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A Reliable and Efficient Procedure for Oscillator
PPV Computation, With Phase Noise

Macromodeling Applications
Alper Demir, Member, IEEE,and Jaijeet Roychowdhury, Member, IEEE

Abstract—The main effort in oscillator phase noise calculation
and macromodeling lies in computing a vector function called the
perturbation projection vector (PPV). Current techniques for PPV
calculation use time-domain numerics to generate the system’s
monodromy matrix, followed by full or partial eigenanalysis. We
present superior methods that find the PPV using only a single
linear solution of the oscillator’s time- or frequency-domain
steady-state Jacobian matrix. The new methods are better suited
for implementation in existing tools with harmonic balance or
shooting capabilities (especially those incorporating “fast” vari-
ants), and can also be more accurate than explicit eigenanalysis.
A key advantage is that they dispense with the need to select the
correct one eigenfunction from amongst a potentially large set
of choices, an issue that explicit eigencalculation-based methods
have to face. We illustrate the new methods in detail using LC and
ring oscillators.

Index Terms—Eigenvalues and eigenfunctions, iterative
methods, oscillator noise, phase jitter, phase noise, reduced-order
systems, timing jitter.

I. INTRODUCTION

A N IMPORTANT consideration during the design of com-
munication systems is the phase noise performance of

oscillators. Phase noise corrupts spectral purity and generates
large power content in a continuous spread of frequencies
around the desired oscillator tone, thus, contributing to adjacent
channel interference. In clocked circuits, phase noise manifests
itself as timing jitter, which leads to synchronization inaccura-
cies and eventually degrades system performance and bit error
rate.

During system and circuit design, the usual procedure is to
first estimate the phase noise or jitter of an oscillator, and to use
this phase noise figure in an abstract representation of the os-
cillator. For example, it can be useful to represent an oscillator
or a voltage-controlled oscillator as depicted in Fig. 1, i.e., as
a time-domain Simulink, MATLAB, or AHDL model that pro-
duces as output a phase that contains a random component rep-
resenting phase noise/jitter. The center frequency can be found
easily from a steady-state solution of the oscillator. Character-
ization of the random phase noise or jitter component is more
involved, and a simple, reliable, easy-to-implement procedure
has been lacking.
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Fig. 1. Simple phase macromodel for oscillator.

Indeed, only recently has a rigorous understanding of the
phase noise phenomenon in oscillators been developed [3], [4],
despite long-standing interest in the problem.1 A central conclu-
sion of this new understanding is that the phase noise or jitter can
be captured by a single scalar constant, a statistical quantity
representing the variance of the per cycle jitter in the oscillator.
In fact, knowledge of suffices to complete the macromodel in
Fig. 1.

The per cycle jitter depends not only on the noise generators
in the oscillator, but also on a periodic vector function ,
termed theperturbation projection vectoror PPV. is given by,
e.g.,

(1)

where is the period and the steady-state solution of the un-
perturbed oscillator [4], while encapsulates the noise contri-
butions and bias-dependent noise modulations of the elemental
device noise sources. The PPV can be intuitively thought of as
the sensitivity of the per cycle jitter variance to current pertur-
bations at the nodes of the oscillator. Calculating the PPV is the
primary nontrivial step in finding (hence in forming an oscil-
lator phase noise macromodel).

In prior work [4], we presented a PPV calculation technique
that we will term themonodromy matrix method. This method
computes the state-transition (ormonodromy) matrix of the
linearized oscillator’s adjoint differential equations by reverse
time-domain numerical integration. Eigendecomposition of
the monodromy matrix to find the eigenpair of the oscillatory
mode2 yields the PPV.

1A varied and extensive literature, developed over many decades, exists on
the phase noise problem. We do not provide a review of prior work here as it is
not central to our contribution, but we refer the interested reader to, e.g., [4], [6].

2Corresponding to eigenvalue 1, existence of which is guaranteed by Floquet
analysis of orbitally stable oscillators (see e.g., [5]).
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The monodromy matrix method, when carefully imple-
mented, constitutes a significant advance over previous
techniques for phase noise modeling in that it is based on a
rigorous foundation that is uniformly applicable to any kind
of oscillator. Its widespread adoption has, however, been
hampered by two practical disadvantages. The first concerns
locating the eigenpair of the oscillatory mode. Inaccuracies
that are inevitable in any numerical procedure, and particularly
in time-domain integration, often corrupt the oscillatory-mode
eigenvalue of 1 to the extent that it cannot be distinguished
from other eigenvalues of the system that are close to 1. This is
particularly true for many LC oscillators. In such situations, a
potentially large number of candidate PPVs are typically found
and one chosen using heuristics, a process that is inconvenient
and not entirely reliable.

Further, the monodromy matrix technique is inherently a
time-domain procedure, requiring as it does the implementation
of reverse time-domain integration of an adjoint system defined
by a series of linearized oscillator matrices. Implementation
of these operations in frequency-domain simulators based on
harmonic balance (HB) can be very inconvenient. Reverse
integration is often unavailable even in existing time-domain
simulators and may require significant changes to core simula-
tion routines.

In this paper, we provide new computational procedures for
the PPV that alleviate both these disadvantages. The key to
the techniques is that they do not form the monodromy matrix.
Instead, they reuse the frequency- or time-domain Jacobian
matrices of the oscillator that are formed during steady-state
computation. A single linear equation solution with the Jacobian
matrix suffices to find the PPV unambiguously. This is possible
because the new methods locate the correct PPV directly by
embedding exact periodicity and an orthonormality condition
implicitly into the one-step calculation.

No eigencalculation is involved, and even for very large sys-
tems, the linear solution can be performed efficiently using fast
methods for steady-state calculation (e.g., [2], [7], and[9]). The
methods are easy to implement in existing simulators, since
they require only an extra linear solution of the same Jaco-
bian matrix that is generated and solved at each Newton step
of the steady-state calculation, whether by HB or time-domain
methods like shooting. This computation is negligible compared
to that for obtaining the steady state. Note that variants of the
monodromy matrix method, which use iterative techniques for
eigencalculations, can achieve similarly low computation; how-
ever, in addition to the implementation complexity of reverse
integration, iterative eigencalculations can further increase am-
biguity in the selection of the oscillatory-mode eigenvalue.

The new techniques inherit the accuracy properties of the
underlying steady-state method used to generate the Jacobian
matrices. In particular, the frequency-domain version fully ex-
ploits the inherent matrix conditioning and accuracy advantages
of HB. Time-domain numerical integration errors that lead to
ambiguous eigenvalues in the monodromy matrix method do
not create any similar problem for the new methods, due to
the orthogonality condition that is implicitly embedded. Even
though accuracies in time-domain computations are typically
lower than in frequency-domain ones, the results are usually
more than adequate in the context of the circuit or application.

If perfect numerics and no discretization errors were pos-
sible, the proposed procedure as well as the monodromy matrix
method would calculate the exact PPV, because eigenanalysis
in the monodromy matrix method would identify the oscilla-
tory-mode eigenvalue of exactly one uniquely. In the presence
of discretization and finite–precision arithmetic, however, the
monodromy matrix method is no longer able to identify the
oscillatory eigenmode uniquely; it must therefore select from
among a number of potential eigenvalue choices. One way to
make this choice is to investigate which eigenvector is “nearest”
to orthonormality with the tangent to the steady-state solution.
However, in general there is no guarantee that any of the
candidate eigenvectors will be appreciably more orthonormal
than the others, leading to a potential breakdown of the mon-
odromy matrix method. In contrast, the new procedure, based
on a linear matrix solution, remains well-defined and consti-
tutes an unambiguous procedure to determine the PPV. The
accuracy of this procedure degrades in the same manner, and
for the same causes, as that of the underlying steady-state
computation. In this context, the ambiguity of the monodromy
matrix procedure can be thought of as stemming from its not
making full use of underlying structure in the PPV problem.

Proof of correctness of the new methods relies on a link, es-
tablished in Section II, between the PPV and the null space of the
oscillator’s frequency- and time-domain steady-state Jacobians.
In Section III, we apply the new methods to two LC oscillators
(including an example from industry) and a ring oscillator.

II. RELATIONSHIP OF THEPPV TO THE OSCILLATOR’S
STEADY-STATE JACOBIAN

We consider an orbitally stable oscillator with a single oscil-
lation mode, described by the DAE system

(2)

We assume that this system has a known periodic solution
. The linearization of (2) around the solution is (e.g.,

[3] and[4])

(3)

and are periodic matrices. The rankof can
be less than the system size; is assumed independent of.

It can be shown (e.g., [3]) that, under reasonable assumptions,
the state-transition matrix

with (4)

satisfies (3). and are periodic matrices of full rank
satisfying the biorthogonality condition

(5)

are the Floquet eigenvalues. Since the system
has an oscillatory mode, one of these is zero, say . The
Floquet eigenvectors corresponding to this mode are the first
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columns of and , denoted by and , respec-
tively. It can be shown that can be taken equal to
without loss of generality [3] and computed easily from the
known large-signal periodic solution. Our goal is to calculate
the other oscillatory-mode Floquet eigenvector, .

It can be easily verified that the adjoint of (3), defined by

(6)

has the state-transition matrix

(7)

which satisfies (6).
Before proceeding to connections with steady-state matrices,

we establish the following two results (proofs are given in the
Appendixes I and II):

Lemma II.1:

satisfies (3)

satisfies (6) (8)

where is the first unit vector, corresponding to .
Lemma II.2:

where (9)

A. Frequency-Domain Computations

Frequency-domain computations are natural for many appli-
cations, e.g., mildly nonlinear RF system components. We cast
and apply (9) using frequency-domain quantities to establish a
connection with HB.

We first develop some useful algebra involving Toeplitz
matrices of Fourier components.

Definition II.1: Given any -periodic vector or matrix ,
we denote its Fourier components by, i.e.,

(10)

Definition II.2: Given any vector or matrix , define the
block vector of its Fourier components to be

...

...

(11)

Definition II.3: Given any matrix or vector , define the
block-Toeplitz matrix of its Fourier components to be

...
...

...
...

...

...
...

...
...

...
(12)

Lemma II.3: If and are -periodic vectors or
matrices, and , then

(13)

(14)

Lemma II.4: If is a -periodic vector or matrix, then

(15)

(16)

where

...

...
(17)

We are now in a position to use the above definitions and
lemmas. Applying (13) and (15) to (3), we obtain the linearized
HB equations

(18)

Next, we state an important intermediate result:
Lemma II.5:

(19)

and

(20)

We concentrate on a single row of (20) by premultiplying

by , where is a unit vector (of size ) chosen to
correspond to the oscillatory mode ( ) of the system.

Theorem II.1:

(21)
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Remark II.1: From (21), we observe that [i.e., the
vector of Fourier components of ] is in the null space of

, and that is singular.
Next, consider the augmented HB matrix
Definition II.4—Augmented HB Matrix for Oscillators:

with (22)

where , , and are column vectors, andand scalars.

is the HB matrix augmented with a row and column, which
are chosen to make it nonsingular. The following theorem estab-
lishes a simple means of computing the last row of its inverse.

Theorem II.2: If and is nonsingular, then

(23)

Remark II.2: is the vector of the Fourier

coefficients of , i.e., .

Remark II.3: is the conjugated vector of the

Fourier components of , i.e., .
Corollary II.1: From (22), is the solution of the system

(24)

hence, [i.e., the Fourier coefficients of ] is the
solution of

(25)

Remark II.4: The augmented HB matrix , with

, arises naturally as the Jacobian matrix
of the oscillator’s steady-state equations augmented by a phase
condition, with the frequency of oscillation as an additional
unknown. Hence, from (25), the Fourier coefficients of
can be obtained from a single solution of the Hermitian of
the augmented HB Jacobian of the oscillator, with right-hand
side equal to a unit vector with value 1 in the phase condition

equation. By exploiting circulant approximations to and
applying iterative linear methods to solve (24), this computation
becomes approximately linear in the system size.

We note that the accuracy of the calculation (25) is domi-
nated primarily by the smallest of the nonoscillatory eigenvalues

.3 For high- oscillators, some of these eigenvalues
can be very close to zero themselves. Since finding the steady-
state solution of the oscillator is itself dependent on accurate
solutions with the augmented HB matrix, it is to be expected
that will also be found to a similarly acceptable accuracy.

3The� = 0 eigenvalue of the nonaugmented HB Jacobian is shifted to a
nonzero value by the augmentation, resulting in a nonsingular augmented HB
Jacobian.

This indicates that the main issue in calculating by (25)
is the accurate formation of, and solution with, the augmented
HB matrix—a task that has already been accomplished during
steady-state solution.4

Direct approaches to calculating , based on finding the
1-eigenpair of the system’s state-transition or monodromy ma-
trix, do not exploit the accuracy of the steady-state calculation
to the same extent as (25). In the absence of a periodicity condi-
tion, transient integration errors can accumulate in computing
the monodromy matrix, causing the oscillatory eigenvalue to
become numerically indistinguishable from other eigenvalues
close to 1. Hence, several eigenvectors corresponding to mul-
tiple eigenvalues close to 1 often need to be found, followed
by subsequent selection of using the criterion of orthogo-
nality with . This orthogonality criterion is effectively
embedded into (25), due to augmentation with; as a result,
calculation of multiple eigenvectors and subsequent selection is
eliminated.

B. Time-Domain Computations

Time-domain computations are useful for systems with
strong nonlinearities, such as ring oscillators. We first establish
some notation.

Definition II.5: Denote by a set of or-
dered sample points of the interval .

Definition II.6: Given any -periodic vector or matrix ,
define

...
(26)

Definition II.7: Given any -periodic matrix or vector ,
define the block-diagonal matrix of its samples to be

...
(27)

Lemma II.6: If and are -periodic vectors or
matrices, and , then

(28)

(29)

Proof: Follows directly from definition of and .
Lemma II.7: If is a -periodic vector or matrix, then

(30)

4Note that all matrix computations are performed not with infinite matrices,
but with finite-dimensional circulantapproximations that arise naturally in fast
HB algorithms. See, e.g., [8] for details.
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where is a time-domain matrix that approximates differenti-
ation, corresponding to a linear multistep formula. For example,

for the Backward Euler method is

...

...
. . .

Proof: Follows directly from the definitions of and
and linear multistep formulas for differentiation.

We now establish the time-domain analog of (21)
Theorem II.3:

(31)

(32)

and are the forward and reverse time–domain Jacobian
matrices, respectively. Next, consider the augmented Jacobian.

Definition II.8:

(33)

where and are column vectors and is a scalar. is the
reverse time-domain Jacobian matrix augmented with a row and
column, chosen to make it nonsingular.

Solving the following augmented Jacobian system results di-
rectly in the PPV

Theorem II.4: If and is
nonsingular,

(34)

has solution .
As in the frequency-domain case, the equation system (34)

can be solved efficiently with iterative methods, as a final step
after solving the time-domain steady-state equations of the
system.

Fig. 2. Oscillator steady-state: voltage at capacitor.

III. EVALUATION OF THE NEW TECHNIQUE

In this section, we apply the time- and frequency-domain
methods presented above to three oscillators. The first is an LC
oscillator from Motorola. The remaining two examples (another
LC oscillator and a three-stage ring oscillator) are provided with
full details of the differential equations, to facilitate reproduc-
tion and verification of our results.

A. 160-kHz Motorola LC Oscillator

To evaluate the new method, it was compared against the es-
tablished method that uses monodromy matrix eigendecompo-
sition. The steady-state of a tank–circuit-based oscillator was
computed using HB with harmonics, resulting in

distinct frequency components. The frequency of oscilla-
tion was 159 154.853 364 298 Hz. The time-domain voltage
waveform at the tank capacitor is shown in Fig. 2.

The PPV was first determined through the time-domain
monodromy matrix by computing its 1-eigenpair using itera-
tive linear methods followed by manual selection from among
candidate eigenpairs. The eigenvector thus obtained was then
used as an initial condition for a transient simulation of the ad-
joint system, using a time–step corresponding to an oversam-
pling factor of 4 (i.e., timepoints) to limit accuracy loss from
linear multistep formulae for DAE solution. The result of this
transient simulation, after normalization, is the conventionally
computed PPV. We refer to as .

The new method described above simply computes the
system (25) directly from the oscillator’s HB Jacobian, with
a single iterative linear solve. No oversampling is used by the
method. The PPV obtained in this manner is denoted by .

Fig. 3 depicts the components of (solid red line)
and (black marks) corresponding to the capacitor
node. It can be seen that the PPV waveforms produced by
the two methods are visually indistinguishable from each
other. A more critical assessment of the two methods can be
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Fig. 3. Capacitor node of PPVsv andv .

Fig. 4. Errors in the PPV obtained using the monodromy and new methods.

made using the fact that .5 We plot the error
versus

in Fig. 4. The solid line indicates , the error of the new
method, while the marks indicate . The new method is
about two orders of magnitude more accurate than monodromy
matrix eigendecomposition, despite the 4oversampling used
by the latter method.

B. 900 MHz, -Based LC Oscillator

The new techniques were also applied to anLC oscillator de-
scribed by the following differential equations:

(35)

5See, e.g., [5]. Note thatu (t) defined in (8) is identical top(t) =

.

Fig. 5. v(t) PPV component via HB, 900 MHz oscillator.

In the above equations,, , and correspond to the induc-
tance, capacitance, and resistance of anLCRtank circuit. and

capture essential parameters of the negative-resistance non-
linearity that enables oscillations: corresponds roughly to
the power–supply rail voltage, while is the maximum (neg-
ative) conductance of the negative-resistance circuit. The circuit
exhibits autonomous oscillations when .

The circuit was simulated with the following parameters:

nH

pF

(36)

These correspond to a natural frequency of about 918 MHz, a
of about 4, a voltage swing of about 1 V, and relatively “linear”
oscillation. These values are typical for on-chip RF oscillators
with integrated spiral inductors.

The steady-state and the PPV of the oscillator were obtained
independently using both HB and time-domain computations
(i.e., the techniques described in Sections II-A and II-B) and
compared, as described below. HB computations were carried
out using 30 positive harmonic components for the steady-state,
i.e., a total of 61 harmonic components including DC. The
PPV waveforms were computed efficiently using the new
technique, and compared with full eigendecomposition of the
transposed (nonaugmented) HB matrix [refer to (21)]. The
results are shown in Figs. 5 and 6 (the time-domain waveforms
shown were obtained by post-processing results from the
frequency-domain). The results from linear solution can be
seen to be identical to those from explicit eigendecomposition.
Furthermore, it can be seen from Fig. 6 that the result is
accurate almost to machine precision.

Next, time-domain computations (based on FDTD using
trapezoidal integration) were carried out. In order to make a
fair comparison with HB, 61 equally spaced timepoints were
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Fig. 6. Error in PPV orthogonality condition (HB), 900 MHz oscillator.

used. There were small differences in the solutions compared
to those from HB above, including in the oscillation frequency
(918.798 MHz versus 917.986 MHz). The results from FDTD
were less accurate (though still perfectly acceptable) than
from HB. The reason for this is that the HB equations are
exact for the fundamental Fourier component, the dominant
mode of operation for this circuit; in particular, numerical
differention in HB is exact. Any time-domain method based
on linear multistep integration formulae, in contrast, inevitably
approximates the differention operation.

C. Three-Stage Ring Oscillator

The proposed methods were also used to analyze a three-ring
oscillator described by the following differential equations:

(37)

The circuit was simulated with the following parameters:

F k (38)

These parameters result in an oscillation frequency of about 153
Hz and a peak-to-peak swing of about 1.2 V.

HB computations were carried out using 30 positive harmonic
components for the steady-state, i.e., a total of 61 harmonic
components including dc. The results are shown in Figs. 7–9.
All time-domain waveforms were obtained by post-processing
results from the frequency-domain. The results from linear so-
lution can be seen to be identical to those from explicit eigende-
composition. The PPV orthogonality error is quite low at about

140 dB (Fig. 9).
Time-domain computations (based on FDTD using trape-

zoidal integration) were carried out with 61 equally-spaced
timepoints. As with theLC oscillator above, the results are not

Fig. 7. Steady-state waveform via HB, ring oscillator.

Fig. 8. v PPV component via HB (time-domain), ring oscillator.

Fig. 9. Orthogonality error in PPV via HB, ring oscillator.
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Fig. 10. Orthogonality error in PPV via FDTD, ring oscillator.

exactly identical to those from HB. In particular, the orthog-
onality condition error (shown in Fig. 10) at about40 dB
is considerably worse than that using HB computations. This
error may be acceptable in many situations; when it is not (and
HB solution is not feasible), more timepoints and higher order
integration formulas can be used for greater accuracy.

APPENDIX I
MATRIX NOTATION FOR JACOBIANS

Lemma II.3: If and are -periodic vectors or
matrices, and , then

(39)

(40)

Proof: From definition,

(41)

Equation (13) follows directly.
Next, we rewrite (41) as

(42)

Equation (42) yields theth block–column of , hence, (14)
follows.

Lemma II.4: If is a -periodic vector or matrix, then

(43)

(44)

where
...

...

(45)

Proof: Using

(15) and (16) may be verified directly.
Lemma II.6: If and are -periodic vectors or

matrices, and , then

(46)

(47)

Proof: Follows directly from definition of and .
Lemma II.7: If is a -periodic vector or matrix, then

(48)

where is a time-domain matrix that approximates differenti-
ation, corresponding to a linear multistep formula. For example,

for the Backward Euler method is

...

...
. . .

Proof: Follows directly from the definitions of and
and linear multistep formulas for differentiation.

APPENDIX II
PROOFS OFTHEOREMS ANDLEMMAS

Lemma II.1:

satisfies (3)

satisfies (6) (49)

where is the first unit vector, corresponding to .
Proof: By definition of the state-transition matrix,

satisfies (3) with initial condition at .
Now,

The proof for proceeds similarly, using and (6).
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Lemma II.2:

where (50)

Proof:

[from (4)]

[using (5)]

Also,

[using (3)]

Hence,

Postmultiplying by and applying (5), we obtain

Setting and using the diagonal properties of and
, we obtain

From the definition of , we have

Using (6), we obtain

Premultiplying by and setting , we obtain

Postmultiplying by , we have

Lemma II.5:

(51)

and

(52)

Proof: We first note that, from (14) and (5),

(53)

Applying (14) and (16) to (9), we obtain

[using (53) and (18)].

Similarly,

From the diagonal structure of and , we have
, and the assertions follow.

Theorem II.1:

(54)

Proof: Premultiplying (20) by and noting that

, we have

From the definition of and using , we have

and , proving the result.

Theorem II.2: If and is nonsingular, then

(55)

Proof: From (22) and , we have

[using (21)].

Theorem II.3:

(56)

(57)
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Proof: The results follow from applying (28) and (30) to
(3) and (6) and using (8).

Theorem II.4: If and is
nonsingular,

(58)

has solution .

Proof: Because is nonsingular, (34) has a unique so-

lution. We show that satisfies (34). We have

From (32), , hence the first equation is satisfied. Ap-
plying (28) to the transpose of (5), we have

Since , we have

Hence, the second equation is also satisfied, and the result is
proved.
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