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Analyzing Circuits with Widely Separated Time
Scales Using Numerical PDE Methods

Jaijeet Roychowdhury

Abstract—Widely separated time scales arise in many kinds of
circuits, e.g., switched-capacitor filters, mixers, switching power
converters, etc. Numerical solution of such circuits is often difficult,
especially when strong nonlinearities are present. In this paper, we
present a mathematical formulation and numerical methods for
analyzing a broad class of such circuits or systems. The key idea
is to usemultiple time variables, which enable signals with widely
separated rates of variation to be represented efficiently. This re-
sults in the transformation of differential equation descriptions of
a system to partial differential ones, in effect decoupling different
rates of variation from each other. Numerical methods can then be
used to solve the partial differential equations (PDEs). In partic-
ular, time-domain methods can be used to handle the hitherto dif-
ficult case of strong nonlinearities together with widely separated
rates of signal variation. We examine methods for obtaining quasi-
periodic and envelope solutions, and describe how the PDE for-
mulation unifies existing techniques for separated-time-constant
problems. Several applications are described. Significant compu-
tation and memory savings result from using the new numerical
techniques, which also scale gracefully with problem size.

Index Terms—Multitime partial differential equations, widely
separated time scales.

I. INTRODUCTION

CONSIDER a 1-GHz pulse train multiplied with a 1-kHz
sinusoid, or the same pulse train with the duty cycle of

each pulse controlled by a slow information signal. These may
be termedmultirate signals, i.e., they contain “components”
that vary at two or more widely separated rates. Such signals
arise in various physical systems, such as communication
circuits (e.g., up/down-converters, automatic gain-control
circuits), cycle-chopping and switched power converters,
switched-capacitor filters, pulsewidth-modulation circuits, etc.
Such systems are typically difficult to analyze using traditional
numerical integration algorithms, such as those in programs
like SPICE [1], [2]. The difficulty stems from the widely
disparate rates: following fast-varying signal components long
enough to obtain information about the slowly-varying ones
is computationally expensive, and can also be inaccurate.
Furthermore, if the circuits are strongly nonlinear, specialized
methods (see Section II) that can solve linear and mildly
nonlinear circuits quickly become ineffective.

In this paper, we present a novel approach for analyzing such
problems, using the fact that many multirate signals, especially
from circuits, can be represented efficiently as functions of two
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or more time variables, i.e., asmultivariate functions. If a system
is described with differential-algebraic equations (DAEs), using
multivariate functions for the unknowns leads naturally to a par-
tial differential equation (PDE) form, which we call theMulti-
time Partial Differential Equation (MPDE). By applying time-
domain numerical methods to solve the MPDE directly for the
multivariate forms of the unknowns, we are able to analyze the
combination of strong nonlinearities and multirate signals.

The immediate advantage of this approach is that it can result
in improvements in simulation speed compared to DAE-based
alternatives—this is the main focus in this paper. The uses of the
MPDE formulation are not, however, limited to numerical ones.
For example, multiple time variables can be used to tag different
inputs symbolically, even if nothing is known about the nature
of the inputs’ variations. This idea has been used to analyze and
macromodel linear periodic time-varying (LPTV) systems [3].
Another use has been for autonomous systems, where the con-
cept of instantaneous frequency has been extended to oscillators
with arbitrary responses, and the oscillator equations recast to
include the changing frequency as an explicit variable in the dy-
namical system description [4]. It is possible that further ways
of analyzing dynamical systems, at higher levels of abstraction
than previously possible, may result through use of the multi-
time concept.

II. PREVIOUS WORK

Awareness of the multiple time approach seems low in the
circuits community, but the concept is not new and has ap-
parently been rediscovered several times. Artificial-time mul-
tivariate functions and related PDE forms have been used for
asymptotic expansion analysis [5] for decades, though only as
analytical conveniences for certain simple, weakly nonlinear
harmonic oscillators. Ngoya and Larchevèque [6] appear to have
been first to recognize the value of multiple time scales in a more
general context, and mention their relevance to envelope simu-
lation. Most recently, Brachtendorfet al.[7] have used the PDE
form to obtain a simple and elegant derivation of the multi-tone
harmonic balance method described below.

A number of methods exist for numerical analysis of DAE
systems with multirate signals. The simplest and most prevalent
(e.g., in SPICE [1], [2]) employ time-stepping numerical DAE
integration to solve an initial-value problem. As discussed in the
next section, these have difficulty with multirate signals because
time-steps need to be smaller than the period of the fastest signal
component, leading to a large number of time-points for simu-
lating the slowest component. Numerical errors can also build
up significantly over the long simulation, even in the presence
of tight local error control.

1057–7122/01$10.00 © 2001 IEEE
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Fig. 1. Two-tone input to comparator followed byRC filter.

More effective, though limited largely to weakly nonlinear
systems, is a frequency-domain technique for quasi-periodic
signals known as Harmonic Balance (HB). In multi-tone
harmonic balance (e.g., [8]–[10], [7]), an algebraic system
of equations in the Fourier coefficients is set up and solved.
Solving directly for the Fourier coefficients enables HB to
circumvent the small time-step problem, but also hampers it
in situations where waveforms cannot be represented with
few Fourier components, e.g., in strongly nonlinear circuits
containing waveforms with sharp edges and spikes. Another
limitation of HB relates to the structure of its Jacobian matrix,
which loses block-diagonal dominance as nonlinearities grow
strong. Loss of diagonal dominance is significant because
preconditioned iterative linear algebra techniques (e.g., [11],
[9]), needed for solving large problems, become ineffective as
diagonal dominance is lost.

Envelope-modulated signals can be analyzed using recent
techniques [12], [13] that formulate the problem as a differential
equation in the time-varying Fourier coefficients. Traditional
time-stepping techniques are used to solve the differential
equation, resulting in a smaller dimensional quasi-periodic
system, solved using harmonic balance, at each time-point. The
methods have some deficiencies: they are derived by equating
the time-varying coefficients of two Fourier expansions, a
procedure that is not strictly valid; also, the inner loop of these
methods are based on HB, hence they share HBs disadvantages
with respect to strong nonlinearities.

The nonlinearity limitation of harmonic balance can be par-
tially overcome for an important special case of the quasi-peri-
odic problem, by using the methods of Chua and Ushida [14] and
Kundertet al.[15], [8]. Two relationships are set up and equated
to form a nonlinear equation system, solving which provides the
quasi-periodic response.Onerelationship isobtainedfromatran-
sient simulation of the circuit ODEs over a few periods of the fast
cycle, the other from the variation, over the fast periods, due to
the slowly varying components of the signal, which are assumed
to have short Fourier series expansions. This approach has been
usedtoanalyzedistortion inswitched-capacitorcircuits, inwhich
the signal path generates relatively few harmonics.

III. M ULTILINE REPRESENTATIONS ANDTHEIR BENEFITS

The circuit of Fig. 1 consists of a comparator followed by an
RC filter. The input to the comparator (shown in Fig. 2) is
a simple two-tone quasi-periodic signal given by

(1)

Fig. 2. Example two-tone quasi-periodic signalb(t).

Fig. 3. Corresponding two-periodic bivariate form̂b(t ; t ).

The two tones are at frequencies 1 kHz and
100 kHz. There are 100 fast-varying cycles of

period 0.01 ms modulated by a slowly-varying sinusoid of
period 1 ms.

Simulating the circuit using numerical integration schemes
(i.e., transient or shooting analysis) would require time-steps
spaced closely enough to represent each fast cycle inac-
curately. If each cycle is sampled atpoints, the total number
of time-steps needed for one period of the slow modulation is

. To generate Fig. 2, 15 points were used per cycle,
hence the total number of samples was 1500. This number is
proportional to the separation between the time scales, and can
be much larger in, e.g., RF circuit applications.

Now, consider a multi-time representation for , con-
structed as follows: for the “slowly-varying” parts of the
expression for , is replaced by ; for the “fast-varying”
parts, by . The resulting function of two variables is denoted
by

(2)

Note, that is biperiodic, i.e., periodic with respect
to both and : . The plot
of on the rectangle ,
is shown in Fig. 3. Because is biperiodic, this plot repeats
over the rest of the – plane. Note, also that does
not have many undulations, unlike in Fig. 2.Hence it can
be represented using relatively few sample points. Fig. 3 was
plotted on a uniform 1515 grid, i.e., 225 samples—far fewer
than the 1500 points for Fig. 2.

Note, further that it is easy to recover from ,
simply by setting , and using the fact that is
biperiodic. Given any value of, the arguments to are given
by . For example

ms ms ms

ms ms

ms ms
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Fig. 4. Path in thet –t plane.

Fig. 5. y(t).

Fig. 6. ŷ(t ; t ).

Given , it is easy to visualize what looks like. As
increases from 0, the path given by traces

the sawtooth path shown in Fig. 4. By noting howchanges
as this path is traced, the behavior of can be visualized.
Variations of the bivariate waveform along the slow and fast time
axes directly reflect the respective components of , more
naturally and conveniently than itself.

The above illustrates two important features: 1) the bivariate
form can require far fewer points to represent numerically than
the original quasi-periodic signal, yet 2) it contains all the infor-
mation needed to recover the original signal completely. This is
true not only for signals with a compact frequency-domain rep-
resentation [such as in (1), with only two frequency com-
ponents, ], but also for those that cannot be represented
efficiently in the frequency domain. For example, consider the
quasi-periodic digital signal at the output of the comparator

comp comp
if

otherwise.

Representing adequately in the frequency domain re-
quires perhaps 625 Fourier coefficients, since at least 25 har-
monics in each tone are needed to represent a square wave more
or less accurately. As for the univariate time-domain represen-
tation, more than 400 points are needed, as shown in Fig. 5.
However, the bivariate representation , given by

comp

and plotted in Fig. 6, requires only about 40 points to represent
accurately. As before, is easily recoverable by the relation

and the biperiodicity of .

Fig. 7. x̂(t ; t ).

Fig. 8. x(t).

The key to the numerical techniques in this paper is to solve
for the multivariate forms of all the node voltages and branch
currents of a circuit directly. The details are presented in Sec-
tions IV and V. The basic notion is to rewrite the circuit’s equa-
tions in terms of multivariate functions, in effect transforming
the original differential equations into an MPDE. By applying
boundary conditions (BCs)to the MPDE and solving it numer-
ically with time-domain or mixed frequency-time methods, the
multivariate solutions are obtained efficiently. If desired, the
univariate solution of the circuit can be easily computed from
the multivariate one; often, however, information of interest can
be obtained directly by inspecting the multivariate solution.

For example, given the differential equation for the circuit of
Fig. 1

comp
(3)

the corresponding MPDE can be shown to be (see Section IV)

comp
(4)

The quasi-periodic steady state of the solution is
captured by usingbiperiodic BCsfor (4), i.e.,

. The solution , obtained using the
methods described in Section V, is plotted in Fig. 7. The
univariate solution , generated using , is
plotted in Fig. 8. It is evident that, for a given accuracy, the
bivariate form is much more compact than the univariate form.
Moreover, the main features of interest, i.e., the slow scale
variation of the rectified voltage, as well as the fast scale ripple,
are immediately apparent from the variations along the slow
and fast time axes of Fig. 7.
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IV. THE MULTITIME PARTIAL DIFFERENTIAL EQUATION

(MPDE) AND ITS PROPERTIES

In this section, the MPDE is examined (see also [5]–[7]). The
connection between the MPDE and the circuit’s DAE is ex-
plored first and the basic link between their solutions is proven.
BCs leading to quasi-periodic and envelope-modulated solu-
tions are presented next. Finally, it is shown why FM-type sig-
nals cannot be handled efficiently by the MPDE.

We start with a general DAE form of a circuit’s equations

(5)

All variables (except the time) are vector-valued. are the
unknowns in the circuit (node voltages and branch currents),

the charge terms, and the resistive terms. is the
vector of excitations to the circuit (typically from independent
voltage/current sources).

As discussed in Section III, if the circuit exhibits multirate
behavior, its variables can often be represented efficiently using
multiple time variables. If there are separate rates of change,

time-scales are used. Denote the multivariate forms of
and by and . We proceed
by first defining a PDE in these multivariate forms, and then
showing how solutions of this equation generate solutions of
(5). First, we define the MPDE corresponding to (5) to be

(6)

where and are the same functions as in (5).
We show next that there is a key relation between the MPDE

and the circuit’s DAEs. Theorem 1 states that solutions to the
circuit’s DAEs are available on “diagonal” lines along the
MPDE’s multivariate solutions. This is a completely general
result; indeed, or need not exhibit any multirate
behavior at all.

Theorem 1 (MPDE-DAE Relation):If
and satisfy the MPDE in (6), then

and
satisfy the circuit’s DAE in (5), for any fixed .

Proof: See the Appendix.
To solve the MPDE, it is necessary to first specify BCs. Dif-

ferent BCs lead to quasi-periodic and envelope-modulated so-
lutions.

A. Quasi-Periodic Signals

A signal is quasi-periodic if it satisfies the following defini-
tion [16].

Definition 1: is -tone quasi-periodicif it can be ex-
pressed in the form

where are real- or complex-valued constants.
Quasi-periodicity for univariate signals is closely related to

periodicity for multivariate signals.

Definition 2: A multivariate function is
-periodic (or simply periodic) if

for all real and all
integers . are constant real numbers;

is referred to as theperiod of the th tone of or simply the
th period of .

The following two simple lemmas follow immediately from
the previous definitions. Lemma 1 shows that given any periodic
multivariate signal , a quasi-periodic signal is immediately
obtained by evaluating on a diagonal line. Lemma 2 shows
that given any quasi-periodic signal, a periodic multivariate
signal can be found that satisfies Lemma 1.

Lemma 1: If is -periodic, then
is -tone quasi-periodic for any .

Proof: See the Appendix.
Lemma 2: Given any -tone quasi-periodic function

and any constants , an -periodic
can be found that satisfies .

Proof: See the Appendix.
Applying the above lemmas to Theorem 1 results in the fol-

lowing theorem and corollary, which establish that any-pe-
riodic solution of the MPDE generates a corresponding quasi-
periodic solution of the circuit’s DAEs. Hence, to generate a
quasi-periodic solution, it is sufficient to 1) find a periodic
satisfying and 2) solve the MPDE
with periodic BCs.

Theorem 2 (MPDE Sufficiency Condition):If is an -peri-
odic excitation to (6) and an -periodic solution, then

is an -tone quasi-periodic solution of
(5) under the -tone quasi-periodic excitation

.
Corollary 1: Given an -periodic such that

, it is sufficient to find a solution of the MPDE
with -periodic BCs in order to obtain an -tone quasi-peri-
odic solution of the circuit DAE.

Theorem 2 establishes a one-way link between the MPDE and
DAE formulations, by showing that any periodic solution of the
MPDE generates a quasi-periodic one for the DAE. The other
direction is equally important, because it shows that if the orig-
inal problem has a quasi-periodic solution, then the MPDE also
has a corresponding solution; hence no solution of the original
system is lost by moving to the MPDE formulation. This is es-
tablished by the following theorem.

Theorem 3 (MPDE Necessity Condition):If a quasi-periodic
solution of the circuit DAE (5) exists for a quasi-periodic
excitation , then for any , there exist -peri-
odic functions and satisfying the
MPDE (6) such that ,

.
Proof: See the Appendix.

The existence or uniqueness of a solution to the MPDE with
periodic BCs cannot, in general, be guaranteed, just as the exis-
tence/uniqueness of quasi-periodic solutions for the circuit DAE
cannot be guaranteed. This is easily verified by considering the
equation , which has an infinite number of (constant) pe-
riodic solutions, and the equation , which has no
quasi-periodic solutions at all.
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Fig. 9. Envelope BCs.

Fig. 10. Uniqueness of envelope solution.

B. Envelope-Modulated Signals

The multivariate form of anenvelope-modulatedor envelope
signal with periodic components can be defined as

(7)

is periodic with respect to each of its arguments except,
which is, in practical applications, the variable with the slowest
rate. The univariate signal is therefore in the form of a Fourier
series with time-varying coefficients (the envelopes).

Envelope solutions of the form of (7) correspond to a combi-
nation of initial and periodic BCs for the MPDE, illustrated for
the two-rate case in Fig. 9. More precisely, the requirements are
that: 1) is specified, and 2) is -periodic
with respect to each argument. Given these conditions, the
following theorem shows that the envelope solution is unique.

Theorem 4 (Uniqueness of Envelope):If the DAE (5) has
a unique solution given any initial condition, the solution

of the MPDE is also unique, given the following
mixed initial and periodic BCs

where is any given initial-condition function, defined on
.

Proof: See the Appendix.
Although themultivariateenvelope solution is unique for a

given initial condition on the line, there exist an infinite
number of possible initial conditions that all generate exactly
the sameunivariatesolution. This is illustrated in Fig. 10(b).
The univariate solution along the line, for example, can
be shown to be determined only by the value of the initial condi-
tion at . The initial condition at other values of [e.g., at

, as illustrated] makes no difference to the
solution along this line. For numerical efficiency, it is desirable
to choose an initial condition that leads to a multivariate solution
that is smooth, or otherwise easy to represent. In our numerical
methods, we set the initial condition to be a quasi-periodic solu-
tion of the circuit at ; the envelope solution then changes
gradually as a function of , and satisfactory efficiency is ob-
tained.

C. Frequency-Modulated (FM) Signals

The efficiency of numerical methods relies on the multi-time
representations admitting of a far more compact description
than the traditional (single-time) form. While this is so for
a large class of signals, such as those shown above, it is not
universally true. Chaotic waveforms, for example, cannot be
represented compactly in any known form. More importantly,
from a practical standpoint, FM signals are not compact in the
simple multivariate representations presented above; hence the
numerical techniques presented in this paper are not useful for
circuits with FM. In this section, we illustrate the problem; a
solution is outlined elsewhere [4].

FM refers to a class of multirate signals in which the period
of a rapidly-varying, locally-periodic waveform changes slowly.
FM can be generated in forced oscillators such as voltage-con-
trolled oscillators (VCOs), and is of great importance in commu-
nications. FM is qualitatively different from the multirate sig-
nals encountered so far in this paper, because unlike the exam-
ples in Figs. 3, 6 and 7, naïve multi-time representations of FM
have many undulations are not easy to sample efficiently. We il-
lustrate the difficulty using the following prototypical FM signal

where

(8)

A bivariate form can be defined as follows:

with

(9)

Note, that is -periodic, hence is -quasi-
periodic.

is illustrated in Fig. 11. Note that if , i.e.,
for some large integer , then will undergo

about oscillations as a function of over one period . In
practice, is often of the order of , hence this number
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Fig. 11. Bivariate representation of FM signal.

Fig. 12. Moving boundaries cannot generate steady-state solutions.

of oscillations can be very large. Therefore, it becomes diffi-
cult to represent efficiently by sampling on a two-dimensional
grid.

FM is usually thought of as a slow change in the frequency of
a fast-varying signal. If the frequency of a periodic component is
thought of as the inverse of the corresponding time-period, it is
natural to hope that FM solutions can be captured by periodic so-
lutions on nonrectangular regions with nonparallel boundaries.
The concept is illustrated in Fig. 12, where the value of(the
fast time-period) is no longer constant but varies along. We
now show, however, that the concept of varying time-period is
not useful for capturing FM, by proving the fact thatnonparallel
boundary edges cannot generate steady-state solutions, i.e., nei-
ther the MPDE nor the underlying ODE can have quasi-periodic
solutions derived from nonparallel boundaries.

For simplicity, assume a two-rate state-equation form for the
MPDE of a forced oscillator

(10)

Assume that is the slow time scale, is the fast time scale,
and that is independent of , as is reasonable for a forced os-
cillator. Now, assume that this system can be solved for periodic
solutions on a moving boundary in thedirection, given by the
scalar function , which is -periodic (see Fig. 12). This
is equivalent to assuming the solution to be in the form

is -periodic (11)

Now, expand the partial differentiation terms of (10) using (11)

(12)

(13)

Note, that (12) contains a so-calledsecular term[5], i.e., a term
that increases linearly with if is not a constant. Note
further that all other terms of (10) are of the form of (11), i.e.,
periodic, whereas the secular term increases unboundedly with

. Therefore, no solution of the form of (11) can exist, unless
is independent of (i.e., rectangular boundaries). A sim-

ilar argument can be used to establish that even the DAE of the
forced oscillator cannot admit solutions of the type , with

in the form (11). This conclusion is also physically reason-
able, for the secular term would imply that the instantaneous
frequency of the signal grows unboundedly, which is unphys-
ical.

Despite the negative result above, FM signals can in fact be
represented compactly with multiple times, leading to efficient
methods for solving forced oscillators [4].

V. NUMERICAL SOLUTION OF THE MPDE

In this section, four numerical methods are presented for
solving the MPDE. Three of the methods [multivariate FDTD
(MFDTD), hierarchical shooting (HS), and time-domain
envelope (TD-ENV)] are set purely in the time domain. The
multivariate mixed frequency-time (MMFT) method is used to
solve for some of the dimensions of the MPDE in the frequency
domain and others in the time domain.

The purely time domain methods presented here are suit-
able for signals whose every component is influenced by strong
nonlinearities. If some signal paths are mildly nonlinear while
others are strongly nonlinear, as is the case in some types of
communication circuits (e.g., switching mixers, switched-ca-
pacitor circuits), the mixed frequency-time method can be more
efficient because it uses a short Fourier series for the mildly non-
linear components. For efficient sampling of the multivariate
waveforms, adaptively generated nonuniform grids can be used.

A. The MFDTD Method

In this method, the MPDE (6) is solved on a grid in the
space. Let the grid be the set of points ,

where each . The partial differentiation op-
erators of the MPDE are discretized and the MPDE collocated
on this grid. This leads to a set of nonlinear algebraic equations
in the unknowns . The nonlinear equations
are solved by numerically, using, e.g., Newton–Raphson or
continuation methods.
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For concreteness, consider the two-rate case. The MPDE sim-
plifies to

(14)

with periodic BCs . Consider a
uniform grid of size on the rectangle

. Here , and
, , . and

are the grid spacings in the and directions
respectively.

Discretizing the differentiation operators using (for example)
the Backward Euler rule leads to

(15)

Collocating the MPDE at the grid points leads to
equations

(16)

The equations are, however, in a greater number of unknowns;
extra unknowns and result from

discretizing the differentiation operators on the and
lines respectively. These unknowns are eliminated using the

biperiodic BCs of the MPDE

(17)

On applying the BCs, unknowns are eliminated from
(16) and a system of equations in unknowns is obtained.
Denote this system by

where

(18)

Equation (18) can now be solved numerically by any
numerical method for nonlinear equation systems, e.g.,
Newton–Raphson or continuation [17]. Typically, nonlinear
solution algorithms require the repeated solution of linear
systems involving the Jacobian matrix of . This Jacobian
has the block structure

...

(19)

Each block is itself a block-matrix, given by (20) and
(21), shown at the bottom of the page. In (19),
and .

In the above, a uniform grid was assumed for simplicity. In
practice, the grid is nonuniform, built by starting from a coarse
grid and adapting to the shape of the waveforms for higher ac-
curacy and efficiency.

is evidently a sparse matrix, hence matrix-vector
products with it can be performed cheaply. This makes itera-
tive linear techniques (e.g., [18], [11], [9], [19]) attractive for
solving linear systems involving the Jacobian. In this context,

...

(20)

...

(21)
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diagonal dominance characteristics of the Jacobian are useful
for effective preconditioning. For uniform gridding of the scalar
case, with linear, the Jacobian is diagonally dominant if
has the same sign as, as is the case for stable circuits. When
and are vector functions, block-diagonal dominance (under the
Frobenius norm) holds for linear and uniform grids. Even
in circuits with nonlinear and nonuniform grids for cap-
turing highly nonlinear behavior, diagonal and lower triangular
preconditioners are much more effective than for harmonic bal-
ance, in which diagonal dominance is lost as the nonlinearities
grow stronger.

B. HS

The two commonly used methods for finding periodic steady
states of one-tone circuits are shooting and harmonic balance. In
a sense, the two methods are symmetric, operating in dual do-
mains with complementary advantages and disadvantages. Yet
there remains an asymmetry between them: while HB is easily
extended to more than one tone, the same is not true of shooting.
This imbalance can be redressed in a natural manner using the
MPDE formulation, which permits a hierarchical extension of
the classical shooting algorithm for multiple tones. In this sec-
tion, this scheme, which we call Hierarchical Shooting (HS), is
outlined.

The key to this method is to view the MPDE as an ordinary
differential equation infunction spacevariables. For concrete-
ness, consider again the two-time MPDE of (14)

(22)

In (22), the variables , , and are all vector-valued
functions of two variables and , i.e., they are maps from

, where is the size of the circuit. However, they
can each be also regarded as functions of asinglevariable with
values that are vector-valuedfunctions, i.e., they are maps from

. Let , , and
be functions of , with values that are functions (of ), i.e.,

, , and respectively (the
function-valued variables and should not be confused
with the vector-valued ones of the previous section). In other
words, the value of, e.g., , for a fixed , equals theentire
function .

The MPDE can then be written formally as a DAE in func-
tion-valued variables, using operator notation

(23)

is an operator that differentiates the function (of) that it
operates on.

The methodology of shooting can now be applied to (23).
Let be the “state-transition function” of the DAE, i.e.,
the response of (23) at timeto an initial condition function

imposed at . Shooting consists of solving
the equation

(24)

using (for example) the Newton–Raphson method. In classical
shooting, the Jacobian of the equation corresponding to (23) is
a matrix. The Jacobian of (24), however, is not a simple matrix;
rather, it is a linear operator on the space of vector-valued func-
tions of . Further, each evaluation of the left-hand-side of (24)
involves an initial-value solution of (23). This is performed by
discretizing (23) using (for example) Backward Euler

(25)

and solving for the unknown (i.e., at the current time-
point ). Note, that (25) is itself a differential equation in,
since it can be rewritten as

(26)

Equation (26) can be solved using shooting (or another method,
e.g., univariate FDTD or harmonic balance) in, but in a lower
dimension. This “inner loop” solution is performed for each
time-step in the dimension of the “outer loop” of (23).

An advantage of hierarchical shooting over multivariate
FDTD is that the size of the linear systems that need to be
solved is smaller, by the number of points in thedimension.
In other words, whereas the size of the Jacobian matrix for
multivariate FDTD was ( circuit size), that for
hierarchical shooting is . This leads to memory savings,
but can also lead to more computation compared to MFDTD,
depending on how many shooting iterations are needed.
Circuits with slowly dying oscillations (e.g., high-circuits)
often require many shooting iterations. The grid in hierarchical
shooting is induced naturally by the time-step control of the
transient analysis algorithm, and explicit gridding algorithms
are not needed.

C. The TD-ENV Method

The initial-value solutions encountered in HS, i.e., (23), are
useful in their own right for envelope following. Given an ini-
tial condition function specified at , (23) can be solved
without searching for a periodic solution, i.e., (24) need not be
enforced. On discretization, (25) results, which is solved for a
periodic solution in using (26). Any method can be used for
this inner loop; in particular, for strongly nonlinear problems,
time-domain methods like shooting or FDTD can be used. This
constitutes a purely time-domain algorithm for multi-tone enve-
lope following.

D. The MMFT Method

Since and are -periodic, they
can be expressed as Fourier series in each variable. If the cir-
cuit is such that some of the variables have relatively few signif-
icant Fourier components (as in, e.g., switched-capacitor filters
and switching mixers), then it can be more efficient to solve the
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Fig. 13. Different MFT methods.

mixed frequency-time system obtained by taking a Fourier se-
ries expansion of the MPDE in those variables. The two-time
case is used again for exposition. Equation (14) is rewritten as
a Fourier series in :

(27)

where
;
;

, , Fourier components in of ,
and , respectively;

(small) number of significant harmonics.
Since the functions are linearly independent, the Fourier
components in (27) can be equated

(28)

(28) can be rewritten in vector form

(29)

where

...

...

...

...

...

...

...

...

(30)

Equation (29), being a vector DAE, is solved for a periodic
solution by existing time-domain methods such as univariate

shooting [20], [21] or univariate FDTD. Solution in the time do-
main makes it possible to use nonuniform time-steps and hence
to capture the effects of strong nonlinearities efficiently. The
differentiation operator is discretized using a numerical integra-
tion scheme. This results in an inner system of frequency-do-
main equations that are solved by harmonic balance. An alter-
native method using shooting/FDTD in the inner loop and har-
monic balance in the outer can also be derived, using the func-
tion-space variable concept of Section V-B.

E. Unifying Aspects of the MPDE

A pleasing feature of the MPDE is that, in addition to gen-
erating the new methods above, it also provides a framework
for unifying previous methods for solving multirate circuits.
Multi-tone harmonic balance has already been shown to be the
result of expressing the MPDE in multidimensional Fourier se-
ries [7]. Previous envelope methods are also easily derived from
the MPDE. For example, (29) can be solved as an initial value
problem rather than with periodic BCs. This results in a simpler
derivation of our previous envelope-following method based on
HB [13], with the further advantage that restrictions on the rel-
ative time-scales of the tones are removed.

The time-frequency methods of Ushida and Chua [14] and
Kundertet al. [15] are also easily visualized using the MPDE
on two time scales. Consider one of the– rectangles shown
in Fig. 13, with the direction of the slower time scale. These
methods rely on a Fourier series assumption along theaxis
to generate constraints between points separated by one period
of the fast time scale. For example, assume that the variation
of the solution along the upper edge of the– rectangle is
captured by a Fourier series with a dc term and one harmonic,
i.e., a total of 3 real numbers. Then, these Fourier coefficients
are uniquely determined by sampling three points, e.g., the set
A, B and C, or the setA′, B′ and C′ in Fig. 13. This leads to
three equations relating the six samples. Three more equations,
relating pairs of samples at (A, A′), (B, B′) and (C, C′), result from
the DAE. By solving the equations together, all six samples can
be determined.

An important difference between MMFT and the methods of
Ushida/Chua and Kundertet al. is in the choice of the pointsA,
A′, B, B′, C, C′, as shown in Fig. 13. The latter two methods are
constrained by the requirement that pairs of points be separated
by one period of the fast time-scale. This corresponds to nonop-
timal sampling along the slow time scale, leading to numerical
ill-conditioning. In the limit, as the ratio of the period to the

period tends to infinity, the equation system grows singular.
This problem is avoided by the MMFT method, which corre-
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TABLE I
CPU TIMES (SPARC 20, 96 MB, SunOS4.1.3)

sponds to using perfectly conditioned, uniform samples along
the axis and enforcing exact equality conditions between the
ends of vertical lines.

VI. SAMPLE APPLICATIONS

In this section, the methods of the previous sections are
applied to power converters, switched-capacitor circuits and
switching mixers. The circuits and waveforms are described in
the following sections. Some CPU times from the new methods
are compared against those from previous methods in Table I.

Speedups of two orders of magnitude are obtained using the
new methods. In addition, while univariate shooting for multi-
rate problems tends to accumulate errors that can lead to gross
inaccuracies, the new methods maintain accuracy maintain ac-
curacy.

A. Rectifier, Quasi-Periodic Simulation with MFDTD

A diode rectifier circuit, powered by a large quasi-periodic
two-tone power source , was simulated for a quasi-periodic
solution using MFDTD. The circuit consisted of a diode fol-
lowed by a parallelRC filter combination. The power source
was a train of fast pulses whose duty cycle was modulated at a
much slower rate. Using pulse ( , duty) to describe each
pulse (shown in Fig. 14 for a duty cycle of 0.3), the excitation

was

pulse

ms s

Two segments of , at widely separated times, are plotted in
Fig. 15, illustrating the variation in duty cycle. The duty-cycle
variation of is more apparent in its bivariate form :

pulse

ms s

form is plotted in Fig. 16. The duty cycle is the extent
of the high region while moving along the direction, varying
sinusoidally with respect to the slow variable.

The bivariate form of the output is shown in Fig. 17.
The low-pass filter has smoothed out the fast variations in the
direction. Since the rectified output depends on the duty cycle on
the input, a slow-scale sinusoidal variation is observed as a func-
tion of . The circuit was also simulated by univariate shooting
for comparison. As shown in Table I, the MFDTD method was
faster by over two orders of magnitude. Plots of the univariate

Fig. 14. Pulse(t; 0:3).

Fig. 15. b(t): detail at widely separated times.

Fig. 16. The bivariate excitation̂b(t ; t ).

Fig. 17. The bivariate solution̂x(t ; t ).

solution are shown in Fig. 18. The waveform obtained by
setting in the bivariate solution is denoted by the
legend “new,” and those from univariate shooting using 20 and
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Fig. 18. Rectifierx(t) slow-scale variation.

Fig. 19. Rectifier output fast-scale variation.

50 time-steps per fast pulse by “ ” and “ ”
respectively. Univariate shooting using 20 time-steps per pulse
accumulated errors that grew to 15% near 0.8 ms, despite
tight local error control. Increasing the number of time-steps
to 50 per pulse reduced the error, but it remained significant
at about 3% (the CPU time in Table I is for this simulation).
MFDTD produced the correct waveform.

The fast-scale detail of near is shown in Fig. 19.
Because of the relatively long time-constant of the smoothing
RC filter, the shape of the ripple is nearly triangular.

B. Rectifier, Envelope Simulation with TD-ENV

The rectifier circuit of the previous simulation, but with a
more abrupt excitation, was simulated for an envelope wave-
form using TD-ENV. In this simulation, the duty cycle of the
excitation switched abruptly between 0.2 and 0.8, instead of
varying slowly as a sinusoid. was given by

pulse pulse

ms s

The bivariate form is shown in Fig. 20.

Fig. 20. b̂(t ; t ): pulse in both variables.

Fig. 21. x̂(t ; t ) for abrupt slow-scale excitation.

Fig. 22. x(t) for abrupt slow-scale excitation.

Fig. 23. Switched capacitor filter.

The bivariate form of the output is shown in Fig. 21. The
variation in has been smoothed out as before, but the variation
in now resembles a pulse, as expected.

The univariate solution is plotted in Fig. 22. A 3% inaccuracy
from univariate shooting with 50 steps per fast pulse is again
evident.

C. Switched-Capacitor Filter with MFDTD

MFDTD was used to simulate a one-pole switched-capacitor
filter, depicted in Fig. 23. If the switching is much faster than
the variation of the input signal, then the switch andact like
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Fig. 24. SC filter input and output.

Fig. 25. SC filter input and output.

a resistor, which, together with the capacitor, constitute the
filter. The effective value of the switched-capacitor resistor is

, where is the period of the switch control. The values
of the switch capacitance and filter capacitor were 50 nF
and 5 F, respectively.

The input to the circuit was a sinusoid with 10 ms period
(100 Hz), and the switching period was s (100 kHz).
The slow time scale was taken to be, and the fast time-scale
was . Bivariate forms of the input and output voltages are
both shown in Fig. 24 (the larger waveform is the input). The

Fig. 26. Mixed frequency-time output: first harmonic component.

variation along the slow time scale is apparent; note the absence
of fast-time-scale variation at the output, indicating that the
switching frequency has been eliminated by filtering (the input,
by definition, has no fast variation). Note, also the phase shift
of the output with respect to the input. In contrast to the filtered
output, the switches exhibit strong fast scale variation, since
rapid switching is key to the proper operation of the circuit. The
bivariate form of the voltage at the one of the switch capacitors
is shown in Fig. 25. Note the variation along both slow and
fast time-scales. The slow time-scale variation is similar to the
input, as expected, but the fast time-scale variation displays
charging/discharging behavior associated with internal losses
in the switch, due to the relatively fast switching speed.

The second harmonic distortion, obtained by Fourier analysis
of the output voltage along thedirection, was 28 dB below the
fundmental.

D. Mixer Simulation Using MMFT

A double-balanced switching mixer and filter circuit was sim-
ulated for intermodulation distortion using the MMFT method.
The RF input to the mixer was a 100 kHz sinusoid with ampli-
tude 100 mV; this sent it into a mildly nonlinear regime. The
LO input was a square wave of large amplitude (1 V), which
switched the mixer on and off at a fast rate (900 MHz).

Three harmonics were taken in the RF tone 100 kHz
(corresponding to the variable of Section V-D). The LO tone
at 900 MHz was handled by shooting in thevariable.
The output of the algorithm is a set of time-varying harmonics
that are periodic with period . The first harmonic is
shown in Fig. 26. This plot contains information about all mix
components of the form , i.e., the frequencies 900.1
MHz, 1800.1 MHz, etc. The main mix component of interest,
900.1 MHz, is found by taking the first Fourier component of
the waveform in Fig. 26. This has an amplitude of 60 mV.
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Fig. 27. Mixed frequency-time output: third harmonic component.

Fig. 28. Mixer output from univariate shooting.

Fig. 29. PWM DC–DC converter.

The third harmonic is shown in Fig. 27. It contains informa-
tion about the mixes , i.e., the frequencies 900.3 MHz,
1800.3 MHz, etc. The amplitude of the 900.3 MHz component
can be seen to be about 1.1 mV. Hence, the distortion introduced
by the mixer is about 35 dB below the desired signal.

The circuit was also simulated by univariate shooting for
comparison. The output from univariate shooting is shown in
Fig. 28. This run, using 50 steps per fast period, took almost
300 times as long as the new algorithm (see Table I).

Fig. 30. PWM DC–DC converter: input and output voltages.

E. PWM-Feedback DC–DC Converter with TD-ENV

A boost-type dc–dc converter with PWM feedback for output
voltage stabilization was simulated by TD-ENV. A simplified
diagram of the circuit is shown in Fig. 29. When the switch
closes, the inductor current rises linearly until the switch opens,
after which the current is diverted through the diode into the load
resistor. The peak current of the inductor is related to the amount
of time the switch is closed, i.e., the duty cycle of the switch
control. This current determines the output voltage at node 3.

The negative feedback loop operates by comparing the output
voltage at node 3 with a reference to obtain an error voltage,
which is used to control the duty cycle of the control to the
switch. If the output voltage is lower than the reference, the duty
cycle is increased, and vice-versa. For the simulation, the input
power source E was centered at 1.4 V, but with a ripple of 0.8 V
at 100 Hz added. The reference voltage for the output was also
set at 1.4V. The switching rate was 100 kHz. The bivariate forms
of the input and output voltages are shown in Fig. 30; the large
changes are for the input waveform, and the small ones for the
regulated output. Note the relative absence of fast scale variation
(i.e., along the axis) of the output, indicating low ripple. The
current through the inductor is shown in Fig. 32. This waveform
provides a useful visualization of the operation of the converter.
Note the linear charging of the inductor and the somewhat non-
linear discharge. Note also that the converter is operating in con-
tinuous mode, for the current does not ever reach zero despite
the fluctuations of the source battery. When the load is increased
(not pictured), the inductor discharges completely for part of the
fast time scale.

The dynamics of the feedback mechanism are also evident in
the shape of the control voltage to the switch, shown in Fig. 31.
This voltage is a fast pulse train with varying duty cycle. The
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Fig. 31. PWM dc–dc converter: switch control.

Fig. 32. PWM dc–dc converter: inductor current.

pulse nature of the signal is evident from the variation in the
direction. The change of the duty cycle along the slow time scale
can also be readily seen. This is due to feedback, which modifies
the pulse width to keep the output voltage stable despite large
input fluctuations.

VII. CONCLUSION

A powerful approach for analyzing strongly nonlinear mul-
tirate circuits has been presented. The approach uses multiple
time variables to describe multirate behavior, leading to a PDE
called the MPDE. Applying appropriate BCs to the MPDE leads
to quasi-periodic and envelope-modulated solutions. Efficiency
is achieved without compromising accuracy by using adaptive
time-domain numerical techniques to solve the MPDE numeri-
cally. Three purely time-domain methods resulting from the ap-
proach are useful for strongly nonlinear circuits in general, while
a fourth mixed frequency-time method is especially suitable for
circuits with a mix of strong and weak nonlinearities. The new
techniques can solve a variety of circuits that are hard to simu-
late with previous techniques. Presenting the results in three-di-
mensional form is useful for visualizing waveforms with widely
separated time scales. Applications to switched-capacitor filters,
switching mixers and power converters have been presented.

APPENDIX

PROOFS OFTHEOREMS ANDLEMMAS

Proof of Theorem 1 (MPDE-DAE Relation):Since

[by (6)]

Proof of Lemma 1:Being -periodic, can
be expanded in a multidimensional Fourier series

is obtained in quasi-periodic form by substituting

Proof of Lemma 2:Since is quasi-periodic, it can be
expressed as
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The following definition for satisfies
:

Proof of Theorem 3 (MPDE Necessity Condition):Since
and are quasi-periodic, they can be expressed in the

form

Our goal is to construct multivariate versions of these signals
such that the multivariate versions satisfy the MPDE. This
is straightforward when are mutually incom-
mensurate, but requires a little more work when they are
commensurately related. We start by defining
and by

Note, that ,
. Now define and by

Noting that and
and inserting into

(5), the following equality is obtained:

When are pairwise incommensurate, each term
in the above summation can be equated to zero. In general, how-
ever, the functions can be linearly de-
pendent, so we have to generalize this idea. We will proceed by
collecting together terms in the summation that are linearly de-
pendent. More precisely, if are mutually commen-
surate, then the map

(i.e., the map from the indices to the frequencies) is many-to-one
instead of one-to-one. Denote the range ofby , consisting
of a countable set of distinct frequencies. For any ,
define to be the set of all indices such that

i.e., . If , are mutually incommen-
surate, then has exactly one member; otherwise, it is a count-
ably infinite set. The important property resulting from this def-
inition is that if , then .

The DAE above can now be rewritten as

By the above construction, we are now guaranteed that the
functions are linearly independent, hence their coeffi-
cients must be zero:

(31)

Equation (31) is equivalent to requiring the DAE to be satis-
fied. The requirement for the MPDE to be satisfied is, however,
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stronger: each term in the summation above must individually
equal zero. In general, this latter condition will not be met by
the and defined above.

We can, however, take advantage of the fact that in the
commensurate case, many (in fact uncountably many) different
choices of multivariate forms for and correspond to the
same univariate function. From among these, we will choose
new multivariate forms for and in such a way that not only
is (31) satisfied, but the stronger condition that each term in the
summation is zero is also satisfied.

We actually keep the samedefined earlier, but make a new
choice for the excitation by defining a new set of quasi-peri-
odic excitation coefficients , and corresponding
excitation , as follows:

(32)

Note, that from definition, satisfy (31), hence
and together satisfy the DAE.

Now, define by

Note, that from this definition, is

Using (31) and (32), this simplifies to

Hence, . Finally, it needs to be

shown that and satisfy the MPDE.
On substituting the expressions for these multivariate functions
into the MPDE, the following equation is obtained:

From the definition of , the coefficients of the
above expression are zero, hence the theorem is proved.

Proof of Theorem 4 (Uniqueness of Envelope):The proof
rests on the fact that the solutions of the MPDE along “diag-
onal” lines in the space are
exactly the solution of the circuit DAE with the initial condi-
tion . This follows from Theorem 1. On the di-
agonal lines passing through each point in the
initial condition region , therefore, the MPDE
has a unique solution, since the DAE has a unique solution with
initial condition . The diagonal lines are illus-
trated for the two-rate case by the shaded area in Fig. 10(a).
Since is periodic with respect to , its value at any
point is equal to that at some point along one of
the diagonal lines above. This is illustrated in Fig. 10(b). Hence

is uniquely specified.
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