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Phase Noise in Oscillators: A Unifying Theory and
Numerical Methods for Characterization

Alper Demir, Amit Mehrotra, and Jaijeet Roychowdhury

Abstract—Phase noise is a topic of theoretical and practical in-
terest in electronic circuits, as well as in other fields, such as optics.
Although progress has been made in understanding the phenom-
enon, there still remain significant gaps, both in its fundamental
theory and in numerical techniques for its characterization. In this
paper, we develop a solid foundation for phase noise that is valid
for any oscillator, regardless of operating mechanism. We establish
novel results about the dynamics of stable nonlinear oscillators in
the presence of perturbations, both deterministic and random. We
obtain an exact nonlinear equation for phase error, which we solve
without approximations for random perturbations. This leads us
to a precise characterization of timing jitter and spectral disper-
sion, for computing which we develop efficient numerical methods.
We demonstrate our techniques on a variety of practical electrical
oscillators and obtain good matches with measurements, even at
frequencies close to the carrier, where previous techniques break
down. Our methods are more than three orders of magnitude faster
than the brute-force Monte Carlo approach, which is the only pre-
viously available technique that can predict phase noise correctly.

Index Terms—Circuit simulation, Fokker-Planck equations,
nonlinear oscillators, oscillator noise, phase noise, stochastic
differential equatioons, timing jitter.

I. INTRODUCTION

OSCILLATORS are ubiquitous in physical systems, espe-
cially electronic and optical ones. For example, in radio

frequency (RF) communication systems they are used for fre-
quency translation of information signals and for channel se-
lection. Oscillators are also present in digital electronic systems
which require a time reference, i.e., a clock signal, in order to
synchronize operations.

Noise is of major concern in oscillators, because introducing
even small noise into an oscillator leads to dramatic changes
in its frequency spectrum and timing properties. This phe-
nomenon, peculiar to oscillators, is known as phase noise or
timing jitter. A perfect oscillator would have localized tones
at discrete frequencies (i.e., harmonics), but any corrupting
noise spreads these perfect tones, resulting in high power
levels at neighboring frequencies. This effect is the major
contributor to undesired phenomena such as interchannel
interference, leading to increased bit error rates (BER’s) in RF
communication systems. Another manifestation of the same
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phenomenon, jitter, is important in clocked and sampled-data
systems. Uncertainties in switching instants caused by noise
lead to synchronization problems. Characterizing how noise
affects oscillators is therefore crucial for practical applications.
The problem is challenging, since oscillators constitute a
special class among noisy physical systems. Their autonomous
nature makes them unique in their response to perturbations.

Considerable effort has been expended over the years in
understanding phase noise and in developing analytical, com-
putational and experimental techniques for its characterization
(see Section III for a brief review). Despite the importance
of the problem and the large number of publications on the
subject, a consistent and general treatment and computational
techniques based on a sound theory appear to be still lacking. In
this work, we provide a novel, rigorous theory for phase noise
and derive efficient numerical methods for its characterization.
Our techniques and results are general. They are applicable
to any oscillatory system, electrical (resonant, ring, relax-
ation, etc.) or otherwise (gravitational, optical, mechanical,
biological, etc.). The main ideas behind our approach and our
contributions are outlined in Section II. We apply our numerical
techniques to a variety of practical oscillator designs and obtain
good matches against measurements. Our computations are
efficient. Speedups of a factor of 1800 were obtained against
the Monte Carlo method, which is the only previously available
technique needed to produce similar results.

The paper is organized as follows. In Section II we present
an overview of the main results of the paper and in Section III
we give a brief review of the previous work. In Section IV
we introduce some basic mathematical notions about os-
cillators. In Section V we consider the traditional approach
(linearization) to analyzing perturbed nonlinear systems and
show how this procedure is not consistent for autonomous
oscillators. In Section VI we derive a nonlinear equation that
exactly captures how perturbations result in phase noise. In
Section VII we solve this equation with random perturbations
and arrive at a stochastic description of phase deviation, from
which we derive timing jitter. Next, in Section VIII, we use
this stochastic characterization to calculate the correct shape
of the oscillator’s spectrum with phase noise. In Section IX we
derive several quantities commonly used in oscillator design to
quantify jitter and spectral properties. In Section X we address
the problem of computing these quantities efficiently, even for
large circuits. We develop both time- and frequency-domain
numerical methods that can easily be implemented in existing
simulators. Finally, in Section XI, we apply our methods to a
variety of practical electrical oscillators and we also indicate
how our methods can be directly incorporated into existing
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Fig. 1. Oscillator and waveforms.

design methodologies. Appendices A–C describe several math-
ematical concepts, definitions, and results used throughout the
paper.

II. OVERVIEW AND MAIN CONTRIBUTIONS

In this section, we first outline the flow of the rest of the paper
and describe the basic concepts behind our treatment of phase
noise. We then discuss how our approach has a natural state-
space or phase-plane interpretation. We summarize the novel
aspects of our work at the end.

A. Outline of Main Results

Consider the oscillator shown in Fig. 1(a), consisting of a
lossy LC circuit with an amplitude-dependent gain provided by
the nonlinear resistor. The nonlinear resistor has a negative re-
sistance region which pumps energy into the circuit when the
capacitor voltage drops, thus maintaining stable oscillation. A
current source is also present, representing external pertur-
bations due to noise. When there is no perturbation, i.e.,
is zero, the oscillator oscillates with a perfectly periodic signal

(a vector consisting of the capacitor voltage and the in-
ductor current), shown in Fig. 1(b). In the frequency domain,
the unperturbed waveform consists of a series of impulses at
the fundamental and harmonics of the time period, as shown in
Fig. 1(c).

Although our eventual intent is to understand the response of
the oscillator when is random noise, it is useful to consider
first the case when is a known deterministic signal. We carry
out a rigorous analysis of this case in Section VI and obtain the
following results.

1) The unperturbed oscillator’s periodic response is
modified to by the perturbation where
the following holds.

a) is a changing time shift or phase deviation in
the periodic output of the unperturbed oscillator.

b) is an additive component, which we term the
orbital deviation, to the phase-shifted oscillator
waveform.

2) and can always be chosen such that the fol-
lowing holds.

a) will, in general, keep increasing with time even
if the perturbation is always small.

b) The orbital deviation , on the other hand, will
always remain small.

These results concretize existing intuition amongst de-
signers about oscillator operation. Our proof of these facts

is mathematically rigorous. Furthermore, we derive equations
for and which lead to qualitatively different results
about phase noise compared to previous attempts. This is
because our results are based on a new nonlinear perturbation
analysis that is valid for oscillators, in contrast to previous
approaches that rely on linearization. We show in Section V that
analysis based on linearization is not consistent for oscillators
and results in nonphysical predictions.

Next, we consider the case where the perturbation is
random noise. This situation is important for determining prac-
tical figures of merit such as zero-crossing jitter and spectral pu-
rity (i.e., spreading of the power spectrum).1 Jitter and spectral
spreading are, in fact, closely related and both are determined by
the manner in which , now also a random process, spreads
with time. We consider random perturbations in detail in Sec-
tions VII and VIII and establish the following.

1) The average spread of the jitter (mean-square jitter) in-
creases precisely linearly with time.

2) The power spectrum of the perturbed oscillator is a
Lorentzian2 about each harmonic.

3) A single scalar constant is sufficient to describe jitter
and spectral spreading in a noisy oscillator.

4) The oscillator’s output is a stationary stochastic process.
These results have important implications. The Lorentzian
shape of the spectrum implies that the power spectral density
(PSD) at the carrier frequency and its harmonics has a finite
value and that the total carrier power is preserved despite spec-
tral spreading due to noise. Previous analyses based on linear
time-invariant (LTI) or linear time-varying (LTV) concepts
erroneously predict infinite noise power density at the carrier,
as well as infinite total integrated power. That the oscillator
output is stationary is surprising at first sight since oscillators
are nonlinear systems with periodic swings, hence, it might be
expected that output noise power would change periodically as
in forced systems. However, it must be remembered that while
forced systems are supplied with an external time reference
(through the forcing), oscillators are not. Cyclostationarity in
the oscillator’s output would, by definition, imply a time ref-
erence. Hence, the stationarity result reflects the fundamental
fact that noisy autonomous systems cannot provide a perfect
time reference.

Next, in Section X, we apply the theory above to develop
correct computational techniques that are efficient for practical
circuits. We present two new numerical methods (in the time

1The deterministic perturbation case is also of interest, for, e.g., phenomena
such as mode locking in forced oscillators. We consider this case elsewhere [1].

2A Lorentzian is the shape of the squared magnitude of a one-pole lowpass
filter transfer function.
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Fig. 2. Oscillator trajectories.

and frequency domains) for jitter/spectral dispersion, with the
following features.

1) The methods require only a knowledge of the steady state
of the unperturbed oscillator and the values of the noise
generators.

2) Large circuits are handled efficiently, i.e., computa-
tion/memory scale linearly with circuit size.

3) The separate contributions of noise sources and the sen-
sitivity of phase noise to individual circuit devices and
nodes can be obtained easily.

Finally, in Section XI, we use our theory and numerical
methods to analyze several oscillators and compare the results
against measurements. We obtain good matches, even at
frequencies close to the carrier, unlike most previous analyses.
Our numerical methods are more than three orders of magni-
tude faster than Monte Carlo simulations, the only alternative
method for producing qualitatively correct predictions. The
brute-force Monte Carlo technique is the only previously
available analysis method, apart from ours, that is not based on
linearization.

B. State-Space Interpretations of Phase and Orbital Deviation

The phase and orbital deviations have intuitive interpretations
when the oscillator’s response is viewed in the state-space or
phase plane. In Fig. 2, the voltage across the capacitor is
plotted against the current through the inductor. The trace
for the unperturbed oscillator forms a closed curve since this
waveform is perfectly periodic. When the oscillator is perturbed,
this periodicity is lost. For stable oscillators, however, the per-
turbed trajectory remains within a small band around the unper-
turbed trajectory, as shown.

The closeness of the perturbed and unperturbed trajectories in
the phase plane does not imply that the time-domain waveforms
are also close to each other. The points on the perturbed and
unperturbed trajectory corresponding to a given timewill, in
general, be far from each other, as illustrated in Fig. 2. However,
the waveform of the perturbed oscillator does remain close to
the unperturbed waveform after it is time shifted by . In the

Fig. 3. Limit cycle and excursion due to perturbation.

figure, this time or phase shift results in the difference between
the unperturbed point and the phase component

of the perturbed trajectory. The orbital deviation due
to the perturbation is also shown.

It is shown in Section VI that grows very much like the
integral of the perturbation. For a constant perturbation, for ex-
ample, is approximately a linear ramp. This indicates how
the frequency of the oscillator can change due to perturbations,
for a linearly increasing phase error is equivalent to a frequency
error. It also suggests why cycle-to-cycle (i.e., per cycle) timing
jitter is a constant quantity.

C. Main Contributions

Our treatment contains a number of advances over the pre-
vious state of the art. The main ones are the following.

• We present a rigorous nonlinear analysis of the perturbed
oscillator. In contrast, previous analyses rely purely on lin-
earizations. Our approach leads to a nonlinear differential
equation for the phase shift that is qualitatively dif-
ferent from those based on linear analyses. We show, in
fact, that linear analyses are not consistent (Section V).

• Our analysis and results apply to any oscillatory
system described by differential equations, while
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previous analyses are usually for special cases or
classes of oscillators.

• We analyze the case of random perturbations rigorously
and show that the following holds.

The average spread of the phase error grows exactly
linearly with time.
The oscillator output with phase noise is stationary.
A single scalar constant suffices to characterize the
timing jitter and spectral broadening due to phase noise.

• We develop efficient computational methods in the time
and frequency domains for predicting phase noise. Our
techniques are practical for large circuits. We obtain good
matches between spectra predicted using our technique
and measured results, even at frequencies close to the car-
rier and its harmonics, where most previous techniques
break down. Our numerical techniques are much faster
(three orders of magnitude) and also more accurate than
the Monte Carlo methods.

III. PREVIOUS WORK

A great deal of literature is available on the phase noise
problem. Here we mention only some selected works from the
fields of electronics and optics. Most investigations of elec-
tronic oscillators aim to provide insight into frequency-domain
properties of phase noise in order to develop rules for designing
practical oscillators; well-known references include [2]–[6].
Usually, these approaches apply LTI analysis to high-Q or
quartz-crystal type oscillators designed using standard feedback
topologies. Arguments based on deterministic perturbations
are used to show that the spectrum of the oscillator response
varies as times the spectrum of the perturbation. While
often of great practical importance, such analyses often require
large simplifications of the problem and skirt fundamental
issues, such as why noisy oscillators exhibit spectral dispersion
whereas forced systems do not.

Attempts to improve on LTI analysis have borrowed from
LTV analysis methods for forced (nonoscillatory) systems (e.g.,
[7]–[10]). LTV analyses can predict spectra more accurately
than LTI ones in some frequency ranges, however, LTV tech-
niques for forced systems retain nonphysical artifacts of LTI
analysis (such as infinite output power) and provide no real in-
sight into the basic mechanism generating phase noise.

Oscillators that rely on abruptly switching elements, e.g., ring
and relaxation oscillators, are more amenable to noise analysis.
Perturbations cause variations in element delays or alter the time
taken to reach switching thresholds, thus directly determining
timing jitter. References [11]–[13] predict phase noise by using
analytical techniques on idealized models of specific oscillator
circuits. The mechanism of such oscillators suggests the funda-
mental intuition that timing or phase errors increase with time.
However, this intuition does not extend naturally to other types
of oscillators.

More sophisticated analysis techniques predominate in the
domain of optics. Here, stochastic analysis is common and it is
well known that phase noise due to white noise perturbations is
described by a Wiener, or random walk, process. Although justi-
fications of this fact are often based on approximations, precise

descriptions of phase noise have been obtained for certain sys-
tems. In the seminal work of Lax [14], for example, an equation
describing the growth of phase fluctuations with time is obtained
for pumped lasers. The fact that a Wiener phase noise process
leads to Lorentzian power spectra is also well established, e.g.,
[15] and [16]. However, a general theory is apparently not avail-
able even in this field.

Possibly the most general and rigorous treatment of phase
noise to date has been that of Kärtner [17]. In this work, the os-
cillator response is decomposed into phase and magnitude com-
ponents and a differential equation is obtained for phase error.
By solving a linear small-time approximation to this equation
with stochastic inputs, Kärtner obtains the correct Lorentzian
spectrum for the PSD due to phase noise. Despite these advances
certain gaps remain, particularly with respect to the derivation
and solution of the differential equation for phase error.

Recently, Hajimiri [18], [19] has proposed a phase noise
analysis based on a conjecture for decomposing perturbations
into two (orthogonal) components, generating purely phase
and amplitude deviations, respectively. While this intuition is
similar to Kärtner’s approach [17], other aspects of Hajimiri’s
treatment (e.g., stochastic characterization for phase deviation
and the spectrum calculation) are essentially equivalent to
LTV analysis. Unfortunately, the conjecture for orthogonally
decomposing the perturbation into components that generate
phase and amplitude deviations, while intuitively appealing,
can be shown to be invalid [20]. Design intuition resulting from
the conjecture about noise source contributions can also be
misleading.

In summary, the available literature often identifies basic
and useful facets of phase noise separately, but lacks a rigorous
unifying theory clarifying its fundamental mechanism. Further-
more, existing numerical methods for phase noise are based on
forced-system concepts which are inappropriate for oscillators
and can generate incorrect predictions.

IV. PRELIMINARIES

The dynamics of any autonomous system without undesired
perturbations can be described by a system of differential equa-
tions. For notational simplicity, we use the state equation for-
mulation throughout the paper to describe the dynamics of an
autonomous system. The results and the numerical methods we
present can be extended for the modified nodal analysis (MNA)
formulation (differential-algebraic equations with index one)
given by . Please see [21] and [22] for
details. We have

(1)

where and . We assume that satis-
fies the conditions of the Picard–Lindelőf existence and unique-
ness theorem for initial value problems [23]. We consider sys-
tems that have an asymptotically orbitally stable3 (see Appendix
A) periodic solution (with period ) to (1), i.e., a stable

3After any small disturbance that does not persist, the system asymptotically
settles back to the original limit cycle. See the Appendix A for a precise defini-
tion of this stability notion.
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limit cycle in the -dimensional solution space. We are inter-
ested in the response of such systems to a small state-dependent
perturbation of the form where and

. Hence, the perturbed system is described by

(2)

Let the exact solution of the perturbed system in (2) be.

V. PERTURBATION ANALYSIS USING LINEARIZATION

The traditional approach to analyzing perturbed nonlinear
systems is to linearize about the unperturbed solution, under
the assumption that the resultant deviation4 will be small. Let
this deviation be , i.e., . Substituting
this expression for in (2), replacing by
its first-order Taylor series expansion, approximating
with , [i.e., we use only the zeroth-order Taylor series
term which captures the modulation of the noise
sources with the large signal steady state. Note that we ignore
the first-order term in the expansion of around ,
i.e., . This term is a high-order effect that
captures the modulation of the noise sources by themselves and
can be neglected for all practical purposes] and assuming that

is small, we obtain

(3)

where the Jacobian is -periodic.
Here, we used the fact that satisfies (1). Now, we would
like to solve for in (3) to see if our assumption that it is
small is indeed justified. For this, we use results from Floquet
theory [23], [24] as follows (see Appendix B).5

The state transition matrix for the homogeneous part of (3) is
given by (see Theorem B.1)

(4)

where is a -periodic nonsingular matrix,
and diag , where are the Floquet (charac-
teristic) exponents. are called the characteristic mul-
tipliers.

Remark 5.1:Let be the columns of and be
the rows of . Then
and both span and satisfy the
biorthogonality conditions for every . Note
that, in general, itself is not an orthogonal matrix.

Let us first consider the homogeneous part of (3), the solution
of which is given by

(5)

4By deviation we refer to the difference between the solutions of the perturbed
and unperturbed systems.

5The reader who is unfamiliar with Floquet theory is encouraged to read Ap-
pendix B before continuing.

where is the initial condition. Next, we will show that one
of the terms in the summation in (5) does not decay with.

Lemma 5.1:

• The unperturbed oscillator (1) has a nontrivial T-periodic
solution if and only if 1.0 is a characteristic multi-
plier of the homogeneous part of (3) or, equivalently, one
of the Floquet exponents satisfies .

• The time-derivative of the periodic solution of (1),
i.e., , is a solution of the homogeneous part of (3).
Proof: Since is a nontrivial periodic solution of (1),

it satisfies . Taking the time derivative of both
sides of this equation, it follows immediately that satisfies

, the homogeneous part of (3). Thus

Since is periodic, it follows that at least one of the Floquet
exponents satisfies .

Remark 5.2:One can show that if 1.0 is a characteristic
multiplier and the remaining Floquet exponents satisfy

, then the periodic solution
of (1) is asymptotically orbitally stable and it has the

asymptotic phase property (see Appendix A) [23].6 Moreover,
if any of the Floquet exponents satisfy , then
the solution is orbitally unstable.

Without loss of generality, we choose and
.

Remark 5.3:With we have
and . will play an

important role in the rest of our treatment.
Next, we obtain the particular solution of (3) given by

(6)

The first term in the above summation is given by
since . If the inte-

grand has a nonzero average value, then the deviationin
(3) will grow unbounded, even for small . Hence, the as-
sumption that is small becomes invalid and the linearized
perturbation analysis is inconsistent.

Now, we consider the case where the perturbation is a
vector of uncorrelated white noise sources, i.e.,

(7)

where denotes the probabilistic expectation oper-
ator. It can be shown that the variance-covariance matrix

of the solution of (3) is given by

6Note that this is a sufficient condition for asymptotic orbital stability, not a
necessary one. We assume that this sufficient condition is satisfied by the system
and the periodic solutionx (t).
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for the initial condition . If we substitute from
(4), we get

The term in the summation above for is given by

since . The integrand
(which is a nonnegative7 scalar that is periodic in) has a pos-
itive average value, hence, this term grows unbounded with.
Thus, the assumption that the deviation stays small8 is also
invalid for the stochastic perturbation case because the variances
of the entries of can grow unbounded.

VI. NONLINEAR PERTURBATION ANALYSIS FOR PHASE

DEVIATION

As seen in the previous section, traditional perturbation tech-
niques do not suffice for analyzing oscillators. In this section, a
novel nonlinear perturbation analysis suitable for oscillators is
presented.

The new analysis proceeds along the following lines.

1) Rewrite (2) with the (small) perturbation split
into two small parts and

(8)

2) Choose the first perturbation term in such a way
that its effect is to create only phase errors to the unper-
turbed solution. In other words, show that the equation

(9)

is solved by

(10)

for a certain function called the phase deviation.
It will be seen that can grow unboundedly large
with time, even though the perturbation remains
small.

3) Now treat the remaining term as a small perturba-
tion to (9) and perform a consistent traditional perturba-
tion analysis in which the resultant deviations from
remain small, i.e., show that

(11)

7B(x (�))B (x (�)) is a positive semidefinite matrix.
8The notion of staying small is quite different for a stochastic process than the

one for a deterministic function. For instance, a Gaussian random variable can
take arbitrarily large values with nonzero probability even when its variance is
small. We say that a stochastic process is bounded when its variance is bounded,
even though some of its sample paths (representing a nonzero probability) can
grow unbounded.

solves (8) for a certain that remains small for all.
will be called the orbital deviation. Note that we will

indeed perform a linearized perturbation analysis for the
orbital deviation . However, in this case we prove that
this linear analysis is correct and consistent by showing
that the orbital deviation indeed stays small for small per-
turbations. In the traditional linear perturbation analysis
presented in Section V, the response deviation for the
system does not stay small for small perturbations, hence
it is not valid. We also would like to reemphasize that even
though the perturbation analysis for the orbital deviation
is linear, we derive a nonlinear equation for the phase de-
viation, hence, we perform a nonlinear perturbation anal-
ysis for the overall deviation, i.e., the phase deviation and
the orbital deviation.

We start by defining concretely through a differential equa-
tion.

Definition 6.1: Define by

(12)
Remark 6.1:The existence and uniqueness theorem for dif-

ferential equations guarantees that exists and is unique.
Remark 6.2: can grow unbounded even if remains

small. For example, consider the case whereis a small pos-
itive constant , and is a constant . Then

.
Having defined , we are in a position to split

into and .
Definition 6.2: Let

(13)

and

(14)
where the scalars . Note that

is obtained by projecting the original perturbation along
the time-varying direction . are the Floquet
eigenvectors of Section V and Appendix B.

Lemma 6.1: solves (9).
Proof: Substituting in (9) and using
we obtain

Note that and are scalars, while and
are vectors. Also for any , all the entries of
and, hence, cannot be simultaneously zero,

otherwise the oscillator will cease to oscillate. Hence,
.
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With Lemma 6.1, we have shown that the component
causes deviations only along the limit cycle, i.e., phase devia-
tions. Next, we show that the remaining perturbation component

perturbs only by a small amount , provided
is small.

Lemma 6.2:For sufficiently small, the mapping
is invertible.

Proof: It suffices to show that is strictly
monotonic. The derivative of this function is . Now

. The terms and
are both bounded because they are periodic with.

Hence, can be made less than one if is small enough.
Since the derivative of the mapping will then be strictly greater
than zero, the mapping will be invertible.

Definition 6.3: Let be small enough that
is invertible. Then define by

(15)

Definition 6.4: Define

(16)
where .

Remark 6.3:Note that the index of the summation starts
from two. Since (due to asymptotic
orbital stability), this implies that is within a constant factor
of , hence, small.

Theorem 6.1:If is small [implying that in Defini-
tion 6.4 is also small], then solves (8) to
first order in .

Proof: Consider (9) perturbed by to obtain (8). As-
sume the solution to be . Then we have

[ignoring higher order terms in and and using Lemma
6.1]

with .
Now define and apply Lemma 6.2 to invert

in order to define

(17)

(18)

Then we have

From (12), note that is bounded to within a constant multiple
of , hence, if . Hence, we can approxi-
mate by one to obtain

(19)

Equation (19) is of the same form as (3), hence, its solution is
of the form of (6)

(20)
Consider the term of (20). Since , the integrand
equals the . From its definition of in (18) and
(14) it is clear that , expressed in the basis , contains
no component. Therefore, by biorthogonality of and

, is identically zero, hence, the
term vanishes. The expression for then becomes

VII. STOCHASTIC CHARACTERIZATION OF THE PHASE

DEVIATION

We now find the probabilistic characterization of the phase
deviation (Definition 6.1) as a stochastic process when the
perturbation is a vector of uncorrelated9 white noise sources
as in (7). We assume that is stationary. White cyclosta-
tionary (i.e., modulated white) noise sources are captured with
the state-dependent modulation in (2). In this paper, we
consider only white and modulated-white noise sources, such
as shot and thermal noise. Please see [21] for a treatment of col-
ored and modulated-colored noise sources, such asnoise.

We will treat (12) as a stochastic differential equation [25],
[26]. The stochastic process is a family
of random variables indexed by timeand taking values in .
Evaluation of the random variable at some time yields a
number in and an evaluation of for all is called a
realization or sample path of the stochastic process. The com-
plete collection of the sample paths of the stochastic process
is called the ensemble. The (for different values of ) are
not independent, in general. If is a vector
taking values in , then the vector
has the joint distribution function given
by

9The extension to correlated noise sources is trivial. We consider uncorre-
lated noise sources for notational simplicity. Moreover, various noise sources in
electronic devices usually have independent physical origin and, hence, they are
modeled as uncorrelated stochastic processes.
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where denotes the probability measure. The collection
, as ranges over all vectors of members of of

any finite length, is called the collection of finite-dimensional
distributions (FDD’s) of . In general, the knowledge of the
FDD’s of a process does not yield complete information
about the properties of its sample paths [27]. Nevertheless, the
FDD’s provide more than adequate information to calculate the
second-order (e.g., spectral) properties of a stochastic process,
since they capture the correlation information between
and for all .

In this section, we will follow the below procedure to find an
adequate probabilistic characterization of the phase deviation
for our purposes.

1) We first calculate the time-varying probability density
function (PDF) of defined as

and show that it becomes the PDF of a Gaussian random
variable asymptotically with. A Gaussian PDF is com-
pletely characterized by the mean and the variance of the
random variable. We show that becomes, asymptot-
ically with time, a Gaussian random variable with a con-
stant (as a function of) mean and a variance that is lin-
early increasing with time.10

2) The time-varying PDF does not provide any cor-
relation information between and that is
needed for the evaluation of its spectral characteristics.
We then calculate this correlation to be

where and are scalar constants.
3) We then show that and become jointly

Gaussian asymptotically with time, which does not
follow immediately from the fact that they are individu-
ally Gaussian.

Starting with the stochastic differential (12) for, one can
derive (see Appendix C) a partial differential equation, known
as the Fokker–Planck equation [26], [28] for the time-varying
PDF . The Fokker–Planck equation for takes the
form

(21)

where

and depends on the definition of the stochastic inte-
gral [26] used to interpret the stochastic differential equation in
(12). We would like to solve (21) for . It turns out that

10The fact that�(t) is a Gaussian random variable for everyt does not imply
that� is a Gaussian stochastic process.� is a Gaussian process if its FDD’s are
multivariate Gaussian distributions. Individually Gaussian random variables are
not necessarily jointly Gaussian. In this step, we only calculate the time-varying
PDF of�(t) which is only a partial characterization of its FDD’s [27].

becomes a Gaussian PDF asymptotically with linearly
increasing variance. We show this by first solving for the char-
acteristic function of , which is defined by

Since both and are periodic in their argu-
ments, is also periodic in its argument with period.
Hence, we can expand into its Fourier series

Lemma 7.1:The characteristic function of , ,
satisfies

(22)

where denotes complex conjugation.
Proof: Let be a smooth function. For notational sim-

plicity we will drop the explicit dependence of , ,
and on and from now on. Then from (21) we have

The term on the left-hand side is the time derivative of
. The first term on the

right-hand side is

Integrating this by parts we get

The first term above, on the right-hand side, is zero at both
the limits, because the PDF of a well-defined random variable
should be zero at . The second term can be written as an
expectation, i.e.,

Similarly (using integration by parts twice) it can be shown that

Hence
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We will now substitute and the Fourier series
representation of to obtain a differential equation for the char-
acteristic function. The left-hand side term is the time derivative
of the characteristic function of

Theorem 7.1:(22) has a solution that becomes the charac-
teristic function of a Gaussian random variable asymptotically
with time

(23)

solves (22) where is a constant and where

(24)

The variance of this Gaussian random variable increases linearly
with time, exactly as in a Wiener process.

Proof: The characteristic function of a Gaussian random
variable with mean and variance is given by

[27]. Substituting this expression
in (22) for the characteristic function we obtain

where we dropped the explicit dependence of and on
. Or equivalently

(25)

This equation should be valid for all values of. Hence, the
coefficients of equal powers of on both sides should be equal.

Expanding in a power series and equating
the coefficients of on both sides we obtain

or

(26)

For large and, hence, large , be-
comes vanishingly small for all . For the above
equation becomes

where we used the fact that and hence is peri-
odic in evaluating the integral. Hence, asymptotically, the mean

becomes a constant.
Equating the coefficients of on both sides of (25) we obtain

(27)

Using the same arguments as above we can show that for large

which is the time average of . This shows that, asymp-
totically, the variance is growing linearly withand the slope is
the time average of . The differential (26) and (27) for

and form a pair of coupled differential equations and
can be solved numerically to obtain the final valueto which

settles.
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Now, we examine the coefficients of in (25) for .
Equating the coefficients of , on both sides of (25), we
obtain

(28)

For large , becomes large (increasing linearly with),
hence, becomes vanishingly small for
all . The term on the right-hand side of the above equation
with is identically zero. Hence, (28) becomes consistent
asymptotically in time with and . Now,
given the derivation above, it is trivial to show that the character-
istic function of the Gaussian distribution with mean
and variance asymptotically satisfies (22).

Remark 7.1: becomes, asymptotically with , a
Gaussian random variable with mean and variance

.
Lemma 7.2:

if

if

Sketch of Proof:The proof is trivial if we interpret (12)
using Ito’s definition of the stochastic integral [25] [corre-
sponding to in (21)] because then, using the integral
form of (12) that defines , one can write for

where is uncorrelated with . The proof is more in-
volved for the case , for which we use the integral
form of (12) and the fact that is bounded for any
stochastic process [29].

Corollary 7.1: Asymptotically with

Proof: Follows trivially from Lemma 7.2 and Remark
7.1.

Definition 7.1: Two real valued random variables and
are called jointly Gaussian if for all , the real random
variable is Gaussian.

Theorem 7.2:Asymptotically with time, and be-
come jointly Gaussian.

Sketch of Proof:The proof is trivial if we interpret (12)
using Ito’s definition of the stochastic integral [25] [corre-
sponding to in (21)], as in the proof of Lemma 7.2. The
proof is more involved for . In this case, we prove
this result by showing that the cumulants of
(for any ) vanish for order higher than two. The

cumulants of a random variable are defined as the coeffi-
cients in the Taylor series expansion of its cumulant generating
function which is, in turn, defined by

where is the th-order cumulant [27]. A random variable
is Gaussian if and only if its cumulants of order higher than two
vanish [26]. In the proof, we also use the fact that and

become individually Gaussian asymptotically with.
The stochastic characterization of the phase deviationwe

obtained in this section can be summarized by Remark 7.1,
Lemma 7.2, Corollary 7.1, and Theorem 7.2. These do not com-
pletely specify the FDD’s of as a stochastic process. However,
they provide adequate information for a practical characteriza-
tion of the effect of phase deviation on the signal generated
by an autonomous oscillator, e.g., its spectral properties, as we
will see in Sections VIII and IX.

VIII. SPECTRUM OF ANOSCILLATOR WITH PHASE NOISE

Having obtained the asymptotic stochastic characterization
of , we now compute the PSD of . We first ob-
tain an expression for the nonstationary autocorrelation func-
tion of . Next, we demonstrate that the
autocorrelation becomes independent ofasymptotically. This
implies our main result, that the autocorrelation of the oscil-
lator output with phase noise contains no nontrivial cyclosta-
tionary components, confirming the intuitive expectation that
a noisy autonomous system (with white and modulated-white
noise sources in this paper, please see [21] for a generalization
of these results to colored noise sources) cannot have periodic
cyclostationary variations because it has no perfect time refer-
ence. Finally, we show that the PSD of the stationary component
is a summation of Lorentzian spectra and that a single scalar
constant, namely, in (24), is sufficient to characterize it.

We start by calculating the autocorrelation function of
given by

(29)

Definition 8.1: Define to be the Fourier coefficients of

The following simple Lemma establishes the basic form of the
autocorrelation.

Lemma 8.1:

(30)

where .
Proof: Follows directly from (29) and Definition 8.1.

To evaluate the expectation in the above Lemma, it is useful
to consider first the statistics of .
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Lemma 8.2:

(31)

(32)

where and are defined in Theorem 7.1.
Also, becomes Gaussian asymptotically with.

Proof:

(from Remark 7.1)

(using Corollary 7.1)

The asymptotic Gaussianness of follows directly from
Theorem 7.2.

Using the asymptotically Gaussian nature of , we are
now able to obtain a form for the expectation in (30).

Lemma 8.3: If , the characteristic function of
is asymptotically independent ofand has the following form:

if
if (33)

Proof:

using Lemma 8.2 and the form of the characteristic function of a
Gaussian random variable [27]. The result follows immediately
from the asymptotic limits of this expression.

Lemma 8.4:

(34)

Proof: The result is obtained by substituting (33) in (30).
The PSD (spectrum) of can now be determined

as follows.

Lemma 8.5:The spectrum of is determined by
the asymptotic behavior of as . All nontrivial
cyclostationary components are zero, while the stationary com-
ponent of the spectrum is given by

(35)

There is also a term due to the dc part of ,
which is omitted in (35).

Proof: It can be shown [29] that the cyclostationary com-
ponent [30] of the autocorrelation at any frequency is given
by

This expression is determined by the asymptotic form of
as a function of, given in (34). Because this becomes indepen-
dent of , the above limit is identically zero for all ,
whereas for (the stationary component), it reduces to
(34). The result is obtained by taking the Fourier transform of
(34).

IX. PHASE NOISE/TIMING JITTER CHARACTERIZATION FOR

OSCILLATOR DESIGN

In this section, we discuss several popular characterizations
of phase noise that is used in the design of electronic oscillators
and how they can easily be obtained from the stochastic charac-
terization we obtained in Sections VII and VIII.

A. Single-Sided Spectral Density and Total Power

The PSD in (35) (defined for , hence,
called a double-sided density) is a real and even function of
because the periodic steady state is real, hence, its Fourier
series coefficients in Definition 8.1 satisfy . The
single-sided spectral density (defined for ) is given
by

(36)
where we substituted and . The total power
(i.e. the integral of the PSD over the range of the frequencies it
is defined for) in is the same as in , which is

Total power in

(37)

Note that the total power in the periodic signal (without
phase noise) is also equal to the expression in (37) (excluding
the power in the dc part), as can be easily seen from the Fourier
expansion in Definition 8.1.

Remark 9.1:The phase deviation does not change the
total power in the periodic signal , but it alters the power
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density in frequency, i.e., the PSD. For the perfect periodic
signal , the PSD has functions located at discrete fre-
quencies (i.e., the harmonics). The phase deviationspreads
the power in these functions in the form given in (36), which
can be experimentally observed with a spectrum analyzer.

B. Spectrum in dBm/Hz

For electrical oscillators, the state variable in the oscillator
that is observed as the output is usually a voltage or a current.
The spectrum in (36) is expressed as a function of frequency
( in Hz), then the PSD is in units of voltsHz and amps/Hz
for a voltage and a current state variable, respectively. Then, the
spectral density of the expected (i.e., average, assuming that the
stochastic process ( is ergodic [30]) power dissipated
in a resistor [with the voltage (current) output of the oscil-
lator as the voltage across (current through) the resistor] is equal
to the PSD in (36) (in watts/Hz), which is usually expressed in
dBw/Hz as defined by

in watts/Hz (38)

If is in miliwatts/Hz, then the PSD in dBm/Hz is given
by

in miliwatts/Hz (39)

C. Single-Sideband Phase Noise Spectrum in dBc/Hz

In practice, we are usually interested in the PSD around the
first harmonic, i.e., for around . The single-sideband
phase noise (in dBc/Hz) that is very widely used in prac-
tice is defined as

(40)

For small values of and for , (40) can be approx-
imated as

(41)

Furthermore, for , can be approxi-
mated by

(42)

Notice that the approximation of in (42) blows up as
. For , (42) is not accurate, in which

case the approximation in (41) should be used.

D. Timing Jitter

In some applications, such as clock generation and recovery,
one is interested in a characterization of the phase/time deviation

itself rather than the spectrum of that was
calculated in Section VIII. In these applications, an oscillator
generates a square-wave like waveform to be used as a clock.
The effect of the phase deviation on such a waveform is
to create deviations or jitter in the zero-crossing or transition
times. In Section VII, we found out that (for an autonomous

oscillator) becomes a Gaussian random variable with a linearly
increasing variance

Let us take one of the transitions (i.e., edges) of a clock signal
as a reference (i.e., trigger) transition and synchronize it with

. If the clock signal is perfectly periodic, then one will
see transitions exactly at where is
the period. For a clock signal with a phase deviation that
has a linearly increasing variance as above, the timing of theth
transition will have a variance (i.e., mean-square error)

(43)

The spectral dispersion caused by in an oscillation signal
can be observed with a spectrum analyzer. Similarly, one can
observe the timing jitter caused by using a sampling oscil-
loscope. McNeill in [12] experimentally observed the linearly
increasing variance for the timing of the transitions of a clock
signal generated by an autonomous oscillator, as predicted by
our theory. Moreover, (in s .Hz) in (43) exactly quantifies the
rate of increase of timing jitter with respect to a reference transi-
tion. Another useful figure of merit is the cycle-to-cycle timing
jitter, i.e., the timing jitter in one clock cycle, which has a vari-
ance .

E. Noise Source Contributions

The scalar constantappears in all of the characterizations
we discussed above. It is given by

(44)

where represents themodulationof the inten-
sities of the noise sources with the large-signal state. (44) can
be rewritten as

(45)

where is the number of the noise sources, i.e., the column
dimension of and is the th column of
which maps theth noise source to the equations of the system.
Hence

(46)

represents the contribution of theth noise source to. Thus, the
ratio

(47)

can be used as a figure of merit representing the contribution of
the th noise source to phase noise/timing jitter.

F. Phase Noise Sensitivity

One can also define

(48)
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(where and is the th unit vector) as the phase
noise/timing jitter sensitivity of the th equation (i.e., node),
because represents a unit intensity noise source added to the

th equation (i.e., connected to theth node) in (1).

X. NUMERICAL METHODS FORPHASE NOISE

CHARACTERIZATION

From Sections VII, VIII and IX, for various phase noise char-
acterizations of an oscillator, one needs to calculate the steady-
state periodic solution and the periodic vector in
(44). Without providing details, we will present outlines of two
methods for computing the periodic vector : a time-domain
one in Section X-A and a frequency-domain one in Section X-B.
The latter method is well suited for large circuits.

A. Time Domain Numerical Technique for

The procedure for calculating in the time domain is as
follows.

1) Compute the large-signal periodic steady-state solution
for by numerically integrating (1), pos-

sibly using a technique such as the shooting method [31].
2) Compute the state-transition matrix (see Ap-

pendix B) by numerically integrating

from 0 to , where the Jacobian is defined in (3).
Note that

3) Compute using

Note that is an eigenvector of corre-
sponding to the eigenvalue 1 (see Remark B.3).

4) is an eigenvector of corresponding to the
eigenvalue 1 (see Remark B.3). To compute , first
compute an eigenvector of corresponding to the
eigenvalue 1, then scale this eigenvector so that

(49)

is satisfied.
5) Compute the periodic vector for by

numerically solving the adjoint system

(50)

using as the initial condition. Note that
is a periodic steady-state solution of (50) corre-

sponding to the Floquet exponent that is equal to zero,
i.e., (see Remark B.3). It is not possible to cal-
culate by numerically integrating (50) forward in
time because the numerical errors in computing the solu-
tion and the numerical errors in the initial condition

will excite the modes of the solution of (50) that grow
without bound (see Remark B.3). However, one can in-
tegrate (50) backward in time with the initial condition

to calculate for in a nu-
merically stable way.

6) Then, is calculated using (44).
We implemented the above algorithm in SPICE. We will not

present a detailed description of this implementation here, but
we will mention a few important points. In implementing the
above algorithm, one can increase the efficiency by saving LU
factored matrices that needs to be calculated in Step 2 and reuse
them in Step 5. If the periodic steady state of the oscillator
is calculated using the shooting method [31] in Step 1, then the
state transition matrix of the linear time-varying system
obtained by linearizing the nonlinear oscillator circuit around
the periodic steady state is already available. It can be shown that
the Jacobian of the nonlinear system of equations that is solved
in the shooting method (using Newton’s method, to calculate the
initial condition that results in the periodic steady-state solution)
is equal to [32], [33]. Moreover, one can avoid cal-
culating explicitly and use iterative methods both for
the shooting method and at Step 4 to calculate the eigenvector of

that corresponds to the eigenvalue 1 [34]. For high-Q
oscillators, the iterative methods can run into problems, because

may have several other eigenvalues which are close
to 1. In our implementation in SPICE, we explicitly calculate

and perform a full eigenvalue/eigenvector calculation,
which allows us to investigate the properties of the state-transi-
tion matrix for various oscillator circuits. Even with a full eigen-
value/eigenvector calculation for , the phase noise char-
acterization algorithm discussed above is still very efficient. The
phase noise characterization comes almost for free once the pe-
riodic steady-state solution is computed.

B. Frequency-Domain Technique for Calculating Using
Efficient Harmonic Balance

Definition 10.1: Define the matrices and to be the
Fourier components of and , i.e.,

(51)

(52)

Definition 10.2: Define the block-Toeplitz matrices and
as follows:

(53)

(54)
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Lemma 10.1: and are both invertible since

...

...

Sketch of Proof:Follows from the biorthonormality of
and .

Definition 10.3: Define

...

Note is strictly diagonal.
Remark 10.1:Note that is singular for , if

the oscillator is asymptotically orbitally stable.
Definition 10.4: Define

...

...

Note is strictly diagonal.
Remark 10.1:Note that is singular for ,

integer, if the oscillator is asymptotically orbitally stable.
Theorem 10.1:The frequency-domain conversion matrix

of the oscillator [35] is related to , and by

Theorem 10.2: is a singular matrix (with rank-defi-
ciency one) and the null space of its transpose is spanned by the
Fourier components of , i.e.,

(55)

where are the Fourier coefficients of for some
nonzero scalar, i.e., .

is simply the transpose of the harmonic balance Ja-
cobian matrix of the oscillator at solution. Its null space can be
found efficiently, even for large circuits, by using iterative linear
algebra techniques [35]. Hence, a scaled version of can be
found easily. The scaling constantcan be found by applying

, having first been obtained by differenti-
ating the large-signal steady state solution of the oscillator.

Fig. 4. Oscillator with a bandpass filter and a comparator [36].

XI. EXAMPLES

We now present examples for phase noise characterization of
practical electronic oscillators.

A. Generic Oscillator with a Bandpass Filter and a
Nonlinearity [36]

This oscillator (Fig. 4) consists of a Tow–Thomas
second-order bandpass filter and a comparator [36]. If the
op amps are considered to be ideal, it can be shown that this
oscillator is equivalent (in the sense of the differential equations
that describe it) to a parallel RLC circuit in parallel with a
nonlinear voltage-controlled current source (or equivalently
a series RLC circuit in series with a nonlinear current-con-
trolled voltage source) as in Fig. 1(a). In [36], the authors
breadboarded this circuit with an external white noise source
(intensity of which was chosen such that its effect is much
larger than the other internal noise sources) and measured the
PSD of the output with a spectrum analyzer. For and

kHz, we performed a phase noise characterization
of this oscillator using the numerical methods in Section X
and computed the periodic oscillation waveform for the
output and s Hz. Fig. 5(a) shows the PSD
of the oscillator output computed using (36), and Fig. 5(b)
shows the spectrum analyzer measurement.11 Fig. 5(c) shows
a blown up version of the PSD around the first harmonic. The
single-sideband phase noise spectrum using both (41) and
(42) is in Fig. 5(d). Note that (42) cannot predict the PSD
accurately below the cut-off frequency Hz
[marked with a in Fig. 5(d)] of the Lorentzian. The oscillator
model that was simulated has two state variables and a single
stationary noise source. Fig. 5(e) shows a plot of the periodic
nonnegative scalar

where is independent of since the noise source is
stationary. Recall from (44) that is the time average of this
scalar that is periodic in time.

can also be obtained relatively accurately in this case using
Monte Carlo analysis. We simulated the circuit with 10 000
random excitations and averaged the results to obtain the
mean-square difference between the perturbed and unperturbed

11The PSD’s are plotted in units of dBm as in (39).
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. Phase noise characterization for the oscillator in Fig. 4 (a) Computed PSD (four harmonics). (b) Spectrum analyzer measured PSD [36]. (c) Computed
PSD (first harmonic). (d)L(f ) computed with both (41) and (42). (e)(v (t)B) . (f) Variance of total deviation (Monte Carlo method).

systems as a function of time. Fig. 5(f) illustrates the result, the
slope of the envelope of which determines. The Monte Carlo
simulations required small time steps to produce accurate re-
sults, since numerical integration methods easily lose accuracy
for autonomous circuits. The total computation time for Monte
Carlo was about 10 h on a fast SGI workstation (R2000 CPU),

whereas our new method required about 20 s: a speedup of
more than three orders of magnitude.

B. Ring Oscillator

The ring oscillator circuit is a three-stage oscillator with fully
differential ECL buffer delay cells (differential pairs followed
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(a)

(b)

Fig. 6. Ring-oscillator. (a) Phase noise characterization. (b) Phase noise
performance versusI .

by emitter followers). This circuit is from [12]. [12] and [11]
use analytical techniques to characterize the timing jitter/phase
noise performance of ring oscillators with ECL-type delay cells.
[12] does the analysis for a bipolar ring oscillator and [11] does
it for a CMOS one. Since they use analytical techniques, they
use a simplified model of the circuit and make several approxi-
mations in their analysis. References [12] and [11] use time-do-
main Monte Carlo noise simulations to verify the results of their
analytical results. They obtain qualitative and some quantitative
results and offer guidelines for the design of low phase noise
ring oscillators with ECL-type delay cells. However, their re-
sults are only valid for their specific oscillator circuits. We will
compare their results with the results we will obtain for the
above ring oscillator, using the general phase noise characteri-
zation methodology we have proposed, which makes it possible
to analyze a complicated oscillator circuit without simplifica-
tions. We performed several phase noise characterizations of the
bipolar ring oscillator. The results are shown in Fig. 6(a) where

is the collector load resistance for the differential pair (DP) in
the delay cell, is the zero bias base resistance for the BJT’s in
the DP, is the tail bias current for the DP, andis the oscil-
lation frequency for the three stage ring-oscillator. Note that the
changes in and affect the oscillation frequency, unlike the
changes in . Fig. 6(b) shows a plot of versus
using the data from Fig. 6(a). This prediction of the dependence
of phase noise/timing jitter performance on the tail bias current
is in agreement with the analysis and experimental results pre-
sented in [12] and [11] for ring oscillators with ECL-type delay
cells. Note that larger values for indicate worse phase
noise performance.

(a)

(b)

Fig. 7. Oscillator with on-chip inductor. (a) Noise source contributions. (b)
Simplified schematic.

C. Relaxation Oscillator

The relaxation oscillator is a VCO that is based on the
emitter-coupled multivibrator circuit [37]. Reference [13]
analyzes the process of jitter production for this circuit by de-
scribing the circuit behavior with a single first-order stochastic
differential equation based on a simplified model for the circuit,
and lumping all of the noise sources into a single stationary
current noise source. [13] arrives at intuitive qualitative results
for low jitter relaxation oscillator design. A relaxation oscil-
lator operates in a highly nonlinear fashion due to regenerative
switchings. The analysis of the process of jitter production is
not analytically tractable without reverting to simplifications.

For this oscillator, using the numerical methods described in
Section X, we obtain

MHz rad .Hz

which corresponds to

ppm RMS

cycle-to-cycle timing jitter, where ppm is parts per million and
RMS is root mean square.

D. Harmonic (Colpitts) Oscillator

The harmonic oscillator has an LC tank, several inductors and
a single bipolar-junction transistor with a Colpitts feedback cir-
cuit around it. The oscillation frequency is MHz. For
this oscillator, we computed rad .Hz, which
corresponds to dBc/Hz at KHz using
(42).

E. 2.5-GHz Oscillator with On-Chip Inductor [38]

A simplified schematic for this oscillator is in Fig. 7(b).
We computed s .Hz which corresponds to

dBc/Hz at KHz using (42). There
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were 35 state variables and 45 noise sources in the simulated
circuit. We generated a noise source contribution report for this
oscillator using (47), which is shown in Fig. 7(a).

XII. CONCLUSIONS

A novel rigorous theory for phase noise that is valid for
any oscillator, regardless of operating mechanism, has been
presented. We established novel results about the dynamics of
stable nonlinear oscillators in the presence of perturbations,
both deterministic and random. An exact nonlinear equation
for phase error was derived, which was solved without approx-
imations for random perturbations. This lead us to a precise
characterization of timing jitter and spectral dispersion, for
computing which we developed efficient numerical methods.
We demonstrated our techniques on a variety of practical
electrical oscillators and obtained good matches with measure-
ments, even at frequencies close to the carrier, where previous
techniques break down. Our methods are more than three
orders of magnitude faster than the brute force Monte Carlo
approach, which is the only previously available technique that
can predict phase noise correctly.

APPENDIX A
ORBITAL STABILITY [23]

If is a nonconstant -periodic solution of the au-
tonomous system

(56)

then is also a nonconstant-periodic solution for
arbitrary . The initial values and can be
arbitrarily close (if is small enough), and still

does not tend to zero astends to infinity. Let the path of
the -periodic solution be

Note that and have the same path.
Definition A.1 (Orbital Stability): The solution of (56)

is said to be orbitally stable if for every there exists a
such that if the distance of the initial value from the
path of is less than , i.e., dist , then
the solution of (56) that assumes the value at
satisfies

dist

for .
If the solution is orbitally stable, then each solution with

the same path , i.e., every solution for , is
orbitally stable too.

Definition A.2 (Asymptotic Orbital Stability):The solution
of (56) is said to be asymptotically orbitally stable if it is

orbitally stable and if a exists such that dist
implies

dist as

Definition A.3 (Asymptotic Phase Property):The solution
is said to have the asymptotic phase property if a ex-

ists such that to each initial value satisfying dist
there corresponds an asymptotic phase with the
property

For the autonomous systems we are dealing in this work, we as-
sume that there exists a nontrivial periodic solution which
is asymptotically orbitally stable and has the asymptotic phase
property.

APPENDIX B
FLOQUET THEORY

Consider the -dimensional inhomogeneous linear system of
differential equations

(57)

where the matrix function and the vector
are continuous. The homogeneous system corresponding to

(57) is given by

(58)

Remark B.1:

• The conditions of the Picard–Lindelőf existence and
uniqueness theorem [23] for initial value problems are
trivially satisfied by (57) and (58). Hence, there exist
unique solutions to (57) and (58) given an initial condition

.
• It can be shown that the set of real solutions of (58) form

an -dimensional linear space.
• Let be linearly in-

dependent solutions of (58). Then,
is called a fundamental

matrix. If , then is called the
principal fundamental matrix or the state transition matrix
for (58), denoted by .

• Any solution of (58) can be expressed as where
is a constant vector. In particular, for ,

the solution of (58) is given by .
• If is another fundamental matrix for (58), then

where is a nonsingular constant
matrix.

• The solution of (57) satisfying the initial condition
is given by

(59)

Now we consider the case when the coefficient matrix in (58) is
periodic with period , i.e., for .
Let be a fundamental matrix for (58).

Remark B.2:

• Consider . We have
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hence, is also a fundamental matrix. Then,
where is a nonsingular

matrix. Note that .
• Even though is not unique, it can be shown that any

other will have the same eigenvalues.
• The eigenvalues of , , are called the charac-

teristic multipliers of the equation and the characteristic
(Floquet) exponents are defined with

.
Assumption B.1:We assume that has distinct eigenvalues

and it is diagonalizable.12

Now we state a result due to Floquet (1883).
Theorem B.1 (Floquet):Let where

, diag , and diag .
Then, the state transition matrix of the system (58) can be
written in the form

where and are both -periodic and nonsingular and
satisfy

Proof: [23].
Remark B.3:

• The state transition matrix can be written as

where are the columns of and are the
rows of .

• With this representation of the state transition matrix, the
solutions of the homogeneous system (58) and the inho-
mogeneous system (57) with a periodic coefficient matrix
are given by

and

• For any , is a solution of (58) with
the initial condition . Similarly,

is a solution of the adjoint system

with the initial condition .
• We have

12The extension to nondiagonalizable matrices is straightforward.

From the above, are the eigenvectors of
with corresponding eigenvalues and are
the eigenvectors of corresponding to the same
eigenvalues.

APPENDIX C
KRAMERS–MOYAL EXPANSION AND THE FOKKER–PLANCK

EQUATION

Let be a stochastic process with the probability density
function (PDF) .

Definition C.1:

(60)
where denotes the conditional expectation operator.

Theorem C.1 (Kramers–Moyal Expansion):The PDF of the
stochastic process satisfies the following partial differen-
tial equation:

(61)

where are given by (60).
Proof: [29], [28].

(61) is called the Kramers–Moyal expansion and
in (60) are called the Kramers–Moyal expansion coefficients.

Now, let the stochastic process satisfy the following
nonlinear stochastic differential equation

(62)

where is a vector of uncorrelated zero mean
Gaussian white noise processes and

are deterministic functions.
Theorem C.2:For the stochastic process that satisfies

(62), the Kramers–Moyal expansion coefficients defined by (60)
are given by

for

where depends on the definition of the stochastic in-
tegral [25], [26], [28] used to interpret the stochastic differential
equation in (62).

Proof [29], [28], [25]: Hence, the partial differential
equation, i.e., the Kramers–Moyal expansion, for the PDF of

that satisfies (62) can be written as

(63)

which is known as the Fokker–Planck equation or the forward
Kolmogorov equation.
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The phase deviation satisfies the stochastic differential
(12). We obtain the Fokker–Planck equation (21) for the PDF

of by substituting and

in (63).
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