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ABSTRACT

Finding performance sensitivities with respect to control-
lable parameters is important in RF design, both for mak-
ing manual improvements and for automated optimization.
In this paper, we obtain efficient sensitivity techniques for
common RF analyses — harmonic balance, shooting, and en-
velope simulation.

1. INTRODUCTION

During circuit and system design, knowledge of the sen-
sitivities of performance metrics to design parameters is of-
ten desirable. Knowing the impact of a small change in the
circuit (e.g., in the width of a transistor) on some desired
functional characteristic (e.g., the gain of an amplifier, or the
delay of a logic gate) can guide manual improvements to the
design. Sensitivity information is especially useful if auto-
mated optimization is employed to maximize performance,
because gradient-based optimization techniques rely on sen-
sitivities to guide their search. While the desired sensitivi-
ties can always be calculated by finite differencing, it is con-
siderably more efficient and accurate to employ specialized
techniques based on linearization and adjoint calculations.

In recent years, there has been renewed interest and ac-
tivity in RF circuit and system design, in good measure due
to the explosion in portable wireless communications. This
has been accompanied by greater use of CAD tools for RF
design, featuring specialized algorithms for steady-state and
envelope calculation. While significant advances have been
made in improving the efficiency and applicability of such
algorithms, these advances do not appear to have carried
over to RF sensitivity computations.

Efficient sensitivity computation for DC and small-signal
circuit analysis has long been established [1]. Procedures
for computing transient sensitivities using adjoint techniques
have also been developed [2,3]. Sensitivity calculation tech-
niques for harmonic balance, a steady state calculation tech-
nique useful in RF design, are also available [4—6]; however,
they often limit generality to gain efficiency, and do not
scale well with increasing circuit size. Sensitivity compu-
tation methods for another steady-state technique, shooting,
have also been developed, particularly amongst the power.
systems community [7, 8]. These techniques, too, typically
rely on specific circuit characteristics. Furthermore, there
appears to be no work addressing sensitivity computations
in the context of envelope simulation.

In this work, we present general sensitivity computation
methods for three common RF analysis techniques: har-
monic balance, shooting and envelope simulation. We show
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that recent ‘fast’ methods for performing these analyses [9-
11] are easily employed for corresponding sensitivity cal-
culations. In particular, we show that adjoint sensitivity
calculations are especially convenient when corresponding
steady-state or envelope methods use underlying Lanczos
methods for iterative linear solution.

2. PRELIMINARIES

In this section, we review basic sensitivity techniques
for nonlinear ‘algebraic’ and differential equations, focussing
on adjoint methods.

2.1. Adjoint sensitivities for ‘algebraic’ nonlinear sys-
tems

Given a vector system of n nonlinear equations depending
on n unknowns x and m parameters p, i.e.,

fx,p)=0, fxeR",peRrR", ¢y
the total derivative is given by
]
U o+ LI spmo, Ger™ ser™™. (2
ox XP ap xp
N~
G s

Hence the sensitivity matrix x, € R"*™ is given by
xp=~G~!S (assuming G invertible), 3)

and, if &x = x, 8p, dx is given by the solution of the linear
equation
Gox = ~-Sdp. 4

(4) may be solved numerically to calculate dx when specific
dp are available. If, however, we are interested only in a
weighted sum of the elements of 3x, i.e., in y = ¢ dx, then
it ig possible to to arrive at a functional form for y in terms
of op:

y= —CTG_ISSP = - [G_TC] TSSP, )
or, denoting r = G‘Tc,
y= —rTS6p =57 Op wheres = -8Tr. 6)

The advantage of (6) is that finding the gradient vector s
involves only a single linear solution of the adjoint system

Glr=c, @)

V-225



followed by the matrix-vector multiplication s = S7r. It is
often possible to perform these operations efficiently (for
example, when G and § are sparse).

2.2. Adjoint sensitivities for differential equations

Consider a system of nonlinear differential equatlons
depending on a set of parameters p:

x=f(x,p)+b(t), x(t),b(t),f€ER",peR", (8)

with initial condition x(#p) = xo(p). The assumption that the
forcing term b(t) is independent of p is made without loss
of generality for convenience. We assume that (8) satisfies
conditions for existence and uniqueness of solutions. The
total derivative of (8) is given by

ddx of af
) = &+l &, @
T Ay, 9Pl

G() (1)

or

)
B [xp(1)] =
with G(t) € R™"and S(1),x,(1) € R"*™,

G(t) xp(t) + S(1),denoting x,(r) = ap(), (10)

with initial condition x, (fp) = %’—;‘}. (10) may be solved as an
initial value problem to obtain the sensitivity matrix of x(¢)
with respect to p as a function of time. Observe that (10) is
a linear time-varying matrix differential equation driven by
input S(¢). Note that if i columns of x,(¢), S(¢) are denoted
by xp,;(t) and S;(t), fori=1,--- ,m, then (10) can be written
as the set of vector differential equations

2 ) = 015, +50), i=1,00m, A1)

with initial conditions x),;(0).
If we are interested in the sensitivity of a weighted sum

of the outputs with respect to p, i.e., of c” (t)x(z), it is bene- -

ficial to use an adjoint formulation. First rewriting (11) as

)
a—f = G(1)z(r) + b(t), (12)
consider its homogeneous part

%~ 6()0), (13)

and let its state-transition matrix be denoted by ®(¢,#p). Then
it can be shown (e.g., [12]) that the adjoint system

ow _ r
i =G (1) w(r) (14)

has a state-transition matrix ®,(z,1), given by

@, (t,10) = D (to,1). (15)

This property becomes useful when we consider that the so-
lution to (12), with initial condition z(to) = 79, can be ex-
pressed using ®(t,1) as

z(t) = ®(t,10)z0 + /rtq)(t,'t) b(t)dr, (16)

hence y(t) = c” (¢)z(t) can be written as

3(6) = T ()0 (, 10)20 + [ "7 (1)t %) b(x) dr

= [cDT(t,to)c(:)]TzO + /t[éT(t,t)c(t)]Tb(r)dr
o a7
= [@ali0,0c)] 0+ [ [@ult )] b)de

t
= (t0,)20 + / A (t,1) b() dr,
o

where r(t,ty) is the solution of (14) with initial condition

r(to) = c(to). Fixing a specific 79 in (17) and also a spe-
cific ¢ > fy, we observe that the solution of (14) for r(¢,t)
and r(t,t) involves applying the initial condition at ¢, and
solving backward in time upto ¢y or 7.

We note that evaluating (17) is in general relatively ex-
pensive, since it involves the solution of (14) over the in-
terval [tg,?] for each value of ¢. For time-invariant systems,
however (i.e., G(t) = G, and ®(t,19) = ®(t — 1)), the ex-
pense reduces enormously, as a single solution of (14) over
the [mteri/al [~ (T — 1), Oflsufﬁces to evaluate (17) over all
t €|, T

3. RF SENSITIVITY CALCULATIONS

3.1. Harmonic Balance

Harmonic balance (HB) [13-16] is a method based on
Fourier series expansions for solving periodic steady-state
problems, and is widely employed for systems that are weakly
or moderately nonlinear. More specifically, given (8) with
periodic b(t), i.e., b(t + T) = b(t), HB seeks to find a peri-
odic solution x(¢) of (8) with the same period T'. To this end,
b(t) and x(t) are expanded in Fourier series, to N = 2M + 1
terms:

M +2 210
b(t) = Z Biel'T!,
xn)= Y Xe'F.

i=—M

The Fourier coefficients B;,X; € X" can be conveniently
collected in long vectors of size n X N:
B=[B_m,--,Bu]", X=[X_pm,-- Xu]"-  (19)
We now note that the term f(x(t),p) in (8) is T-periodic
if x(t) is T-periodic, hence f(x(t),p) can also be expanded
in a Fourier series similar to (18), and the Fourier coeffi-
cients stacked up in a vector similar to (19). Denote this
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vector, i.e., the vector of Fourier coefficients of f(x(t), p)
by F(X, p). e .-

Finally, we note that the term X in (8) is also T-periodic
if x(t) is T-periodic, and that its i Fourier coefficient is
given by jiZT"Xi. Hence the vector of Fourier coefficients of
X is given by QX, where Q = jo—"diag(—-Ml,,,--- ML), a
diagonal matrix of size n x N, with I, the identity matrix of
size n.

Harmonic balance consists simply of equating the Fourier
coefficients (or harmonics) of the terms in (8), i.e.,

G(X,p)= QX —F(X,p)—B=0. (20)

(20) is a nonlinear equation in X € R"*N, hence the sensi-
tivity techniques in Section 2.1 apply. Specifically, if we are
interested in the sensitivity of y = ¢T X, we have

Sy = sT8p, withs = — 99 r, and
ap X,p
' (21)
Hp* w  JG
Jr=c,whereJ = —| .
X X,p

In view of (20), we note that*:ﬁ, the HB Jacobian matrix, has
the form

(22)

X,p

This matrix is typically formed and used in the process of
solving (20) numerically for a nonlinear solution by, e.g.,
a Newton-Raphson procedure. Hence the adjoint solution
in (21), constituting the main computational step in find-
ing the sensitivity 3y, can readily be carried out using the
available HB Jacobian matrix. The adjoint solution is es-
pecially convenient in the context of ‘fast’ HB techniques

HB

(e.g.,[9,17]), using which linear solutions of the type Jz=w
are carried out efficiently with O(nNlogN) computation. In
particular, when the Lanczos-process-based QMR iterative
linear solution method [18] is employed during fast solu-
tion, the adjoint system (21) is solved repeatedly during the
nonlinear solution of (20), hence the essence of sensitivity
computation for HB reduces to single extra call of an exist-
‘ing subroutine.

3.2. Shooting

Shooting [19-21] is another technique for solving for
the periodic steady state of (8) when b(¢) is periodic, and is
often preferred over HB when the system has strong non-
linearities or switching behaviour. Instead of using Fourier
expansions, shooting employs a nonlinear fixed-point for-
mulation to express periodicity. Assuming that (8) has a
unique solution for every initial condition x(tp) = xo, we
can write its solution in terms of its state-transition function

P as
x(t) = @(;x0,10, p)- (23)
If (8) admits of a T-periodic solution under T-periodic ex-
citation b(t), then x(t9 + T') = x(tp); using (23), we obtain
x(to+T) = x(to) =xo0 = D(10 + T;x0,t,p), or

24
G(X(),p) = X0 —(p(T;.X(),O,p) = 07 (24

setting 75 = 0.

(24) is a nonlinear equation in xg € R ", hence the sensitiv-
ity techniques of Section 2.1 again apply. Specifically, to

calculate the sensitivity of y = ¢ xg, we have
G
Sy = s 8p, withs = — — r, and
P |sq,p
' (25)
T ©  0G
J]r=c,whereJ=a—— .
*0 lxg,p

Using (24), we note that the shooting Jacobian matrifo is
given by
™ od

J=I,— — .
axo T:x,0,p

This matrix is formed and used in the process of solving (24)
for a nonlinear solution. It can be shown that applications

(26)

of T.ﬁ to a vector r can be realized by solving (13) with ini-
tial condition z(0) = r over the period [0,7T), i.e., a single
transient simulation of the linearization of (8). Likewise,

T
application of J to a vector r is the solution of (14) with
‘initial condition’ w(T') = r, backward in time over [0,T] —
also a single transient simulation of the linearized adjoint
system. These observations are particularly useful when
iterative linear algebra techniques are used in ‘fast’ meth-
ods for solving (24) [11], for (25) can then be computed
efficiently using a small number of backward adjoint tran-
sient simulations and a single forward transient simulation
of the linearized system. Once again, if Lanczos-based it-
erative linear solution techniques such as QMR are already
employed in the solution of the nonlinear shooting equa-
tion (24), subroutines for these forward and backward tran-
sient simulations are already available.

3.3. Envelope simulation

An important task in RF simulation is to go beyond find-
ing a periodic steady state of (8) to a broader class of re-
sponses, featuring slowly-changing ‘envelopes’ riding on
fast-varying periodic waveforms. An example is b(t) =
e~'sin(2n10%), i.e., a 10kHz sinusoid damped by a slowly-
decaying exponential; e~ is the slow envelope in this case.
In myriad applications, especially from communications,
aperiodic information signals are often carried in such en-
velopes, and it is of interest to find the sensitivities of these
envelopes as they propagate through a system.

While various envelope calculation techniques are avail-
able [22-25], for brevity we shall focus in this section on
Fourier envelope techniques, i.e., where the fast ‘carrier’
variations are expanded in Fourier series. We stress that
the procedure outlined here carries over to other bases, e.g.,
locally supported time-domain bases. For convenience, we
shall use a multi-time formulation (e.g., [26,271) to develop
the sensitivity procedure for envelope computations.

A two-time MPDE [27] corresponding to (8) is

d d R
[E+§t—£] 2(t,0) = f&,p) +b(h,0).  (27)

We express the assumption that the excitation b and the re-
sponse X are in envelope form by requiring that both are
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T-periodic in the ¢ argument, with the variation in ] being
aperiodic and much slower. Hence we can express the #;
variation in Fourier series as in (18), collecting the Fourier
coefficients (now functions of ¢;) in vectors B(#;) and X (11),
respectively, as in (19). Following the same procedure used
to obtain (20) concentrating only on the 7, variations, the
Fourier envelope equation for (8) is obtained to be

a’g(”) +QX(n) =F(X(t),p) +B(n), or
;5 (5] (28)
X flfl) = (F(X(n),p) - QX (1)) + B(11)-

Q and F(-,-) in (28) are the same as in (20); B(1;) are the
envelopes of the inputs to the system. Note that (28) is in
the same form as (8), hence the adjoint sensitivity procedure
of Section 2.2 applies.

In particular, computing the sensitivity of y(t;) = c7 (11)X (1)

requires the solution of the linearized adjoint equation cor-
responding to (28) for each ¢, a computationally intensive
process. The procedure simplifies considerably, however,
when sensitivities about a steady envelope solution are de-
sired, i.e., when B(t;) and X (1) are constant, independent
of t;. In this case, the linearization of (28) becomes time-
invariant, and the transient sensitivity can be found using a
single backward solution of the linearized adjoint equation.

4. CONCLUSION

We have used the theory of adjoint linear systems to ob-
tain sensitivity calculation techniques for common RF anal-
yses. We have shown that the benefits of recent ‘fast’ meth-
ods for these analyses, employing iterative linear solution
at their core, carry over to finding sensitivities, particularly
when they are already based on adjoints.
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