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Analyzing Circuits with Widely Separated Time
Scales Using Numerical PDE Methods

Jaijeet Roychowdhury

Abstract—Widely separated time scales arise in many kinds of or more time variables, i.e., anultivariate functionsif a system
circuits, e.g., switched-capacitor filters, mixers, switching power s described with differential-algebraic equations (DAES), using
converters, etc. Numerical solution of such circuits is often difficult, multivariate functions for the unknowns leads naturally to a par-

especially when strong nonlinearities are present. In this paper, we .. . . . ) .
present a mathematical formulation and numerical methods for tial differential equation (PDE) form, which we call theulti-

analyzing a broad class of such circuits or systems. The key idea time Partial Differential Equation (MPDE)By applying time-
is to usemultiple time variables which enable signals with widely domain numerical methods to solve the MPDE directly for the
separated rates of variation to be represented efficiently. This re- multivariate forms of the unknowns, we are able to analyze the
sults in the transformation of differential equation descriptions of combination of strong nonlinearities and multirate signals.

a system to partial differential ones, in effect decoupling different . - : . ;
rates of variation from each other. Numerical methods can then be The immediate advantage of this approach is that it can result

used to solve the partial differential equations (PDEs). In partic- N improvements in simulation speed compared to DAE-based
ular, time-domain methods can be used to handle the hitherto dif- alternatives—this is the main focus in this paper. The uses of the
ficult case of strong nonlinearities together with widely separated MPDE formulation are not, however, limited to numerical ones.
rates of signal variation. We examine methods for obtaining quasi- o axample, multiple time variables can be used to tag different
periodic and envelope solutions, and describe how the PDE for- . . . .

mulation unifies existing techniques for separated-time-constant 'npUtS_symbo“CE}"yj even 'f_ ”Pth'”g is known about the nature
problems. Several applications are described. Significant compu- Of the inputs’ variations. This idea has been used to analyze and

tation and memory savings result from using the new numerical macromodel linear periodic time-varying (LPTV) systems [3].

techniques, which also scale gracefully with problem size. Another use has been for autonomous systems, where the con-
Index Terms—Multitime partial differential equations, widely ~ Cept of instantaneous frequency has been extended to oscillators
separated time scales. with arbitrary responses, and the oscillator equations recast to

include the changing frequency as an explicit variable in the dy-

namical system description [4]. It is possible that further ways

of analyzing dynamical systems, at higher levels of abstraction
ONSIDER a 1-GHz pulse train multiplied with a 1-kHzthan previously possible, may result through use of the multi-
sinusoid, or the same pulse train with the duty cycle afime concept.

each pulse controlled by a slow information signal. These may

be termedmultirate signals i.e., they contain “components” Il. PREVIOUS WORK

that vary at two or more widely separated rates. Such signals . . .
o . . -2 “Awareness of the multiple time approach seems low in the
arise in various physical systems, such as communication . . .
c‘rcwts community, but the concept is not new and has ap-

circuits (e.g., up/down-converters, automatic gain-contrg " . P
circuits), cycle-chopping and switched power convertersarently been rediscovered several times. Atrtificial-time mul-
' Ivariate functions and related PDE forms have been used for

switched-capacitor filters, pulsewidth-modulation circuits, etc. mptotic expansion analysis [5] for decades, though only as
Such systems are typically difficult to analyze using traditionrgflSy b P Y ' 9 y

numerical intearation alaorithms. such as those in proara agalytical conveniences for certain simple, weakly nonlinear
like SPICE [1]9 2] Thg difﬁcult’ stems from the f/)vidgel "harmonic oscillators. Ngoya and Larchevéque [6] appear to have
L y Y beenfirstto recognize the value of multiple time scalesin amore

disparate rates: following fast-varying signal components lon . . .
P 9 ying sig P q%%neral context, and mention their relevance to envelope simu-
a

enough to obtain information about the slowly-varying on tion. Most recently, Brachtendoet al.[7] have used the PDE
is computationally expensive, and can also be inaccura%e ' ' ’

) e X . 8r‘m to obtain a simple and elegant derivation of the multi-tone
Furthermore, if the circuits are strongly nonlinear, specializ

X . .~ harmonic balance method described below.
methods (see Section Il) that can solve linear and mildly . ; .
. L . . . A number of methods exist for numerical analysis of DAE
nonlinear circuits quickly become ineffective.

?ﬁstems with multirate signals. The simplest and most prevalent

In this paper, we present a novel apprpach fpr analyzing Y g., in SPICE [1], [2]) employ time-stepping numerical DAE
problems, using the fact that many multirate signals, especia . . . .
o - ; integration to solve an initial-value problem. As discussed in the

from circuits, can be represented efficiently as functions of two . o X : ;
next section, these have difficulty with multirate signals because
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NJ 07081 USA (e-mail: jaijeet@yahoo.com). Up significantly over the long simulation, even in the presence
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Fig. 2. Example two-tone quasi-periodic sighéd).

Fig. 1. Two-tone input to comparator followed RCfilter.

More effective, though limited largely to weakly nonlinearbm o
systems, is a frequency-domain technique for quasi-perioc
signals known as Harmonic Balance (HB). In multi-tone
harmonic balance (e.g., [8]-[10], [7]), an algebraic syster
of equations in the Fourier coefficients is set up and solve 1e-8
Solving directly for the Fourier coefficients enables HB tc
circumvent the small time-step problem, but also hampers
in situations where waveforms cannot be represented W 3. corresponding two-periodic bivariate fofit, , t.)
few Fourier components, e.g., in strongly nonlinear circuits
containing waveforms with sharp edges and spikes. Anothe
limitation of HB relates to the structure of its Jacobian matrix
which loses block-diagonal dominance as nonlinearities gro’\tK/
strong. Loss of diagonal dominance is significant becaul&
preconditioned iterative linear algebra techniques (e.g., [1

rThe two tones are at frequencigs = 1/77 =1 kHz and

= 1/T> =100 kHz. There are 100 fast-varying cycles of

riod7> =0.01 ms modulated by a slowly-varying sinusoid of

riod7; =1 ms.

[9]), needed for solving large problems, become ineffective ?S:Simulati_ng the circuit_ using numerical integra’Fion _schemes

diagonal dominance is lost. I.e., transient or shooting analysis) would require time-steps
SR?Ced closely enough to represent each fast cydiétjrac-

Envelope-modulated signals can be analyzed using recé Ltelv. If each cvele is sampledaboints. the total number
techniques [12], [13] that formulate the problem as a differentid} .. Y- ycle | pled: points, umoer -
time-steps needed for one period of the slow modulation is

equation in the time-varying Fourier coefficients. Trad't'onacf . .
quation | Ime-varying rour 'c! N (iTl/TQ). To generate Fig. 2, 15 points were used per cycle,

time-stepping techniques are used to solve the dlfferer]tﬁj‘ence the total number of samples was 1500. This number is

equation, resulting in a smaller dimensional quasi-periodic . . :
) . . . .H{oportlonal to the separation between the time scales, and can
system, solved using harmonic balance, at each time-point. beemuch laraer in. e.a.. RF circuit applications
methods have some deficiencies: they are derived by equatmg\| gerin, €.9., R PP L
ow, consider a multi-time representation fbft), con-

the time-varying coefficients of two Fourier expansions, gtructed as follows: for the “slowlv-varvina® parts of the
procedure that is not strictly valid; also, the inner loop of these . " y Y g P -
ression fob(t), ¢ is replaced by ; for the “fast-varying

; ex
m.ethods are based on HB’. henc':e' they share HBs dlsadvant%%c%%& byt,. The resulting function of two variables is denoted
with respect to strong nonlinearities. by it ¢

The nonlinearity limitation of harmonic balance can be par-y (t1, t2)
tially overcome for an important special case of the quasi-peri- R 0 o
odic problem, by using the methods of Chua and Ushida [14] and b(t1, t2) = sin <? tl) sin <? t2> : 2
Kundertet al.[15], [8]. Two relationships are set up and equated ' ?
to form a nonlinear equation system, solving which provides thenote, that(t,, ¢,) is biperiodic i.e., periodic with respect
quasi-periodicresponse. Onerelationshipisobtainedfromatrgiipoth ¢, andt,: b(t, + 11, t» + Ta)= b(t1, t2). The plot
sientsimulation of the circuit ODEs over a few periods of the fagg 3(t1, t5) on the rectangl® < t; < 71,0 < ¢, < Tp
cycle, the other from the variation, over the fast periods, due;to shown in Fig. 3. Becausk is biperiodic, this plot repeats
the slowly varying components of the signal, which are assumggey the rest of the,—t, plane. Note, also thaft(tl, t,) does
to have short Fourier series expansions. This approach has hgsmave many undulations, unlikét) in Fig. 2. Hence it can
usedtoanalyze distortion in switched-capacitor circuits, in whigj, represented using relatively few sample poifig. 3 was

the signal path generates relatively few harmonics. plotted on a uniform 1%15 grid, i.e., 225 samples—far fewer
than the 1500 points for Fig. 2. X
[1l. M ULTILINE REPRESENTATIONS ANDTHEIR BENEFITS Note, further that it is easy to recovéft) from b(t1, t2),

The circuit of Fig. 1 consists of a comparator followed by afimPly by settingt; = ¢, = ¢, and using the fact thdt is
RCfilter. The input to the comparaté(t) (shown in Fig. 2) is Piperiodic. Given any value of, the arguments t6 are given
a simple two-tone quasi-periodic signal given by by #; = ¢ mod T;. For example

N b(1.952 ms) = b(1.952 ms 1.952 ms)
b(t) = sin <ﬁt> sin <72t> ; (T + 0.952 ms, 1957, + 0.002 ms)

=0
Ty =1ms 75 =0.0lms. (1) =0(0.952 ms 0.002 ms).
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Fig. 4. Pathin the,—t- plane.
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Fig. 6. 9(ty1, t2). . . s .
(12, 12) The key to the numerical techniques in this paper is to solve

A o ) . ] for the multivariate forms of all the node voltages and branch
Givenb(t, ta), it is easy to visualize whal(t) looks like. As  cyrrents of a circuit directly. The details are presented in Sec-
t increases from 0, the path given y; = ¢ mod T3} traces tjons |V and V. The basic notion is to rewrite the circuit's equa-
the sawtooth path shown in Fig. 4. By noting hévwehanges  tions in terms of multivariate functions, in effect transforming
as this path is traced, the behaviorigt) can be visualized. e original differential equations into an MPDE. By applying
Variations of the bivariate waveform along the slow and fast ti"lf‘oundary conditions (BCs)to the MPDE and solving it numer-
axes directly reflect the respective components/@), more jca|ly with time-domain or mixed frequency-time methods, the
naturally and conveniently thay(#) itself. ~multivariate solutions are obtained efficiently. If desired, the

The above illustrates two important features: 1) the bivariaigyariate solution of the circuit can be easily computed from
form can require far fewer points to represent numerically thgfe multivariate one; often, however, information of interest can
the original quasi-periodic signal, yet 2) it contains all the infolye gptained directly by inspecting the multivariate solution.

mation needed to recover the original signal completely. This iSgqor example, given the differential equation for the circuit of
true not only for signals with a compact frequency-domain repig. 1

resentation [such &gt) in (1), with only two frequency com-
ponentsf, + fi], but also for those that cannot be represented . by — comp(b(t)) — = 3
efficiently in the frequency domain. For example, consider the &= flw,b) = RC ©)

quasi-periodic digital signal(¢) at the output of the comparator ) i
the corresponding MPDE can be shown to be (see Section V)

1 ifz>0

0 otherwise. or 0% . comp(b(tl, t2)) — 2(t1, t2)

y(t) = comp(b(t)), compz) =2 {
8_t1 8_t2_f($’ b): RC - (4

Representing,(¢) adequately in the frequency domain re-
quires perhaps 625 Fourier coefficients, since at least 25 harThe quasi-periodic steady state of the solutii,, t») is
monics in each tone are needed to represent a square wave regfured by usingiperiodic BCsfor (4), i.e.,2(t; + 11, t2 +
or less accurately. As for the univariate time-domain represen;)— (¢, ¢,). The solutioni(t1, ¢,), obtained using the
tation, more than 400 points are needed, as shown in Fig.nfethods described in Section V, is plotted in Fig. 7. The

However, the bivariate representatigft, , ¢.), given by univariate solutionz(t), generated using(t) = (¢, t), is
. plotted in Fig. 8. It is evident that, for a given accuracy, the
gty t2) = Comp(b(tl, tz)) bivariate form is much more compact than the univariate form.

Moreover, the main features of interest, i.e., the slow scale
and plotted in Fig. 6, requires only about 40 points to represerriation of the rectified voltage, as well as the fast scale ripple,
accurately. As beforey(¢) is easily recoverable by the relationare immediately apparent from the variations along the slow
y(t) = g(t, t) and the biperiodicity of;. and fast time axes of Fig. 7.
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IV. THE MULTITIME PARTIAL DIFFERENTIAL EQUATION Definition 2: A multivariate function (¢, ..., t,n) is
(MPDE) AND ITS PROPERTIES m-periodic (or simply periodio) if ¢(t; + k1T, ..., tm +
In this section, the MPDE is examined (see also [5]—[7]).TI’{%“T"’) = Yt -~ tw) for all real #,, ..., ¢, and all

)ir_wtegerskl, vees k. T, ..., T, are constant real numbers;

connection between the MPDE and the circuit's DAE is ex- . , X R )
plored first and the basic link between their solutions is provefy S eferred to as thperiod of theith tone ofj or simply the

BCs leading to quasi-periodic and envelope-modulated sofif? Period ofg. _ _ _
tions are presented next. Finally, it is shown why FM-type sic};— The following two simple lemmas follow immediately from
nals cannot be handled efficiently by the MPDE. he previous definitions. Lemma 1 shows that given any periodic

We start with a general DAE form of a circuit's equations Multivariate signalj, a quasi-periodic signa) is immediately
obtained by evaluating on a diagonal line. Lemma 2 shows

g(x) = fx) + b(¥). (5) that given any quasi-periodic signgal a periodic multivariate
) ) signaly can be found that satisfies Lemma 1.
All varlable_s (except th_e time) are vector-valued:(¢) are the | ainma 1: I §(t1, ..., tm)ism-periodic, themy(t) = §(t+
unknowns in the circuit (node voltages and branch current },’ ..., t+ cm) is m-tone quasi-periodic for ang, . .., cm.

g the charge terms, and the resistive termsb(t) is the Proof: See the Appendix. -
vector of excitations to the circuit (typically from independent | o.yma 2: Given anym-tone quasi-periodic functiop(t)

voltage/current sources). _ o . __and any constants,. ..., ¢, anm-periodic §(ty. ..., tn)
As discussed in Section lll, if the circuit exhibits multlrate;:an be found that satisfiegt) = 4( + c1 t+ cm)
X — & 2Tttt ey j

behavior, its variables can often be represented efficiently using Proof: See the Appendix -
multiple time variables. If there are separate rates of change, Applying the above lemmas to Theorem 1 results in the fol-

m time-scales are used. Denote the multivariate forms(of lowing theorem and corollary, which establish that amype-

and b(t) by &(t1, ..., tm) and b(¢y, ..., t,,). We proceed . . : : N
by first defining a PDE in these multivariate forms, and therrllOdlc solution of the MPDE generates a corresponding quasi

. . ) . . riodic solution of the circuit's DAEs. Hence, to generate a
showing how solutions of this equation generate solutions %? 9

. ' : duasi-periodic solution, it is sufficient to 1) find a periodjc
(5). First, we define the MPDE corresponding to (5) to be satisfyingh(t +c1, ..., t+cm) = b(¢) and 2) solve the MPDE
9q(Z) 9q(2)

with periodic BCs.

at, T e, F@) 40t tm)  6) Theorem 2 (MPDE Sufficiency Condition)t & is anm-peri-
h d th funct in (5 odic excitation to (6) and anm-periodic solution, thea(t) =
where f andq are the same functions as in (5). i(t +c1, ..., t + ¢n) IS @anm-tone quasi-periodic solution of

We show next that there is a key relation between the MP[& i o L =
and the circuit's DAEs. Theorem 1 states that solutions to tce) undir_:hcen; tone quasi-periodic excitatiob(t) = b(¢ +

circuit's DAEs are available on “diagonal” lines along the™ " L s
MPDE’s multivariate solutions. This is a completely general Corollary 1. Given anm-periodich such thab(#) = b(# +

result; indeed,z(t) or b(¢t) need not exhibit any multirate Oy e t+.c’").’ itis sufﬁmentto find a§olut|orz£~ of the M.PDE.
behavior at all. with m-periodic BCs in order to obtain am-tone quasi-peri-

Theorem 1 (MPDE-DAE Relation)f &(t1, ..., ) odic solutionz(t) = a_c(t +er, ., ?m) of the circuit DAE.
o . : Theorem 2 establishes a one-way link between the MPDE and
and b(t1, ..., tm) satisfy the MPDE in (6), then ) ) o X
DA s DAE formulations, by showing that any periodic solution of the
x(t) = 2(t+er, .., tHey)andb(t) = bt +c, ..., t+cm) MPDE : i neriodi for the DAE. The oth
satisfy the circuit's DAE in (5), for any fixed:, ..., ¢m. directi genera eﬁ qquasrpeng Ic one orh N h .'f he other
Proof: See the Appendix. irection is equally important, because it shows that if the orig-

To solve the MPDE, it is necessary to first specify BCs. Dnj_nal problem has a quasi-periodic solution, then the MPDE also

ferent BCs lead to quasi-periodic and envelope-modulated gg_s a corresponding solution; hence no solution of the original
lutions system is lost by moving to the MPDE formulation. This is es-

tablished by the following theorem.
A. Quasi-Periodic Signals Theorem 3 (MPDE Necessity Conditionlf.a quasi-periodic

A signal is quasi-periodic if it satisfies the following defini-somﬂonx(t) of the circuit DAE (5) exists for a quasi-periodic

tion [16]. eX(.:itation_b(t),A then for anyey, ces O there existm-peri-
Definition 1: y(¢) is m-tone quasi-periodidf it can be ex- odic functionsh(ty, ..., tm) aAnda:(tl, .-+ tn) salisfying the
pressed in the form MPDE (6) such thatz(t) = #(t + c1, ..., t + cm), b(t) =
bt+ci, ..., t+cm).
y(t) = Z Y(iy, ..o m) Proof: See the Appendix. [
i, The existence or uniqueness of a solution to the MPDE with
. i . periodic BCs cannot, in general, be guaranteed, just as the exis-
- exp <J27f <ﬁ + 4+ Tm) t) tence/uniqueness of quasi-periodic solutions for the circuit DAE

cannot be guaranteed. This is easily verified by considering the
whereY (i4, ..., i,,) are real- or complex-valued constants. equation: = 0, which has an infinite number of (constant) pe-

Quasi-periodicity for univariate signals is closely related toodic solutions, and the equatian= 1 + cos(t), which has no
periodicity for multivariate signals. quasi-periodic solutions at all.
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- Proof: See the Appendix. ]
j'\\\ ///;\} Although themultivariate envelope solution is unique for a
Peodicly

condiion ,’ given initial condition on the; = 0 line, there exist an infinite

,ﬁﬁ T

Ta

t'-.

number of possible initial conditions that all generate exactly
the sameunivariate solution. This is illustrated in Fig. 10(b).
The univariate solution along tlie = ¢ line, for example, can

be shown to be determined only by the value of the initial condi-
tion att, = 0. The initial condition at other values of [e.g., at

(t1 =0, ty = T»/2), as illustrated] makes no difference to the
solution along this line. For numerical efficiency, it is desirable
to choose an initial condition that leads to a multivariate solution
A that is smooth, or otherwise easy to represent. In our numerical
methods, we set the initial condition to be a quasi-periodic solu-
tion of the circuit at; = 0; the envelope solution then changes
gradually as a function of;, and satisfactory efficiency is ob-
tained.

bo o = w,

Fig. 9. Envelope BCs.

1 — C. Frequency-Modulated (FM) Signals

The efficiency of numerical methods relies on the multi-time

B
" =T —7 i ~7 representations admitting of a far more compact description
} O p s e ! than the traditional (single-time) form. While this is so for
;) (/ . 4 ' y ’ ‘ (/ ! /’,’ a large class of signals, such as those shown above, it is not
Vd 1 - v YV 7 universally true. Chaotic waveforms, for example, cannot be
ok 4 4 i iz represented compactly in any known form. More importantly,

|

from a practical standpoint, FM signals are not compact in the
simple multivariate representations presented above; hence the
numerical techniques presented in this paper are not useful for
circuits with FM. In this section, we illustrate the problem; a
solution is outlined elsewhere [4].

The multivariate form of aenvelope-modulatear envelope  FM refers to a class of multirate signals in which the period
signal withm — 1 periodic components can be defined as  of a rapidly-varying, locally-periodic waveform changes slowly.
FM can be generated in forced oscillators such as voltage-con-

Fig. 10. Uniqueness of envelope solution.

B. Envelope-Modulated Signals

Bt b2, - tn) trolled oscillators (VCOs), and is of greatimportance in commu-
= Z Xiy i (1) nications. FM is qualitatively different from the multirate sig-
W2, ey i nals encountered so far in this paper, because unlike the exam-
. 2 . tm ples in Figs. 3, 6 and 7, naive multi-time representations of FM
"exp <j27r <12 T, T T_m>> () have many undulations are not easy to sample efficiently. We il-

) S ) lustrate the difficulty using the following prototypical FM signal
& is periodic with respect to each of its arguments exceept

which is, in practical applications, the variable with the slowest 2(t) = cos(wat + k cos(wit))
rate. The univariate signal is therefore in the form of a Fourier
; o : . where
series with time-varying coefficients (the envelopes). 9 9
Envelope solutions of the form of (7) correspond to a combi- WL = W2 = 11> 1o, (8)
1 2

nation of initial and periodic BCs for the MPDE, illustrated for

the two-rate case in Fig. 9. More precisely, the requirements a(&iyariate form can be defined as follows:
that: 1) (0, 2, ..., t,,) is specified, and 2} is T;-periodic

with respect to each argumeft Given these conditions, the

following theorem shows that the envelope solution is unique. I(t1, t2) = cos(watz + k cos(wity)),

Theorem 4 (Uniqueness of Envelopé):the DAE (5) has with
a unique solution given any initial condition, the solution 2(t) =ity ta). Q)
Z(t1, ..., t,y) of the MPDE is also unique, given the following

mixed initial and periodic BCs
Note, thati is (T}, 1z)-periodic, hence:(t) is (11, T>)-quasi-
Z(tr, to+Toy ooyt +Tom) =8(t1, .o, tm) periodic.
20, ta, ooy tm) =h(tas ooy t) Z(t1, t2) is illustrated in Fig. 11. Note that & > 2, i.e.,
k = 27m for some large integen, thenz(¢1, ¢-) will undergo
where i is any given initial-condition function, defined onaboutm oscillations as a function af, over one period. In
12,00, ;). practice k is often of the order of; >> 2, hence this number
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Now, expand the partial differentiation terms of (10) using (11)

9t 195 (t b
8t1 o Tl da Tl’ Tg(tl)

\\A\\\\\\\\\\ ¥
ORI
§§&&‘ W

secular term

R ,—/‘\
LYt e Nt dD
ab \T, To(t)) T3ty dt, "
Fig. 11. Bivariate representation of FM signal. @ _ 1 @ <t_1 ta ) (13)
Ity To(ty) ob \T1" To(t) )’

Note, that (12) contains a so-calls€écular terni5], i.e., a term
that increases linearly witky, if 7%(¢1) is not a constant. Note
further that all other terms of (10) are of the form of (11), i.e.,
periodic, whereas the secular term increases unboundedly with
t2. Therefore, no solution of the form of (11) can exist, unless
T5»(t1) isindependent of; (i.e., rectangular boundaries). A sim-
ilar argument can be used to establish that even the DAE of the
forced oscillator cannot admit solutions of the tyige, ¢), with
Z in the form (11). This conclusion is also physically reason-
able, for the secular term would imply that the instantaneous
frequency of the signal grows unboundedly, which is unphys-
ical.
Fig. 12. Moving boundaries cannot generate steady-state solutions. Despite the negative result above, FM signals can in fact be
represented compactly with multiple times, leading to efficient

o ] _methods for solving forced oscillators [4].
of oscillations can be very large. Therefore, it becomes diffi-

cultto represent efficiently by sampling on a two-dimensional
grid.

FM is usually thought of as a slow change in the frequency of
afast-varying signal. If the frequency of a periodic componentis |n this section, four numerical methods are presented for
thought of as the inverse of the corresponding time-period, itdg|ving the MPDE. Three of the methods [multivariate FDTD
natural to hope that FM solutions can be captured by periodic $tFDTD), hierarchical shooting (HS), and time-domain
lutions on nonrectangular regions with nonparallel boundarigselope (TD-ENV)] are set purely in the time domain. The
The concept is illustrated in Fig. 12, where the valu&'ofthe  mytivariate mixed frequency-time (MMFT) method is used to
fast time-period) is no longer constant but varies alongVe  solve for some of the dimensions of the MPDE in the frequency
now show, however, that the concept of varying time-period {fmain and others in the time domain.
not useful for capturing FM, by proving the fact tmanparallel  The purely time domain methods presented here are suit-
boundary edges cannot generate steady-state solutiensiei- - aple for signals whose every component is influenced by strong
ther the MPDE nor the underlying ODE can have quasi-periodignlinearities. If some signal paths are mildly nonlinear while

2 —=>

>

V. NUMERICAL SOLUTION OF THE MPDE

solutions derived from nonparallel boundaries. others are strongly nonlinear, as is the case in some types of
For simplicity, assume a two-rate state-equation form for tigmmunication circuits (e.g., switching mixers, switched-ca-
MPDE of a forced oscillator pacitor circuits), the mixed frequency-time method can be more

efficient because it uses a short Fourier series for the mildly non-
linear components. For efficient sampling of the multivariate

or 0% 2
= f(&) + b(ty, t2). (10) waveforms, adaptively generated nonuniform grids can be used.

o ot

Assume that, is the slow time scale; is the fast time scale, A. The MFDTD Method

a_rlwldtthalil\1||s mdepend(;r]wt tofa as |streasonatl,ale f?r adf?rced 95" | this method, the MPDE (6) is solved on a grid in the
cl Iat(')r. ow, assume ba (;S Sys (ikn;g_an t? Solve Ot: pt?:'O%C, ..., tm Space. Let the grid be the set of poifits, ..., t,},
SoUtions on a moving boundaryin rection, given by e - nere eactt; = (t1,, .-, tm, ). The partial differentiation op-

scalar functiorily(t,), which is 73 -periodic (see Fig. 12). This o615 of the MPDE are discretized and the MPDE collocated
is equivalent to assuming the solution to be in the form on this grid. This leads to a set of nonlinear algebraic equations
in the unknowns{z(#1), ., #(¢,)}. The nonlinear equations
are solved by numerically, using, e.g., Newton—Raphson or
continuation methods.

“ ftL to
Hor, b2) = y(ﬁ To(t)

) , yis (1, 1)-periodic (11)
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For concreteness, consider the two-rate case. The MPDE stom applying the BCsp; + ns unknowns are eliminated from
plifies to (16) and a system of equations inn unknowns is obtained.
Denote this system by
dq(2) | 9q(2)

+ = f(&) +b(t1, t 14
with periodic BCsi(t; + 11, t2 +13) = 2(¢1, t2). Consider a where
uniform grid {¢; ; } of sizen; x n, on the rectangl€o, 73] x F=[F1,.... i, Fo1,..., Fp 1, ..., Fn“nQ]T
[0, TQ] HereEiJ = (tli, tgj), ty, = (L — 1)]7,1 and tgj = X = [2(F 5(F S(F S(F T
(G—Dha1 < i <my,1<j < my hy =Tifn and (81,2, - 8 na)s 3E20), - B, ne)]
he = T3 /n, are the grid spacings in thg and¢, directions (18)
respectively. _ _
Discretizing the differentiation operators using (for example) Equation (18) can now be solved numerically by any
the Backward Euler rule leads to numerical method for nonlinear equation systems, e.g.,
- - Newton—Raphson or continuation [17]. Typically, nonlinear
dq(z) F) = q(£(t:;)) — q (&(Fi-1,5)) solution algorithms require the repeated solution of linear
at, hy systems involving the Jacobian matrix Bf-). This Jacobian
N N “ T has the block structure
dq(2) F ) =2 (2(i ) — q (2(Fi-1)) (15)
oty "7 ha D+ 1L —Ln,
. . L - —1L1 Do+ Lo
Collocating the MPDE at the grid poin{s; ;} leads ton = or _L,
n1 X ne equations X
Gy = G-y Gy — Qg1 g —Lp,—1 Dy, + Ly,.
F ;= —fi,;—bi,; =0 ' ' '
I hl + h2 f:J I (19)

Vie {1, ceey 711} Vi€ {1, . 712}
B R B R . Each block is itself a2 x no block-matrix, given by (20) and
G,y =a(8(t,5), fig=F(@8E)) by =b;). (21), shown at the bottom of the page. In (1), = ¢'(2(%:,,))
(16) andf! ; = f'(i(%;, ;).
In the above, a uniform grid was assumed for simplicity. In
Then equations are, however, in a greater number of unknowipsactice, the grid is nonuniform, built by starting from a coarse
n1+ny extraunknowndgz(t_, )} and{z(¢; 1)} resultfrom grid and adapting to the shape of the waveforms for higher ac-

discretizing the differentiation operators on the= 0 and¢, = curacy and efficiency.
0 lines respectively. These unknowns are eliminated using the?F'/3.X is evidently a sparse matrix, hence matrix-vector
biperiodic BCs of the MPDE products with it can be performed cheaply. This makes itera-

tive linear techniques (e.g., [18], [11], [9], [19]) attractive for
&(ti,—1) = 2(ti noo1) #(t_1,;) = &(tn,—1,5)- (17) solving linear systems involving the Jacobian. In this context,

~ , -
4,1 , i
< ]7,2 + fz’1> ]7,2
/ /
;1 G2 ,
]7,2 < ]7,2 + fz’2>
D; = K (20)
]7,2
/ /
9 no—1 i no ,
e cLAC T
L ha < ho fz’nz J
qg,l
q; 2
1 v /

Li=— ;.3 (21)

!
qi,nz
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diagonal dominance characteristics of the Jacobian are usefsing (for example) the Newton—Raphson method. In classical
for effective preconditioning. For uniform gridding of the scalashooting, the Jacobian of the equation corresponding to (23) is
case, withg linear, the Jacobian is diagonally dominantfif a matrix. The Jacobian of (24), however, is not a simple matrix;
has the same sign a§ as is the case for stable circuits. When rather, it is a linear operator on the space of vector-valued func-
andq are vector functions, block-diagonal dominance (under tiens oft,. Further, each evaluation of the left-hand-side of (24)
Frobenius norm) holds for line&(-) and uniform grids. Even involves an initial-value solution of (23). This is performed by
in circuits with nonlinearg(-) and nonuniform grids for cap- discretizing (23) using (for example) Backward Euler

turing highly nonlinear behavior, diagonal and lower triangular

preconditioners are much more effective than for harmonic bal- Q(X(t1,)) — Q(X(t1, )

ance, in which diagonal dominance is lost as the nonlinearities t, —t
grow stronger.

i—1

= F(X(t)) + B(t,) — P [Q(X(#1,))]  (29)
B. HS

The two commonly used methods for finding periodic steadyd solving for the unknows¥ (z,, ) (i.e., X' at the current time-
states of one-tone circuits are shooting and harmonic balance?@int ). Note, that (25) is itself a differential equation #p,
a sense, the two methods are symmetric, operating in dual §5Ce it can be rewritten as
mains with complementary advantages and disadvantages. Yet
there remains an asymmetry between them: while HB is easily dQ(X (t1.,)) —_ Q(X(t1,)) - QX (t, 1))
extended to more than one tone, the same is not true of shooting. dta t =t
This imbalance.can be.redresse':d in a'naturall manner u§ing the + F(X(t1,)) + B(t,). (26)
MPDE formulation, which permits a hierarchical extension of

the classical shooting algorithm for multiple tones. In this seg- . . .
tion, this scheme, which we call Hierarchical Shooting (HS), Equatlon (26) can be solved using shooting (or another method,

; €.9., univariate FDTD or harmonic balance}inbut in a lower
outlined.

The key to this method is to view the MPDE as an Ordinadmensmn. This “inner loop” solution is performed for each

r H H H “ ”
differential equation irfunction spacevariables. For concrete- P(m:r;sfgvg‘nige; d(')Ti?j;?cﬂ;ctgf s(;]létstrirl]oogvgl; (rznggi tivariate
ness, consider again the two-time MPDE of (14) 9 9

FDTD is that the size of the linear systems that need to be

solved is smaller, by the number of points in thedimension.

= F(2) + b(ty, t2). (22) In other words, whereas the size of the Jacobian matrix for
multivariate FDTD wasknins (K = circuit size), that for

. R hierarchical shooting i¢n.. This leads to memory savings,

In (22), the variablesi, ¢, f and b are all vector-valued p ¢ can also lead to more computation compared to MFDTD,

functions of two variables, andt,, i.e., they are maps from yenending on how many shooting iterations are needed.

R? — R*, wherek is the size of the circuit. However, theycijrcuits with slowly dying oscillations (e.g., high- circuits)

can each be also regarded as functionssihglevariable with - sfien require many shooting iterations. The grid in hierarchical

values that are vector-valuéahctions i.e., they are maps from gpqoting is induced naturally by the time-step control of the

R = {h(-): R — R*}. LetQ(t1), X(t1), F(t1) andB(t1)  transient analysis algorithm, and explicit gridding algorithms

be functions oft;, with values that are functions (8%), i.e., zre not needed.

q(t1, ta), &(t1, t2), f(t1, t2) and b(ty, t2) respectively (the

function-valued variabled” and X should not be confused ¢c. The TD-ENV Method

with the vector-valued ones of the previous section). In other

words, the value of, e.g)(*1), for a fixed?s, equals thentire useful in their own right for envelope following. Given an ini-

functiong(t, -). . - . -

The MPDE can nen b witen formly s DAE n fncly 09100 uncion specied o, (23) cn e sched
tion-valued variables, using operator notation enforced. On discretization, (25) results, which is solved for a
periodic solution irés using (26). Any method can be used for
=F(X)+ B(t1) — D, [Q(X)] (23) this inner loop; in particular, for strongly nonlinear problems,
time-domain methods like shooting or FDTD can be used. This
constitutes a purely time-domain algorithm for multi-tone enve-

lope following.

0(@) , 94(d)
oty Jto

The initial-value solutions encountered in HS, i.e., (23), are

dQ(X)
dtq

D, is an operator that differentiates the function {gfthat it
operates on.
The methodology of shooting can now be applied to (2:% The MMET M
= : . . thod
Let (X, t) be the “state-transition function” of the DAE, i.e., © etho

the response of (23) at tinteto an initial condition function ~ Sincet(ty, ..., tm) andb(ty, .. ., tn) arem-periodic, they
Xo = X(0) imposed at; = 0. Shooting consists of solving €an be expressed as Fourier series in each variabifehe cir-
the equation cuit is such that some of the variables have relatively few signif-

icant Fourier components (as in, e.g., switched-capacitor filters
X, T1)-X=0 (24) and switching mixers), then it can be more efficient to solve the
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Fig. 13. Different MFT methods.

mixed frequency-time system obtained by taking a Fourier s&hooting [20], [21] or univariate FDTD. Solution in the time do-
ries expansion of the MPDE in those variables. The two-tinmeain makes it possible to use nonuniform time-steps and hence
case is used again for exposition. Equation (14) is rewritten @scapture the effects of strong nonlinearities efficiently. The

a Fourier series imy:

M M

Z ijw1Qi(ta)e 1t 4 Z Mezjwltl

) ) dts
i=—M i=—M

M

M
= Z Fy(tg)e ™ + Z Bi(ty)et (27)

1=—M 1=—M
where
J = V-1
w1 = 27T/T1;

Q., I;, B; Fourier components int; of ¢(&(t1, t2)),

f(&(t1, t2)) andb(ty, £,), respectively;
M (small) number of significant harmonics.

Since the functiong”’«**1 are linearly independent, the Fourie

components in (27) can be equated

dQ;(t2)
Tt

= F;(t2) + B;i(t2),
ie{-M,...,M}

ijuw1Qi(t2) +

(28) can be rewritten in vector form

dQ(t g — —
%22) = —jQ(t2) + F(t2) + B(t2)
where
M
Ql =w1 0
—-M
Qum Iy By
Q=| Q |, F=| Fo |, B=| By
Q—/\/f F,]w B,]w

differentiation operator is discretized using a numerical integra-

tion scheme. This results in an inner system of frequency-do-
main equations that are solved by harmonic balance. An alter-
native method using shooting/FDTD in the inner loop and har-

monic balance in the outer can also be derived, using the func-
tion-space variable concept of Section V-B.

E. Unifying Aspects of the MPDE

A pleasing feature of the MPDE is that, in addition to gen-
erating the new methods above, it also provides a framework
for unifying previous methods for solving multirate circuits.
Multi-tone harmonic balance has already been shown to be the
result of expressing the MPDE in multidimensional Fourier se-
ries [7]. Previous envelope methods are also easily derived from
IIhe MPDE. For example, (29) can be solved as an initial value
problem rather than with periodic BCs. This results in a simpler
derivation of our previous envelope-following method based on
HB [13], with the further advantage that restrictions on the rel-
ative time-scales of the tones are removed.

The time-frequency methods of Ushida and Chua [14] and
Kundertet al. [15] are also easily visualized using the MPDE
on two time scales. Consider one of thet, rectangles shown
in Fig. 13, with¢; the direction of the slower time scale. These
methods rely on a Fourier series assumption along theis
to generate constraints between points separated by one period
of the fast time scale. For example, assume that the variation
of the solution along the upper edge of thet, rectangle is
captured by a Fourier series with a dc term and one harmonic,
i.e., a total of 3 real numbers. Then, these Fourier coefficients
are uniquely determined by sampling three points, e.g., the set
A, B andc, or the seta’, B' andc' in Fig. 13. This leads to
three equations relating the six samples. Three more equations,
relating pairs of samples at,(A’), (B, B") and ¢, C'), result from
the DAE. By solving the equations together, all six samples can
be determined.

An important difference between MMFT and the methods of
Ushida/Chua and Kundegt al.is in the choice of the points,

A', B, B', C, C, as shown in Fig. 13. The latter two methods are
constrained by the requirement that pairs of points be separated
by one period of the fast time-scale. This corresponds to nonop-
timal sampling along the slow time scale, leading to numerical
ill-conditioning. In the limit, as the ratio of the period to the

Equation (29), being a vector DAE, is solved for a periodit; period tends to infinity, the equation system grows singular.
solution by existing time-domain methods such as univariatéis problem is avoided by the MMFT method, which corre-
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TABLE | ¥
CPU TiMES (SPARC 20, 96 MB, Sun0S4.1.3)
N— New Univariate
Circuit method shooting Speedup
pulse

rectifier, MFDTD 40s 1h 21m 121.5
rectifier, HS 1m 09s 1h 36m 83.47
mixer, MMFT 25s 1h 52m 250.8

o 1
sponds to using perfectly conditioned, uniform samples along
thet; axis and enforcing exact equality conditions between tié. 14. Puls¢t, 0.3).

ends of vertical lines. .
’ AW

VI. SAMPLE APPLICATIONS

In this section, the methods of the previous sections are
applied to power converters, switched-capacitor circuits and ®
switching mixers. The circuits and waveforms are described in
the following sections. Some CPU times from the new methods

are compared against those from previous methods in Table I. | ) 1
Speedups of two orders of magnitude are obtained using the (:_0.000&0002502 0.0002504 ;0.0002506 0.0002508 0.000251
new methods. In addition, while univariate shooting for multi- N N N N ﬂ TN N0 0 1

rate problems tends to accumulate errors that can lead to gross
inaccuracies, the new methods maintain accuracy maintain ac-
curacy. b

A. Rectifier, Quasi-Periodic Simulation with MFDTD

A diode rectifier circuit, powered by a large quasi-periodic
two-tone power sourcit), was simulated for a quasi-periodic 05.60075
solution using MFDTD. The circuit consisted of a diode fol-
lowed by a paralleRC filter combination. The power sourceFig. 15. b(?): detail at widely separated times.
was a train of fast pulses whose duty cycle was modulated at a
much slower rate. Using pulsé&/(.1 u, duty) to describe each
pulse (shown in Fig. 14 for a duty cycle of 0.3), the excitatio

b(t) was
t 27t
=pulse| —, 0.2+ 0.3sin | — o
b(t) puse< 2,0 +03s1n< 1)),
0.4

t 0.000751

T =1ms 15 =0.1us.

Two segments of(t), at widely separated times, are plotted it
Fig. 15, illustrating the variation in duty cycle. The duty-cycle o o
variation ofb(¢) is more apparent in its bivariate forbte,, t,): 719- 16. The bivariate excitatiob(ts, ).

A t 27t
b(ty,1t2) :pulse(i, 0.2 4 0.3sin < ;1>> ’

Ti=1ms 15 =0.1us T
N =hak
b(t1, t2) form is plotted in Fig. 16. The duty cycle is the exten  a.2
of the high region while moving along the direction, varying ~ **"
sinusoidally with respect to the slow variable

The bivariate formz of the outputz(¢) is shown in Fig. 17.

The low-pass filter has smoothed out the fast variations ingthe
direction. Since the rectified output depends on the duty cycle Big. 17. The bivariate solutiof(t+, t-).
the input, a slow-scale sinusoidal variation is observed as a func-
tion of ¢;. The circuit was also simulated by univariate shootingolutionz(¢) are shown in Fig. 18. The waveform obtained by
for comparison. As shown in Table I, the MFDTD method wasetting?; = ¢> = ¢ in the bivariate solution is denoted by the
faster by over two orders of magnitude. Plots of the univariakegend “new,” and those from univariate shooting using 20 and
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Fig. 20. b(t1, t): pulse in both variables.
Fig. 18. Rectifierz(t) slow-scale variation.
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Fig. 19. Rectifier output fast-scale variation. Fig. 22. (1) for abrupt slow-scale excitation

50 time-steps per fast pulse by = 72/20” and “h = T2/50" Vout
respectively. Univariate shooting using 20 time-steps per pulse

accumulated errors that grew to 15% néar0.8 ms, despite Vin

tight local error control. Increasing the number of time-steps —1

to 50 per pulse reduced the error, but it remained significant CE_ — C1

at about 3% (the CPU time in Table | is for this simulation).
MFDTD produced the correct waveform.

The fast-scale detail of(¢) neart = 0 is shown in Fig. 19.
Because of the relatively long time-constant of the smoothing
RCfilter, the shape of the ripple is nearly triangular.

Fig. 23. Switched capacitor filter.

B. Rectifier, Envelope Simulation with TD-ENV

The rectifier circuit of the previous simulation, but with a The bivariate formz of the output is shown in Fig. 21. The

more abrunt excitation. was simulated for an envelope WaVva}riation int> has been smoothed out as before, but the variation
form usinngD ENV. In,this simulation, the duty cyclepof theIﬁ f1 now resembles a pulse, as expected.

L o : : . The univari lution is pl in Fig. 22. A3%in r
excitation switched abruptly between 0.2 and 0.8, instead f(r)f e univariate solutionis plotted g 3% inaccuracy

varying slowly as a sinusoid(t) was given by om univariate shooting with 50 steps per fast pulse is again

evident.
t t
b(t) =pulse ' 0.2+ 0.6 pulse 7)) C. Switched-Capacitor Filter with MEDTD
T1=1ms 13 =0.1ps MFDTD was used to simulate a one-pole switched-capacitor

A filter, depicted in Fig. 23. If the switching is much faster than
The bivariate formb(¢,, ¢2) is shown in Fig. 20. the variation of the input signal, then the switch aridact like
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Fig. 26. Mixed frequency-time output: first harmonic component.

variation along the slow time scale is apparent; note the absence
of fast-time-scale variation at the output, indicating that the
switching frequency has been eliminated by filtering (the input,
by definition, has no fast variation). Note, also the phase shift
of the output with respect to the input. In contrast to the filtered
output, the switches exhibit strong fast scale variation, since
rapid switching is key to the proper operation of the circuit. The
bivariate form of the voltage at the one of the switch capacitors
is shown in Fig. 25. Note the variation along both slow and
fast time-scales. The slow time-scale variation is similar to the
input, as expected, but the fast time-scale variation displays
charging/discharging behavior associated with internal losses
in the switch, due to the relatively fast switching speed.

The second harmonic distortion, obtained by Fourier analysis
of the output voltage along the direction, was 28 dB below the
fundmental.

D. Mixer Simulation Using MMFT

A double-balanced switching mixer and filter circuit was sim-
ulated for intermodulation distortion using the MMFT method.
The RF input to the mixer was a 100 kHz sinusoid with ampli-
tude 100 mV; this sent it into a mildly nonlinear regime. The
Fig. 25.  SC filter input and output. LO input was a square wave of large amplitude (1 V), which

switched the mixer on and off at a fast rate (900 MHz).
a resistor, which, together with the capacifqt constitute the ~ Three harmonics were taken in the RF tgfie=100 kHz
filter. The effective value of the switched-capacitor resistor {&orresponding to thg variable of Section V-D). The LO tone
T»/C,., whereTs is the period of the switch control. The valuest f» =900 MHz was handled by shooting in the variable.
of the switch capacitanc@, and filter capacitor”; were 50 nF  The output of the algorithm is a set of time-varying harmonics
and 5uF, respectively. that are periodic with period, = 1/f,. The first harmonic is

The input to the circuit was a sinusoid with 10 ms periodhown in Fig. 26. This plot contains information about all mix
(100 Hz), and the switching period wd®—> s (100 kHz). components of the fornf; + ifs, i.e., the frequencies 900.1
The slow time scale was taken to he and the fast time-scale MHz, 1800.1 MHz, etc. The main mix component of interest,
was t». Bivariate forms of the input and output voltages ar800.1 MHz, is found by taking the first Fourier component of
both shown in Fig. 24 (the larger waveform is the input). Thihe waveform in Fig. 26. This has an amplitude of 60 mV.
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Fig. 27. Mixed frequency-time output: third harmonic component.
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Fig. 28. Mixer output from univariate shooting.
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Fig. 29. PWM DC-DC converter.

Fig. 30. PWM DC-DC converter: input and output voltages.

E. PWM-Feedback DC-DC Converter with TD-ENV

A boost-type dc—dc converter with PWM feedback for output
voltage stabilization was simulated by TD-ENV. A simplified
diagram of the circuit is shown in Fig. 29. When the switch
closes, the inductor current rises linearly until the switch opens,
after which the currentis diverted through the diode into the load
resistor. The peak current of the inductor is related to the amount
of time the switch is closed, i.e., the duty cycle of the switch
control. This current determines the output voltage at node 3.

The negative feedback loop operates by comparing the output
voltage at node 3 with a reference to obtain an error voltage,
which is used to control the duty cycle of the control to the
switch. If the output voltage is lower than the reference, the duty
cycle is increased, and vice-versa. For the simulation, the input
power source E was centered at 1.4 V, but with a ripple of 0.8 V
at 100 Hz added. The reference voltage for the output was also
setat 1.4V. The switching rate was 100 kHz. The bivariate forms
of the input and output voltages are shown in Fig. 30; the large
changes are for the input waveform, and the small ones for the
regulated output. Note the relative absence of fast scale variation
(i.e., along the- axis) of the output, indicating low ripple. The
current through the inductor is shown in Fig. 32. This waveform
provides a useful visualization of the operation of the converter.

The third harmonic is shown in Fig. 27. It contains informaNote the linear charging of the inductor and the somewhat non-
tion about the mixe8f, +1 2, i.e., the frequencies 900.3 MHz,linear discharge. Note also that the converter is operating in con-
1800.3 MHz, etc. The amplitude of the 900.3 MHz componetihuous mode, for the current does not ever reach zero despite
can be seento be about 1.1 mV. Hence, the distortion introdudbd fluctuations of the source battery. When the load is increased
by the mixer is about 35 dB below the desired signal.

The circuit was also simulated by univariate shooting fdast time scale.
comparison. The output from univariate shooting is shown in The dynamics of the feedback mechanism are also evident in
Fig. 28. This run, using 50 steps per fast period, took almaste shape of the control voltage to the switch, shown in Fig. 31.
300 times as long as the new algorithm (see Table ).

(not pictured), the inductor discharges completely for part of the

This voltage is a fast pulse train with varying duty cycle. The
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Fig. 32. PWM dc-dc converter: inductor current.

pulse nature of the signal is evident from the variation intthe

VII. CONCLUSION

A powerful approach for analyzing strongly nonlinear mul-
tirate circuits has been presented. The approach uses multiple
time variables to describe multirate behavior, leading to a PDE
called the MPDE. Applying appropriate BCs to the MPDE leads
to quasi-periodic and envelope-modulated solutions. Efficiency
is achieved without compromising accuracy by using adaptive
time-domain numerical techniques to solve the MPDE numeri-
cally. Three purely time-domain methods resulting from the ap-
proach are useful for strongly nonlinear circuits in general, while
a fourth mixed frequency-time method is especially suitable for
circuits with a mix of strong and weak nonlinearities. The new
techniques can solve a variety of circuits that are hard to simu-
late with previous techniques. Presenting the results in three-di-
mensional form is useful for visualizing waveforms with widely
separated time scales. Applications to switched-capacitor filters,
switching mixers and power converters have been presented.

APPENDIX
PROOFS OFTHEOREMS AND LEMMAS

Proof of Theorem 1 (MPDE-DAE Relationsince

qz®) =q@t+c1y ..., t+em)),
da(e(t)) _ dqlitter .ittem)
ot oty
dq(z(t+c1, ..., t+ cm))

+ Dt
=f@(t+eci, . t+em)
—I—lA)(t"‘Cl, sy t+0m) [by (6)]

= f(z(t)) + ().
[
Proof of Lemma 1:Beingm-periodic,ij(¢y, .., t) can
be expanded in a multidimensional Fourier series

g(tla ---atrn): Z Y(ila ---airn)

21y ey tm

. L t irntrn
-exp<j27r <}—;++T—>>

y(t) is obtained in quasi-periodic form by substituting= t+c;

yt)= > [Y(il, ey )

i1 yeeesim
. ilcl irncrn
-exp | 12w Tl—i—---—i— T
-exp<j27r <T11+'”+T )t)

Proof of Lemma 2:Sincey(t) is quasi-periodic, it can be
expressed as

direction. The change of the duty cycle along the slow time scale y(t) = ‘ Z Y(i, ooy im)

can also be readily seen. This is due to feedback, which modifies

input fluctuations.

the pulse width to keep the output voltage stable despite large . 1 im
-exp | 27 T—’_”'—’_T t].
1 m
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The following definition for §(ti,...,t,) satisfies S B, . im)esp <j27r <i£+_”+z‘mtm))

y(t) =gt +c1, ..., t+cm): W T, T,
Uty - tm) = [t t) = [t - t)
= Z Y1, ooy tm) Noting that b(t) = bt + ¢1,....,t + ¢n) and
ityomrim z(t) = &t + c1,...,t + cn) and insertingz(t) into

exp <_‘7,27r <ﬁ P imcm>ﬂ (5), the following equality is obtained:
- L_l . irn Y .
Z {J27r <T1+ +Tm>Q(L1,...,Lm)

] t '.rntrn . .
- exp <j27r <L}—11 + et LTT)) . et
m — F(iy, ..., im) — Bliy, ..., fzm)}
Proof of Theorem 3 (MPDE Necessity Conditior§ince
b(t) andx(t) are quasi-periodic, they can be expressed in the ) i -
) anda() are quasi-p y p ,exp<j27r<?11+...+T )t)zo,
b(t) = Z By, ..., im) When1y, ..., 1,, are pairwise incommensurate, each term
i1y e im in the above summation can be equated to zero. In general, how-
; ; ever, the functiong’2((i/T1)+++(irm/T=))t can be linearly de-
- exp <‘7'27r <T—1 + -t 1:" ) t) pendent, so we have to generalize this idea. We will proceed by
! m collecting together terms in the summation that are linearly de-
z(t) = Z X (i1, ooy im) pendent. More precisely, ¥, ..., T, are mutually commen-
i surate, then the map
. i L_l b M, oo, i, '—>{27r<i—1—|—---+im>}
exp (2 (oot 22 ) ). G, oo i) R

Our goal is to construct multivariate versions of these signdise., the map from the indices to the frequencies) is many-to-one
such that the multivariate versions satisfy the MPDE. Thigstead of one-to-one. Denote the range\dfby €2, consisting

is straightforward when(7y, ..., 7;,) are mutually incom- of a countable set of distinct frequencies. For anyw;, € ,
mensurate, but requires a little more work when they agefinel;, to be the set of all indice@;, .. ., i,,) such that

commensurately related. We start by definiﬁr(gl, e tm) i i
andz(ty, ..., t,) by Wi = 2w <?11++1:;)
b1, tm) = ‘ Z B, s im) e, I = M~ Yw). If Ty, ..., Tp,, are mutually incommen-
st surate, thed,, has exactly one member; otherwise, it is a count-
i i1t1 tmtm ably infinite set. The important property resulting from this def-
TOXP R g N Tt T inition is that if wy, # wy, thenl, NI = 0.

The DAE above can now be rewritten as

Py 7 . il i'rn, Ag. .
o (e (B s o)) X)X o (et P2 ) Qi)

T Tn k| (ia,eyim)E
Bt tm) = X, e, im) ) ) '
B1,eees b —F(il, ...,inl)—B(il, ---;irn):| ejw"'t:().
D) 1ty + + irntrn
. e i —_— PRI —_— .
*p A Jem T T By the above construction, we are now guaranteed that the
. ) ) ) functions e’“** are linearly independent, hence their coeffi-
Xty ooy tm) =X (0, - i) cients must be zero:
. ilcl irn,crn, 7 7 N
. —12 _ e " B - 1 m . .
eXP< J 7r<T1 +- T )) ( Z) {J27r<ﬁ+...+Tm>Q(Ll,...,Lm)
R U1y ey b JETK
Note, thate(t) = Z(t+ct, - .., t+em), b(E) = b(t+er, .., t+
cm ). Now defineQ(zq, ..., ¢ym) andF (i1, ..., 4m) by —F(iy, ..., 4m) — By, ..., irn):| =0.
Ny . . L t irntrn
Z Qi1 .y im)exp <j27r <%+...+ T )) (31)
. . 1 m
tLoeeatm Equation (31) is equivalent to requiring the DAE to be satis-

=q(tes -y tm) = q(@(t1, .-+, tm)) fied. The requirement for the MPDE to be satisfied is, however,
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stronger: each term in the summation above must individuah@nceyz(t +ec1, ..., t+cn) = b(t). Finally, it needs to be
equal zero. In general, this latter condition will not be met by, ;.. thaé(tl t) andi(, t,,) satisfy the MPDE
the X and B defined above. On substituting the expressions for these multivariate functions

We can, however, take advantage of the fact that in t'ﬂ’ﬁo the MPDE, the following equation is obtained:
commensurate case, many (in fact uncountably many) different

choices of multivariate forms fob and # correspond to the i A\ -
same univariate function. From among these, we will choose Z [JQW <T +- T ) Qi1, ...y im)
new multivariate forms fof: andb in such a way that not only W1yeym ! m
is (31) satisfied, but the stronger condition that each term in the N )}
? Lrn

summation is zero is also satisfied. —F(iy, ooy im) — B(ig, .-
We actually keep the saniedefined earlier, but make a new
. . . > . . _- _- I’ t s t
choice for the excitatioh by O!eflnlng anew set of quasi-peri cexp [ jor L U R
odic excitation coefficient®(iy, ..., i), and corresponding T T
excitationb(t), as follows:

y i ; R From the definition ofB(z‘l, ..., &m), the coefficients of the
Blig, o.vyim) = [j27r <T +--+ 1:" ) Q(i1, ..., im)  above expression are zero, hence the theorem is proveds
L m Proof of Theorem 4 (Uniqueness of Envelop&he proof
. } rests on the fact that the solutions of the MPDE along “diag-

— L i) onal’ lines(t, t+cy, ..., t+cm) inthety, ..., t,, space are
. . exactly the solution of the circuit DAE with the initial condi-
. exp <‘7~27r <ﬁ bt chm)) ) tion 2(cs, .., ¢m). This follows from Theorem 1. On the di-
I T agonal lines passing through each p@ihtes, ..., ¢,,) in the
(32) initial condition regiond x [[7~,[0, 73], therefore, the MPDE
o . ) has a unique solution, since the DAE has a unique solution with
Note, that from definition B(iy, .. ., in,) satisfy (31), hence juial condition h(cz, ..., ¢m). The diagonal lines are illus-
b(t) anda(t) together satisfy the DAE. trated for the two-rate case by the shaded area in Fig. 10(a).
Now, defineb(ty, ..., t,) by Sincez is periodic with respect té,, . .., t,,, its value at any
R N point (¢, ..., t»,) is equal to that at some point along one of
b(ti, ... tm) = Z B(i1, -y tm) the diagonal lines above. This is illustrated in Fig. 10(b). Hence
W1y Z(t1, ..., tm) is uniquely specified. [

. 'l:ltl im,trn
exp <J27r <T1 +ooe Tt T_m>> ’ ACKNOWLEDGMENT
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