result, thehereas our new method required about 20 s: a speedup of
slope of the envelope of which determines'he Monte Carlo more than three orders of magnitude.

simulations required small time steps to produce accurate re- )
sults, since numerical integration methods easily lose accurdgy Ring Oscillator
for autonomous circuits. The total computation time for Monte The ring oscillator circuit is a three-stage oscillator with fully
Carlo was about 10 h on a fast SGI workstation (R2000 CPWjifferential ECL buffer delay cells (differential pairs followed
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Fig. 7. Oscillator with on-chip inductor. (a) Noise source contributions. (b)
Simplified schematic.

o e W W B e e e e o
IEE (uA) . .
C. Relaxation Oscillator

(b)

Fig. 6. Ring-oscillator. (a) Phase noise characterization. (b) Phase noise-ljhe relaxation OSC_'”_ator IS a VC_:O that is based on the

performance versubg . emitter-coupled multivibrator circuit [37]. Reference [13]
analyzes the process of jitter production for this circuit by de-
scribing the circuit behavior with a single first-order stochastic
differential equation based on a simplified model for the circuit,
and lumping all of the noise sources into a single stationary

by emitter followers). This circuit is from [12]. [12] and [11] current noise source. [13] arrives at intuitive qualitative results

use analytical techniques to characterize the timing jitter/phafe low jitter relaxation oscillator design. A relaxation oscil-

noise performance of ring oscillators with ECL-type delay cellfator operates in a highly nonlinear fashion due to regenerative

[12] does the analysis for a bipolar ring oscillator and [11] do&svitchings. The analysis of the process of jitter production is

it for a CMOS one. Since they use analytical techniques, thagt analytically tractable without reverting to simplifications.

use a simplified model of the circuit and make several approxi- For this oscillator, using the numerical methods described in

mations in their analysis. References [12] and [11] use time-d8ection X, we obtain

main Monte Carlo noise simulations to verify the results of their

analytical results. They obtain qualitative and some quantitative f, = 0.88 MHz (27 f,)%c = 0.37rac? .Hz

results and offer guidelines for the design of low phase noise

ring oscillators with ECL-type delay cells. However, their rewhich corresponds to

sults are only valid for their specific oscillator circuits. We will

compare their results with the results we will obtain for the vel' 103.2 ppm RMS
above ring oscillator, using the general phase noise characteri- T

zation methodologylwe have p.roposeq, W_h'ch make§ It p(?,ss'lt].k?cle-to-cycle timing jitter, where ppm is parts per million and
to analyze a complicated oscillator circuit without smphﬁcaRNIS is root mean square

tions. We performed several phase noise characterizations of the
bipolar ring oscillator. The results are shown in Fig. 6(a) wheﬁ Harmonic (Colpitts) Oscillator

R isthe collector load resistance for the differential pair (DP) in ) . )
the delay celly, is the zero bias base resistance for the BJT’s in The harmonic oscillator has an LC tank, several inductors and

the DP,I 1z is the tail bias current for the DP, arflis the oscil- & single bipolar-junction transistor with a Colpitts feedback cir-

lation frequency for the three stage ring-oscillator. Note that tifitaround t. The oscillation frequency fis = 773.2 MHz. For

changes irR, andr; affect the oscillation frequency, unlike thethis oscillator, we compute®r f,)*c = 1.25 rad®.Hz, which
correspondst@( f,,,) = —115dBc/Hz atf,,, = 100 KHz using

changes ingg. Fig. 6(b) shows a plot of2r £, )%c versuslg g
using the data from Fig. 6(a). This prediction of the dependen@ez)-

of phase noise/timing jitter performance on the tail bias current , . ,

is in agreement with the analysis and experimental results pke- 2-5-GHz Oscillator with On-Chip Inductor [38]

sented in [12] and [11] for ring oscillators with ECL-type delay A simplified schematic for this oscillator is in Fig. 7(b).
cells. Note that larger values f@2~ f,)?c indicate worse phase We computed: = 7.16 x 10~2° s?.Hz which corresponds to
noise performance. L(fm) = —103 dBc/Hz atf,, = 100 KHz using (42). There
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were 35 state variables and 45 noise sources in the simulateB®efinition A.3 (Asymptotic Phase PropertyJhe solution
circuit. We generated a noise source contribution report for thig(¢) is said to have the asymptotic phase propertyifta0 ex-
oscillator using (47), which is shown in Fig. 7(a). ists such that to each initial valug satisfying disfzo, v) < ¢

there corresponds an asymptotic phage,) € R with the

XII. CONCLUSIONS property

A novel rigorous theory for phase noise that is valid for lim |¢(t, o) — z5(t + a(zg))| = 0.
any oscillator, regardless of operating mechanism, has been t—oo
presented. We established novel results about the dynamic$of the autonomous systems we are dealing in this work, we as-
stable nonlinear oscillators in the presence of perturbatiorsime that there exists a nontrivial periodic solutiqtt) which
both deterministic and random. An exact nonlinear equatighasymptotically orbitally stable and has the asymptotic phase
for phase error was derived, which was solved without approgroperty.
imations for random perturbations. This lead us to a precise
characterization of timing jitter and spectral dispersion, for
computing which we developed efficient numerical methods.
We demonstrated our techniques on a variety of practical
electrical oscillators and obtained good matches with measureConsider the:-dimensional inhomogeneous linear system of
ments, even at frequencies close to the carrier, where previdifferential equations
techniques break down. Our methods are more than three
orders of magnitude faster than the brute force Monte Carlo &= A(t)r +b(t) (57)
approach, which is the only previously available technique tha _ _ 2
cgﬁ predict phase noise cgrfectly. g A1 Mihere the matrix functiont: R — R

APPENDIX B
FLOQUET THEORY

and the vectob: R —
R™ are continuous. The homogeneous system corresponding to
(57) is given by

APPENDIX A )
ORBITAL STABILITY [23] &= A(t)z. (58)
If 25(t) is a nonconstanf-periodic solution of the au- Remark B.1:
tonomous system « The conditions of the Picard-Lind#l existence and
uniqueness theorem [23] for initial value problems are
&= f(x) (56) trivially satisfied by (57) and (58). Hence, there exist
] o ] unique solutions to (57) and (58) given an initial condition
thenz,(t — to) is also a nonconstarf-periodic solution for 2(to) = zo.
arbitraryt, € R. The initial valuesr,(0) andx,(—to) can be « It can be shown that the set of real solutions of (58) form
arbitrarily close (if|to| is small enough), and still, (t) —zs(t — ann-dimensional linear space.
to) does r_10t.tend to. zero agends to infinity. Let the path of e Let zy(t to), -+, Ta(t, to) be n linearly in-
the T-periodic solutionz; (t) be dependent solutions of (58). ThenX(¢, to) =
[z1(t, to), -+, zalt, to)] is called a fundamental
vi={reRie=a,(t), teRy}. matrix. If X (¢o, to) = I, then X (¢, to) is called the
principal fundamental matrix or the state transition matrix
Note thatz;(t) andxs(t — to) have the same path for (58), denoted byb(#, o).

Definition A.1 (Orbital Stability): The solutionz,(¢) of (56)
is said to be orbitally stable if for every> 0 there exists @(e) 0 is a constant vector. In particular. foft.) —
such that if the distance of the initial valu€0) = zo from the tchzésolution of (58) is giveﬁ b;bp(t to)o , fotto) = o,

pathy of z,(t) is less tharb(e), i.e., distxo, ) < é(e), then o If X(¢, to) is another fundamental matrix for (58), then

the solutiong(t, xo) of (56) that assumes the valug atz = 0 X(t, to) = X (¢, to)C whereC is a nonsingular constant

* Any solution of (58) can be expressed®§t, to)c where

satisfies matrix
. e The solution¢ of (57) satisfying the initial condition
dISt(d)(tv .To), 7) <e {L’(to) = Zo is giVen by
for ¢ > 0.

t
Ifthe solutionz, (¢) is orbitally stable, then each solutionwith (%, fo, o) = (%, to)xo + / O(t, s)b(s)ds.  (59)
the same path, i.e., every solutionc,(t + «) for « € R, is fo
orbitally stable too. Now we consider the case when the coefficient matrix in (58) is
Definition A.2 (Asymptotic Orbital Stability)The solution periodic with periodl’” > 0, i.e., A(t + T) = A(¢) for ¢t € R.
x5(t) of (56) is said to be asymptotically orbitally stable if it isLet X (¢, #5) be a fundamental matrix for (58).
orbitally stable and if & > 0 exists such that digtg, v) < ¢ Remark B.2:

implies « ConsiderX (¢ + T, t5). We have

dist(¢(t, zo), 7) — 0 ast—oc. X(t+ 1T, to) = At + T)X(t+ T, to) = ADX(t + T, to)
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hence X (¢t + T, to) is also a fundamental matrix. Then, From the abovey;(0) are the eigenvectors @ (7', 0)
Xt +1T, t) = X(t to)B where B is a nonsingular with corresponding eigenvaluesp(y; ) andv;(0) are
matrix. Note thatB = X (g, t0) X (to + T}, to). the eigenvectors ob(7’, 0)* corresponding to the same

« Even thoughB is not unique, it can be shown that any eigenvalues.
other B will have the same eigenvalues. APPENDIX C

* The eigenvalues @B, A, ---, A, are called the charac- KraMERS-MOYAL EXPANSION AND THE FOKKER—PLANCK
teristic multipliers of the equation and the characteristic EQUATION
gzlr?(j:%) . exponents,, -, u, are defined with\; = Let X (¢) be a stochastic process with the probability density

Assumption B.1:We assume thaB has distinct eigenvalues function (PDF)/x (, #).

and it is diagonalizabl& Definition C.1:
Now we state a result due to Floquet (1883). 1 [(X(t +5)— X)) | X(t) = a;]
— -1 — D(Z)(a: t) = = lim
Theorem B.1 (Floquet)Let B = WAW ! whereA = ey S
exp(DT), D = diagu1, - -, pn], andA = diagAy, -+, Ay (60)
Then, the state transition matrix of the system (58) can léhereE[.|.] denotes the conditional expectation operator.
written in the form Theorem C.1 (Kramers—Moyal Expansionfhe PDF of the
B(t, 5) = U() exp(D(t — $))V () ;tochastu_: pr-ocesK(t) satisfies the following partial differen-
tial equation:
whereU(t) andV (¢t) are bothZ-periodic and nonsingular and an ot) &
satisfy Z 1Y DD (z, ) fx(z,t)  (61)
U@t) =V =
hereD (x, t iven by (60).
Proof: [23]. n " erF?roof'(giéQ% a{x;z}gwen y (60) -
Remark B.3: N _ _ (61) is called the Kramers—Moyal expansion &t (z, t)
* The state transition matrik(t, s) can be written as in (60) are called the Kramers—Moyal expansion coefficients.
Now, let the stochastic process(t) satisfy the following
- N ) T
$) = Z exp(pi(t — 8))ui ()5 (5) nonlinear stochastic differential equation
X = (X, 1)+ 4" (X, () (62)

wherew;(t) are the columns ot/(¢) andv! (¢) are the

rows of V() = U~ (). where b(t): R—RP is a vector of uncorrelated zero mean

« With this representation of the state transition matrix, th@aussmn white noise processkér, t): R x R—R and
solutions of the homogeneous system (58) and the |nho( #): R x R—R? are deterministic functions.

mogeneous system (57) with a periodic coefficient matr Theorem C.2:For the stochastic process(t) that satisfies

are given by (62), the Kramers—Moyal expansion coefficients defined by (60)
e (t) = expluit — to)ui(t)o (to)(to) are given by
=1 T
a9 (x, t)
ey - 29\ v
and D (z, t)=h(z, t)+ A B g(z, t)
1 D(Q)(xv t) :%gT(xv t)g(xv t)
w1 (t) =wu(t) + ) uilt / D™ =ofori > 2
=1 to
~exp(i(t — ))v] (s)b(s) ds. where0 < X < 1 depends on the definition of the stochastic in-

tegral [25], [26], [28] used to interpret the stochastic differential
equation in (62).

Proof [29], [28], [25]: Hence, the partial differential
equation, i.e., the Kramers—Moyal expansion, for the PDF of

» Foranyi, z(t) = u;(¢) exp(y;t) is a solution of (58) with
the initial conditionz(to) = w;(to) exp(p;to). Similarly,
z(t) = v;(t) exp(—u;t) is a solution of the adjoint system

=-AT(t)x X (¢t) that satisfies (62) can be written as
with the initial conditionz(#y) = v;(to) exp(—puito). Ifx(z, t)
* We have ot .
n a 8 X
= 3 explu LD () — 5 (e 01t 922D gta 015, 0)
=t 1
= zn: exp(pi T)ui (0)v! (0) + Qﬁ(gT(% Dgle, ) fx(x, 1)) (©3)

which is known as the Fokker—Planck equation or the forward
12The extension to nondiagonalizable matrices is straightforward. Kolmogorov equation.
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The phase deviatiomw satisfies the stochastic differential [22] ——, “Floquet theory and nonlinear perturbation analysis for oscilla-

(12).
pa(n, t) of @ by substitutingi(z, ¢) = 0 and

in (63).

We obtain the Fokker—Planck equation (21) for the PDF

[23]
[24]
g (. 8) =" (t+m) = of (t +m)Bla.(t +7)) -
[26]
[27]
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