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Abstract

Verifying circuits with two or more closely-spaced driving fre-
quencies is important in RF and wireless communications, e.g., in
the design of down-conversion mixers. Existing steady-state cal-
culation methods, like harmonic balance, rely on Fourier series ex-
pansions to find the difference-frequency components typically of
interest. Time-domain methods are, however, better suited for cir-
cuits with strong nonlinearities such as switching. Towards this
end, we present a purely time-domain method for direct compu-
tation of difference tones in closely-spaced multi-tone problems.
Our approach is based on multiple artificial time scales for decou-
pling the tones driving the circuit. Our method relies on a novel
multi-time reformulation that expresses circuit equations directly
in terms of time-scales corresponding to difference tones. We ap-
ply the new technique to an RF-CMOS mixer to predict baseband
bit-streams and down-conversion gain and distortion, in two orders
of magnitude less CPU time than traditional time-stepping simula-
tion.
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INTRODUCTION

1.

RF sections of wireless communication systems typically involve
one or more stages of frequency conversion, with frequency tones
that are either widely separated, or very closely spaced. While fre-
quency up-conversion in transmitters involves widely separated fre-
quencies, down-conversion circuits in receivers are typically driven
by two or more very closely spaced frequencies. For example, a
direct-conversion cellphone could feature tones at 1.8GHz, spaced
only a few Mhz or 100s of kHz apart. It is the difference frequen-
cies that are of primary interest in receiver design and verification,
since they carry the information being received; hence design and
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verification tools must necessarily deal with the small frequencies
together with the large ones.

As is well known, simulating circuits with disparate frequencies
using time-stepping methods, such as those used for transient sim-
ulation in SPICE [5, 8] and similar tools, can be very inefficient,
particularly when the time-varying steady-state solution is desired.
Better methods exist for both widely-separated and closely-spaced
driving tones. An important technique that is useful for both sit-
uations is harmonic balance (HB) (e.g., [2-4]). HB expands all
time-varying waveforms in the circuit in Fourier series components
featuring the driving tones, their harmonics and mixes . Since
sum and difference frequencies appear explicitly in the mix com-
ponents, HB is able to accommodate both widely-separated and
closely-spaced driving tones naturally. Unfortunately, Fourier se-
ries expansions are also the Achilles’ heel of HB, for they are ill-
suited to waveforms with sharp corners or peaks. Such waveforms
arise in modern integrated-RF designs, such as switching RF cir-
cuits, desirable for their low power and noise characteristics. In
these situations, i.e., when strong nonlineariti¢s are encountered,
time-domain methods are usually preferred over frequency-domain
ones like HB.

Purely time-domain methods for steady-state and RF calcula-
tions have, until recently, been limited to single-tone problems,
with shooting and its variants commonly used (e.g., [1,6, 10]). Re-
cently, artificial time scale approaches [2, 9] have addressed the
multi-tone case, resulting in purely time-domain methods for quasi-
periodic steady state and envelope simulation. So far, however,
these techniques have concentrated only on the case of widely-
separated driving tones. '

In this work, we extend multi-time approaches to the case of
closely-spaced driving tones. The key enabler towards this end is
the use of difference-frequency time scales (or simply difference
time scales). In contrast to the widely-used concept of difference
frequencies, which is linked to sinusoidal basis functions and quasi-
periodic waveforms, difference time scales capture the essential
intuition of slow variations at difference frequencies without be-
ing limited to sinusoidal bases or quasi-periodicity. This makes it
possible to obtain, for example, the shape of baseband or down-
converted information signals (such as bit streams) directly in the
time domain, without at any point involving frequency-domain rep-
resentations or calculations.

We present applications of the new technique to balanced and un-
balanced switching mixer circuits for direct-conversion receivers,
similar to those reported recently in [7, 11]. We are able to ob-
tain, directly, time-domain waveforms for sections of bit streams
downconverted to baseband. Using pure-tone driving excitations,
we are also able to obtain down-conversion gain and distortion fig-
ures. The new method is faster by about two orders of magnitude
than periodic steady-state computation using single-time shooting.

Although we demonstrate the new technique on RF communica-
tion circuits in this paper, we note that the proposed method can be
applied generally to other systems featuring closely-spaced tones,
such as power conversion circuits and electro-optical communica-
tion systems.

In the remainder of the paper, we describe schemes for refor-
mulating and solving the circuit equations in terms of difference-
frequency time scales in Section 2. In Section 3, we describe the
application of the new technique to a balanced switching mixer, and



provide interpretations of the results obtained.

2. DIFFERENCE TIME SCALES

Multi-time circuit equations

We first recall the basic concepts of multi-time circuit formula-
tions, following the approach of [9]. The equations of the circuit
are represented as

Gx()) + £ (x(1)) +b(t) =0, (M

where ¢(-) represents the linear and nonlinear charge/flux terms,
f(-) the conductive terms, b(f) the excitation, and x(¢) the un-
knowns (voltages and currents) in the circuit. When the excita-
tion is multi-tone (whether closely or widely spaced), b(r) can be
expressed in terms of multi-variate functions involving several arti-
ficial time scales. For example, a two-tone signal may be expressed
as

b(t) =b(t,1), )

where

b(r,12) = b(t) + 11,02 + 1), 3
is periodic in each of its two arguments, for some periods 77 and
T;,. The two tones of excitation are f; = %} and f, = le; they are

widely separated if f; > f» (or vice-versa). If the tones are closely
spaced, then typically, fi ~ f2>> |fi — f2|.

In [9], it has been shown that when the tones are widely sepa-
rated, the multi-time representation (3) can be represented far more
compactly, in terms of numerical samples, than the normal single-
time form (2). This fact is applied towards solving the circuit equa-
tions (1), by assuming that the circuit unknowns x(¢) can also be
expressed in a numerically compact multi-time form similar to (3).
Finding this multi-time solution directly involves solution of the
following multi-time partial differential equation (MPDE) corre-
sponding to (1):

dq(x(t1,12)) | 9g(x(t1,12))
ot atz

In (4), £(21,12) is the multi-time representation of x(¢) that is sought.
It has been shown that if £(r;,t,) satisfies (4), then x(r) = £(z,t)
solves the original circuit equations (1). Regardless of whether the
tones in the circuit are separated or not, this basic fact always holds.

When the driving tones are in fact widely separated, e.g., T} <
1>, solving the MPDE (4) is preferred over solving (1) for two

reasons. First, b and £ can be represented much more efficiently
than their single-time counterparts; and second, the #; and 1, varia-
tions of the solution £({,t,) directly provide information of inter-
est, namely the slowly-varying envelope, and the detailed shape of
the fast variations at any point under the envelope.

+ f(&(t1,02)) + b(t1,2) =0. (@)

Closely-spaced tones

When the tones are closely spaced, i.e., T} ~ T3, the MPDE (4)
as it stands is still perfectly valid, however it is not immediately

useful as in the widely separated case, even though b and £ are
still numerically far more compact than their single-time counter-
parts. The reason for this is that the frequencies of interest are
typically difference frequencies, such as f| — f2, 2f1 — f», etc.. The
difference frequencies are much smaller than f] or f>, and mani-
fest themselves as baseband signals or as slow envelopes riding on
much faster waveforms. The multi-time solution £ does not directly
provide the slow waveforms at these frequencies. As a concrete ex-
ample, consider the ideal mixing operation

2(t) = x(1)y(1), ®)

where x(t) = cos(2nf1t) and y(r) = cos(2nf,t), with f; = 1GHz
and f> = f| — 10kHz. In other words, the two tones f] and f; are
very closely spaced, with the difference tone f; — f = 10kHz being
much smaller. The mixing operation (5) generates this difference
tone explicitly, since

() = % [cos(2m x 10kHz x 1) + cos(2n(fi + f2)1)],  (6)
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and the high frequency component at f| + f; is usually eliminated
by separate filtering. The multi-time representation of z(¢), given

by

21(t1,12) = cos(2mf1t1) cos(2mfot), N

does not directly provide this difference-frequency component.

For a multi-time method to be practically useful for the case of
closely-spaced driving tones, it must be capable of directly solving
for these slow waveforms in the time domain. We now outline how
this can be achieved. The key insight is to realize that a given b
satisfying (2) is not unique, i.e., there are many functions b, with
different Ty and T values in (3), providing the same b(t) by (2).
We illustrate this with our ideal mixing example. For convenience,
we first define

Z5(t1s,t25) = cos(27t15) cos(2Mtys)

®

to be a scaled multi-time representation of z(r), periodic with period
1 in both its arguments. Z; in (7) can be expressed in terms of this
as

21(t1,12) = Z5(f1t1, fata). 9

Note that Z; above, with periods 77 = 717 and T, = % very similar
to each other, does not provide difference-frequency information
directly; but as always required, it satisfies z{r) = 2(z,1).

If we now define a difference frequency of interest to be

fa=hH —f»=10kHz

and the corresponding period T; = %d

new multi-time representation

2t 0) = 2 (it fitt — fat2) - (11)

Note that 7, is periodic with respect to #; and #5, with periods Tj
and Ty, respectively, hence its changes along #; capture variations
corresponding to difference-frequency time scales. Furthermore,
it continues to satisfy the requirement z(r) = 2»(¢,¢), hence is as
relevant to the underlying one-time problem as 2 (¢1,1;). %; and %,
are plotted in Figure 1 and Figure 2, respectively; note the explicit
variation in the difference time scale, spanning 0.1ms, in the latter.

(10)

= 0.1ms, we can devise a

zhat,(t,.t)

~0.5

fast time scale t1 (ns) 0 9

fast time scale t2 {ns}

Figure 1: 2, (11,1)

Note that the arguments (fi1, fit; — fat2) in (11) can be inter-
preted geometrically as scaling and shearing of the original time
scales (f15,35) in (8). Furthermore, numerical compactness of rep-
resentation is not affected by the shearing, as can be seen in Fig-
ure 2. Hence time-sheared multi-time representations for b and £
can be applied to the MPDE (4), and a solution obtained directly in
terms of the slow difference-frequency time scale of interest.
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Figure 2: 25(t1,12)

We also note that (10) is only one way of defining a difference-
frequency time scale; depending on the application, other differ-
ence frequencies should be used. For example, in the balanced LO time scale (rs) 0 o
mixer circuit in Section 3, the local oscillator frequency f; = 450MHz
is doubled internally within the circuit and then mixed with the
information-carrying tone close to 900MHz. Hence the difference

baseband time scale (ms)

frequency of interest (at baseband) is Figure 3: Balanced mixer: differential output voltage
fa=2h-f, (12)
with a corresponding change to (11),
L(t,0) =4 (At 200 — fat2) (13)

restoring the property z(r) = 22(¢,1).

An important point to note is that the signals need not be sinu-
soidal or near-sinusoidal. Indeed, high-frequency ‘tones’ involving
modulation by bit streams can be used to drive a circuit. For exam-
ple, the normalized-to-period-1 information-carrying tone driving
the balanced mixer in Section 3 is given in multi-time form by

bi(t15,t25) = 2c0s(2m x 2115 ) pulse (2(2t15 —125)) . (14)

Once reformulated in terms of difference time scales, the MPDE 04 ,
(4) may be solved by any of the time-domain numerical methods
in [9]. 038 ]

3. APPLICATION AND EXAMPLES

Balanced LO-doubling down-conversion mixer

A CMOS balanced down-conversion mixer, adapted from a cir-
cuit proposed in [11], was analyzed using the above ideas. An
important feature of this circuit is that the lower pair of MOSFETs
constitutes a frequency doubler, generating a current at twice the
LO frequency. This current feeds the differential pair formed by the
upper two MOSFETSs, resulting in mixing and down-conversion.
The supplied LO signal in this case is a sinusoid at 450MHz; the RF
signal ‘tone’ is as for the previous circuit, a modulated bit stream . . : . .
close to 900MHz. For this circuit, the natural choice for the dif- ° o0t 002 e 0% 00
ference frequency is given by (12), again resulting in a baseband
frequency of 15kHz. The time-shearing function is given by (13).
The multi-time form of the differential output voltage between the
drains of the upper MOSFETS is shown in Figure 3. Once again,
the time-domain shape of the bit-stream is evident from the varia-
tion along the difference-frequency time scale. Figure 4 shows the
envelope along the difference-frequency time scale, corresponding
to the actual baseband voltage of the output.

The sharp waveforms created by the action of the frequency dou-
bler in the circuit are clearly visible in Figure 5, which depicts the

0.2 4

Baseband differential output voltage (V)

0.05-

Figure 4: Balanced mixer: baseband differential output
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multi-time voltage at the sources of the differential pair. The ad-
vantages of fully time-domain solution methods are best utilized in
such situations. A small section of the actual voltage waveform,
over a period of 5 LO cycles, is depicted in Figure 6.

Voltage at source (V)

baseband time scale (ms)

LO time scale (ns}

Figure 5: Balanced mixer: voltage at MOSFET sources
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Figure 6: Balanced mixer: voltage at MOSFET sources

Computational speedup

The computational speedup of the new method stems from that
relatively few grid points in the multi-time plane are sufficient to
capture solution waveforms, compared to the number of time-points
needed for the normal time representation. For the balanced mixer
circuit above, we employed a 40 x 30 grid, resulting in 1200 grid
points. Wall-clock time for the longest run (26 iterations) of Newton-
Raphson on the balanced mixer circuit (given a good starting guess)

was 1m3s'. In cases where Newton-Raphson did not converge, us-
ing continuation reliably obtained solutions in 10-20m.

The closest comparable traditional time-domain approach is shoot-
ing (or time-discretization) across one period of the difference fre-
quency, but with time-steps small enough to capture the LO vari-
ations with sufficient accuracy, i.e., 10 or more time-steps per LO

T All times are on a single-CPU, 1.4GHz AMD Athlon system with
512MB of 133MHz DDR memory, running Linux 2.4.15.
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period. This amounts to some 300000 or more time-steps over the
difference-frequency period, resulting in an equation system more
than 250x larger. Using iterative linear solution methods and in the
presence of similar nonlinear convergence behaviour, this results
in a computational advantage of more than two orders of magni-
tude in favour of the new method described here. However, be-
cause it can be significantly more difficult to obtain nonlinear so-
lution convergence for traditional shooting than for the multi-time
approach in the presence of widely separated time scales, the real
user-experienced speedup can be considerably larger.

We note that the speedup depends roughly linearly on extent of
disparity between the LO time scale and the difference-frequency
time scale. The break-even point (in terms of frequency separation)
for computational speedup over single-time shooting is strongly de-
pendent on implementation. We have noted that frequency dispari-
ties of 200 and above confer a speed advantage to multi-time meth-
ods.

Conclusion

Through the use of sheared, difference-frequency time scales,
we have extended multi-time circuit solution formulations, pre-
viously useful only for widely-separated driving tones, to situa-
tions where driving signals are close in frequency. A purely time-
domain method for solving the resulting equations has been pre-
sented and applied to compute the time-domain shapes of baseband
bit-streams in down-conversion mixers. The new method is well-
suited for estimating effects such as ISI and ACI in communication
symbol streams. When baseband variations are much slower than
those of the driving signals, it is also more than two orders of mag-
nitude faster than comparable single-time methods.
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