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Analyzing Oscillators Using Multitime PDEs
Onuttom Narayan and Jaijeet Roychowdhury

Abstract—Oscillators are often difficult to analyze or simulate,
because they generate waveforms that can span a range of widely
separated time scales. We present a general oscillator formulation
that separates slow and fast dynamics without approximations,
and captures amplitude and frequency modulation in a natural
and compact manner. To handle frequency-modulation effectively,
we make use of a novel concept,warped time, within a multitime
partial differential equation framework. The equations incor-
porate an explicit time-varying frequency variable that matches
intuitive notions of changing frequency in a frequency-modulated
signal. The formulation is useful for both hand analysis and
numerical simulation.

Index Terms—Frequency modulation (FM), multitime partial
differential equation (MPDE).

I. INTRODUCTION

OSCILLATORS are ubiquitous in nature and can be found
in a variety of physical systems. They are important in

engineering and communications; for example, voltage-con-
trolled oscillators (VCOs), phase-locked loops (PLLs), lasers,
etc., abound in wireless and optical systems. When driven (or
forced) by external signals, oscillators can exhibit complex
dynamics, such as frequency modulation (FM), entrainment
or injection locking, period multiplication and chaos. Despite
their universality, understanding of such systems is far from
complete, and it is often difficult to analyze or predict the
response of a general autonomous system in a satisfactory and
reliable manner.

In this paper, we present a new approach for analyzing fre-
quency and amplitude modulation in oscillators. The approach
is a generalization of a recent multiple-time scale analytical for-
mulation, the multitime partial differential equation (MPDE)
[1], [2] for nonoscillatory dynamical systems. The MPDE is not
well suited to analyzing FM, particularly FM with high mod-
ulation indices—a phenomenon that occurs in oscillatory sys-
tems and is often used in applications. In this paper, we dynam-
ically rescale (“warp”) the time axis to make the undulations of
the FM signal uniform, therefore easy to represent compactly
as periodic or quasi-periodic1 functions. The rescaling func-
tion is not knowna priori, but becomes an unknown function
that is solved for along with the rest of the system to yield a
time-varying local frequency for the oscillator. These concepts
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1The termquasi-periodicis defined in, e.g., [2], [3]. In this paper, we will use
the looser interpretation mentioned in Section II.

are embedded within the framework of multiple time scale anal-
ysis of dynamical systems. This achieves a symbolic separation
of the (typically slow) rates of FM and amplitude modulation
(AM) from the (much faster) nominal oscillation rate. The re-
sulting formulation is a multi-time partial-differential equation
in warped and unwarped time scales, together with a mapping
between multi-time and single-time functions. We dub this the
WarpedMPDE (WaMPDE).

The WaMPDE can be directly applied to oscillators for which
simple closed-form equations are available (e.g., the neoclas-
sical equations for lasers [4]) in order to obtain useful qualita-
tive and quantitative results. It can also be used to derive effi-
cient numerical methods for simulating oscillators described by
large or complicated equation systems, that are not amenable to
hand analysis. This is possible because the equivalence between
the WaMPDE and the original dynamical equations of the oscil-
lator does not rely on approximations. Numerical computations
using the WaMPDE can be performed using time-domain or
frequency-domain methods, or combinations. In particular, ex-
isting codes for the MPDE, or steady-state simulation methods
like shooting or harmonic balance, can be modified easily to
perform WaMPDE-based calculations. If iterative linear-equa-
tion solvers (e.g., [5]–[8]) are used for underlying computations,
large dynamical systems can be simulated efficiently.

Most previous works on oscillators start from single-time
differential equation descriptions. Works geared toward prac-
tical oscillator design typically linearize the oscillator equations
(e.g., [9]–[12]). This is a very approximate approach that cannot
predict important qualitative properties of oscillators (such as
amplitude stability, since nonlinearity is essential for orbitally
stable limit cycles [13]). Nevertheless, linearization does
provide useful partial insights into oscillator operation, such
as the well-known Barkhausen oscillation criterion. Nonlinear
analyzes (e.g., [14]–[16], [13], [17]) have largely been of
oscillators with simple closed-form differential equations, such
as the van der Pol equation [18]. Many studies (see, e.g., [19],
[20]) have focused on chaos and subharmonic generation in
simple nonlinear oscillators, such as the Lorenz attractor [21]
and Chua’s circuit [22]. Comparatively little attention appears
to have been paid to the dynamics of phenomena like FM-type
quasi-periodicity, despite their widespread application.

A previous analytical technique with similarities to our
present approach is the multiple-variable expansion procedure
(e.g., [23], [24]) that relies on asymptotic expansions. This is
intrinsically a perturbation approach, useful mainly for simple
harmonic oscillators with small nonlinear perturbation terms
and without external forcing. Another technique somewhat
related to the present work is the slowly-varying envelope
approximation (SVEA) (e.g., [4]), an analytical approach that
is used to derive approximate equations for slowly-varying
quantities from closed-form oscillator differential equations
(ODEs). The WaMPDE can be considered a generalization of
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the SVEA; in fact, the SVEA can be derived from the WaMPDE
by expanding the oscillation time scale in a Fourier basis and
applying approximations.

For the design and verification of practical oscillators, com-
puter simulation is often the only choice as simple closed-form
equations are often unavailable. Unfortunately, simulation of
oscillators using time-stepping differential equation solvers
such as SPICE [25], [26] presents unique difficulties absent
in nonautonomous systems. A fundamental problem is the
intrinsic phase-instability of oscillators, i.e., the absence of a
time reference. As a result, numerical errors grow and phase
error increases unboundedly in the course of numerical ODE
solution, and this problem is exacerbated in large systems of
equations. For unforced oscillators in periodic steady state,
boundary-value methods such as shooting [20], [27]–[29], and
harmonic balance [24], [30]–[35] can be used to obtain both the
time period and the steady-state solution. Neither shooting nor
harmonic balance can be applied, however, to forced oscillators
with FM-quasi-periodic responses, as they require an imprac-
tically large number of time steps or variables. In practice,
the separation of the time scales is often reduced artificially
to make the problem tractable, but such ad-hoc approaches
can lead to qualitatively misleading results. WaMPDE-based
numerical methods can efficiently simulate large systems with
amplitude and FM in the presence of widely separated signal
rates and strong nonlinearites. In addition, they alleviate the
phase-error-accumulation problem greatly by decoupling the
integration of the phase error completely from the solution of
the rest of the system. Further generalizations of the WaMPDE,
potentially applicable to more complex oscillatory systems, are
presented in Appendix.

Previous efforts to generalize the MPDE to autonomous sys-
tems [36] used nonrectangular boundaries in the multiple time
domain to capture frequency variation. This approach is how-
ever limited to oscillations that eventually become periodic, and
cannot, for instance, accommodate FM-quasi-periodicity (see
the Appendix).

The remainder of the paper is organized as follows. Sec-
tion II contains a discussion of multiple time scales and warped
time, the use of which to develop the WaMPDE is presented
in Section III. In Section IV, numerical methods based on
the WaMPDE are applied to simulate a VCO and the results
compared against time-stepping simulation.

II. WARPED TIME AND MULTIPLE TIME SCALES

In this section, we introduce several preliminary concepts in
order to motivate the steps in Section III. We first review why
it is advantageous to use two or more time scales for analyzing
quasi-periodic signals, using AM signals for illustration. Then,
we show that although FM signals can be quasi-periodic, the
multitime approaches that work for AM (or immediate exten-
sions thereof) do not confer the same advantages. Next, we in-
troduce the concept of warped time and show how it can be used
to remedy the situation for FM. We discuss the important issue
of ambiguities in the concept of local frequency, and show how
to obtain a useful definition that is consistent with intuition.

Fig. 1. Example of two-tone quasi-periodic signaly(t).

Consider the waveform shown in Fig. 1, a simple
two-tone quasi-periodic2 signal given by

s s

(1)

The two tones are at frequencies Hz and
Hz, i.e., there are 50 fast-varying sinusoids

of period s modulated by a slowly-varying sinusoid
of period s. Such multirate waveforms, i.e., with two or
more “components” varying at widely separated rates, arise in
many situations.

For , we have a compact closed-form representation in
the form of (1). However, for most differential-algebraic equa-
tion (DAE) descriptions of oscillators, it is usually not possible
to find closed-form expressions for their waveforms, yet com-
pactness of representation is valuable for both analytical and nu-
merical purposes. We will measure compactness of representa-
tion through the number of samples from which the signal can
be reconstructed, to within a desired accuracy. This measure is
not only directly useful for numerical purposes, but because of
its links to bandwidth through Shannon’s sampling theorem, is
also valuable for analytical purposes.

For above, the samples need to be spaced closely enough
to represent each rapid undulation accurately. If each fast sinu-
soid is sampled at points, the total number of time steps needed
for one period of the slow modulation is . To generate
Fig. 1, 15 points were used per sinusoid, hence the total number
of samples was 750. This number can be much larger in applica-
tions where the rates are more widely separated, e.g., separation
factors of 1000 or more are common in electronic circuits. Also,
while the particular in (1) can be compactly represented in
the frequency domain with only two Fourier components, the
same is not true for, e.g., the product of a sine wave and a square
wave. Hence frequency-domain representations do not, in gen-
eral, solve the problem of inefficient representation of multi-rate
signals.

2Although this signal is strictly periodic (with period 1s), its significance is
that it can be written asy(t) = ŷ(t; t), whereŷ is periodic in each of its ar-
guments [e.g., as in (2)]. We will use the termquasi-periodicthroughout this
paper for any such signals, without insisting that the periods ofŷ be mutually
incommensurate (which is the strict definition).
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Fig. 2. Corresponding two-periodic bivariate form̂y(t ; t ).

Now consider a multivariate representation of , obtained
as follows: for the “fast-varying” parts of is replaced by
a new variable ; for the “slowly-varying” parts, by . The
resulting function, now of two variables, is denoted by

(2)

Note that is periodic with respect to both and ,
i.e., . The plot of on the
rectangle is shown in Fig. 2. Because

is biperiodic, this plot repeats over the rest of the– plane.
Note also that does not have many undulations, unlike

in Fig. 1. Hence it can be represented by relatively few
points, which, moreover, do not depend on the relative values
of and , unlikeFig. 1. Fig. 2 was plotted with 225 samples
on a uniform 15 15 grid—three times fewer than for Fig. 1.
This saving increases with increasing separation of the periods

and .
Note further that it is easy to recover from ,

simply by setting , and using the fact that is
biperiodic. Given any value of, the arguments to are given
by . When the time scales are widely separated,
inspection of the bivariate waveform directly provides informa-
tion about the slow and fast variations of more naturally
and conveniently than itself.

The above discussion illustrates two important features: 1.the
bivariate form can require far fewer points to represent numer-
ically than the original quasi-periodic signal, yet 2.it contains
all the information needed to recover the original signal com-
pletely. These concepts are the key to the MPDE approach [1],
[2] for analyzing nonautonomous systems. The basic notion is to
solve directly for the compact multivariate forms of a DAEs so-
lution. To achieve this, the DAE is replaced by a closely-related
PDE called the MPDE. By applying boundary conditions to the
MPDE and solving it with numerical methods, the multivariate
solutions are obtained efficiently. The univariate solution of the
original DAE can be easily computed from the multivariate so-
lution of the MPDE; often, however, information of interest can
be obtained directly by inspecting the multivariate solution. We
refer the reader to [2] for further details.

When the DAEs under consideration contain autonomous
components, FM quasi-periodicity can be generated. FM

Fig. 3. FM signal.

Fig. 4. x̂ : unwarped bivariate representation of FM signal.

cannot, in general, be represented compactly as in Fig. 2. We
illustrate the difficulty with an example. Consider prototypical
FM signal

(3)

with instantaneous frequency

(4)

is plotted in Fig. 3 for MHz, KHz, and
modulation index . Following the same approach as for
(1), a bivariate form can be defined to be

with (5)

Note that is periodic in and , hence is quasi-pe-
riodic with frequencies and . Unfortunately, , il-
lustrated in Fig. 4, is not a simple surface with only a few undu-
lations like Fig. 2. When , i.e., for some large
integer , then will undergo about oscillations as
a function of over one period . In practice, is often of
the order of , hence this number of undulations
can be very large. Therefore, it becomes difficult to represent

efficiently by sampling on a two-dimensional grid. It is also
clear, from Fig. 4, that representing (3) in the frequency domain
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will require a large number of Fourier coefficients to capture the
undulations.

A plausible approach toward resolving this representation
problem is based on the intuition that FM is a slow change
in the instantaneous frequency of a fast-varying signal. In the
multivariate representation (2), the high-frequency component
is the inverse of , the time period along the (fast) time
axis. It is natural to hope, therefore, that FM solutions can be
captured by making this time-period change along the slow
time axis , i.e., change to a periodic function , itself
periodic with period . Unfortunately, it can be shown ([2],
and reproduced here in Appendix) that FM quasi-periodicity in
a DAE cannot be captured by making a function of .3 It is
easy to see qualitatively why this is the case. Although Figs. 2
and 4 show the signal over only one period in each of the two
time directions, the bivariate form is actually periodic over
the entire – plane. However, making the time-period a
function turns the rectangular domain
(of Figs. 2 and 4) into a nonrectangular domain of variable
width (illustrated in Fig. 15 in theappendix). While it is possible
to obtain a periodic function on the – plane by placing
rectangular boxes side by side to tile the entire plane, it is
obvious that this cannot be done with boxes of variable width.

The WaMPDE approach of this work resolves this problem
by preserving the rectangular shape of the domain boxes, and
bending the path along which is evaluated away from the
diagonal, so that its slope changes slowly. Since along the bent
path , but is no longer equal to, we refer to as a
warped time scale. As mentioned in Section I, this stretches and
squeezes the time axis differently at different times to even out
the period of the fast undulations.

We illustrate this by returning to (3). Consider the following
new multivariate representation:

(6)

together with the warping function

(7)

We now retrieve our one-dimensional (1-D) FM signal (i.e., (3))
as

(8)

Note that both and , given in (6) and (7), can be easily
represented with relatively few samples, unlike in (5).
and are plotted in Figs. 5 and 6. Note further that is the
sum of a linearly increasing term and a periodic term, hence its
derivative is periodic. This periodic derivative is equal to the
instantaneous frequency, given in (4), of . We will elaborate
further on the significance of shortly.

It is apparent that there is no unique bivariate form and
warping function satisfying (8)—for example, two repre-
sentations and have already been given (the warping

3Nevertheless, Brachtendorf [36] has shown that this concept can be used to
analyze transients in the special case of oscillators that eventually becomeT

periodic.

Fig. 5. x̂ : warped bivariate representation of FM signal.

Fig. 6. �(� ): time warping function.

function for is ). More generally, any warping
function can be chosen, but at the possible cost of a resulting
bivariate representation that is not compact. To find an efficient
bivariate representation, a crucial step in our approach is to
avoid specifying the function a priori, but to impose a
smooth “phase” condition instead on the bivariate function, and
use this to calculate. The phase condition can, for instance,
require that the phase of the-variation of the function should
vary only slowly (or not at all) as is changed. Alternatively,
a time-domain condition on the bivariate function (or a deriva-
tive) can be specified. For example, consider the requirement
that the -derivative along the line be a slowly-varying
function of

(9)

together with

(10)

As is easily verified, these conditions lead to the following so-
lutions for and

(11)
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Although and are not identical to and in (6) and (7),
they retain the desired property of being easy to sample.

As already noted, when and in (6) and (7) are chosen to
be the warped bivariate representation of , the instantaneous
frequency in (4) is the derivative of . The derivative of ,
on the other hand, differs from the instantaneous frequency by
the constant . At first sight, this seems to pose a parodox:
different choices of differ in their derivatives; the previous
discussion has hinted that this derivative is equal to (or related
to) the instantaneous frequency; hence, how can one say for cer-
tain what the frequency is at any given instant? The resolution
to this lies in the fact thatall choices of that result in com-
pact representationswill differ in their derivatives
by amounts only of the order of the slow frequency. When
the fast frequency is much greater than the slow one, this differ-
ence is small compared to the instantaneous frequency in (4),
therefore, the termlocal frequencyfor is justified.
The utility of the local frequency is that it is concretely defined
for anyFM signal (possibly with nonsinusoidal waveforms and
varying amplitudes), not just the ideal one of (3), yet retains
the essential intuition of FM. The ambiguity in , of
order , is quite reasonable, since the intuitive concept of fre-
quency is only meaningful to the same order. It should be kept
in mind, of course, that concepts of varying frequency make in-
tuitive sense only when the fast and slow time scales are widely
separated.

The time-warping concept can also be understood in a dif-
ferent, visual, manner. The difficulty in using of (5) is due
to the fact that changing by even a small amount results in a
large change in the phase of the outer cosine function, because

is large. Thus, the function is the same on all lines parallel
to the axis, except for a phase that differs substantially for
even lines that are nearby. The representation problem that this
causes can be dealt with by sliding these lines up and down in
the direction till there is no variation (or slow variation) in the
phase from one line to another. This results in changing the rect-
angular domain box of Fig. 2 to a nonrectangular one, but whose
width is constant(i.e., with curved but parallel boundaries). In
addition, the straight-line path changes to a curved path
because of the phase adjustment. The doubly periodic bivariate
representation can be obtained by tiling the- plane with the
curved domain boxes (possible because the width is constant);
in fact, after extending the function to the entire plane, it is pos-
sible to redefine the domain box to be a rectangle once again,
resulting in Fig. 5.

The above discussion has summarized our basic strategy for
representing FM efficiently; it now remains to concretize these
notions in the framework of an arbitrary dynamical system de-
fined by DAEs. This is accomplished in the following section by
the WaMPDE, which is a PDE similar to the MPDE, but with a
multiplicative factor of modifying one of the differ-
ential terms. By solving the WaMPDE together with the phase
condition mentioned above, compact representations of the so-
lutions of autonomous systems can be found by efficient numer-
ical methods.

III. WaMPDE

We consider a nonlinear system modeled using vector
DAEs, a description adequate for circuits [37] and many other
applications

(12)

In the circuit context, is a vector of node voltages and
branch currents; and are nonlinear functions describing
the charge/flux and resistive terms, respectively. is a vector
forcing term consisting of inputs, usually independent voltage
or current sources.

We now define the -dimensional WaMPDE to be

(13)

are warped time scales, while is an unwarped
time scale. Each warped time variable has an associated fre-
quency function , which depends on the unwarped time
variable. and are multivariate functions of the time vari-
ables. These quantities represent generalizations of the concepts
introduced in Section II—each warped time corresponds to an
independent FM mode of the system, while the unwarped one
represents a non-FM time scale. It is straightforward to extend
(13) to more than one unwarped time scale.

The utility of (13) lies in its special relationship with (12).
Consider any solution of (13), together with the condition

(14)
If we define the function as

(15)

then, it is easy to show by substitution that satisfies (12).
Hence, if we can find any solution of (13), we have automati-
cally found one for the original problem, i.e., (12). As explained
in Section II, solving the WaMPDE directly for the multivariate
functions can be advantageous.

For concreteness in the following, we now specialize to the
case when there are only two time variables, and the function
is used directly in (13)

(16)

Corresponding to (14) and (15), specifying

(17)

results in being a solution to (12).
Next, we describe how (16) can be solved to determine

and . We first assume that is periodic
in with period 1

(18)

We note that if satisfies (16), then so does for
, for any —this is simply because (16) is au-
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tonomous in the time scale. We remove this ambiguity in the
same way as for unforced autonomous systems, i.e., by fixing
the phase of one of the variables to some value,4 e.g., 0. This is
the phase constraint mentioned in (9).

We expand (16) in 1-D Fourier series in, and also include
the phase constraint, to obtain

(19)

(20)

and are the Fourier coefficients of
and , respectively. and are fixed integers;
denotes theth Fourier coefficient of theth element of . Here,

is the index of the variable of on which a phase constraint
is being applied.

Equations (19) and (20) together form a DAE system which
can be solved for isolated solutions. In practice, the Fourier se-
ries (19) can be truncated to terms with restricted
to . In this case, (19) and (20) lead to equa-
tions in the same number of unknown functions of.

Applying periodic or initial boundary conditions to the DAE
system (19) and (20) leads to quasi-periodic or envelope-mod-
ulated FM solutions.

A. Quasi-Periodic and Envelope Solutions

Assume periodic with period or angular frequency
. Also assume that the solution of (16) is pe-

riodic in both arguments, i.e., is periodic and
is periodic. can then be written as

(21)

where is a constant and is a zero-mean -periodic
waveform. Using (21) and (17), we obtain

(22)

where is a -periodic function.
We motivate these assumptions by showing that such periodic

forms for and capture FM and AM quasi-period-
icity, mode-locking, and period multiplication.

Expand in the Fourier series

(23)

where the constants are Fourier coefficients. Substituting
(23) into (17), we obtain

(24)

Consider, for example, the term of (24) with and

(25)

4or some slow function of� ; the selection of a slowly-varying phase condi-
tion is, in fact, the key to compact numerical representation ofx̂(�; �).

When is nontrivially periodic, is also nontrivially
periodic. (25) can then readily be recognized to be a fre-

quency-modulated signal with instantaneous frequency.
Hence the WaMPDE with periodic solutions can capture not
only FM signals, but also the more general form of (24).

We now show that various special cases of correspond
to physical situations of interest. When is simply some
constant , i.e., , then the time-domain solution (24)
has no FM, but is AM quasi-periodic with angular frequencies

and . If , the response has the same period as the
external forcing frequency, and the system is mode locked or
entrained. If is a submultiple of , the period of the response
is a multiple of that of the forcing. This phenomenon, period
multiplication, is not only often designed for (e.g., in frequency
dividing circuits), but is also observed in dynamic systems en
route to chaos.

Next, we indicate how (19) and (20), with periodic boundary
conditions, can be turned into a set of nonlinear equations for
numerical solution5 . Equations (19) and (20) is discretized
at points along the axis, covering the interval .
The differentiation operator is replaced by a numerical differ-
entiation formula (e.g., backward Euler or trapezoidal), and
when the periodic boundary condition is
applied, a system of nonlinear algebraic equations
in unknowns is obtained. This set of equations
is solved with any numerical method for nonlinear equations,
such as Newton–Raphson or continuation (e.g., [38]), to obtain
the solution of the WaMPDE. Further, when iterative linear
algebra and factored-matrix methods [5]–[8] are employed,
computation and memory requirements grow almost linearly
with size, making calculations practical for even large systems.

By applying initial conditions rather than periodic boundary
conditions, (19) and (20) can be solved for aperiodic

. These envelope-modulated solutions
can be useful for investigating transient behavior in systems
with FM. To obtain envelope solutions, (19) and (20) are solved
by time stepping in using any DAE solution method, starting
from (say) . An initial condition is
specified. For typical applications, a natural initial condition is
the solution of (12) with no forcing, i.e., with constant. The
procedure for discretizing of the WaMPDE for quasi-periodic
or time-stepping solutions is similar to that for the MPDE;
further details may be found in [2].

IV. A PPLICATION

The VCO in Fig. 7 was simulated using numerical techniques
derived from the WaMPDE. The oscillator consists of anLC
tank in parallel with a nonlinear resistor, whose resistance is
negative in a region about zero and positive elsewhere. This
leads to amplitude-stable oscillations. The capacitance was
varied by adjusting the physical plate separation of a novel
M icro Electro MechanicalStructure (MEMS) varactor with
a separate control voltage. The damping parameter of the

5We outline a time-domain method for the� axis, leading to a mixed fre-
quency–time method; purely time-domain or frequency-domain methods are
equally straightforward.
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Fig. 7. VCO.

Fig. 8. VCO: controlling voltage

mechanical structure (corresponding to the lowpassRC filter)
was initially assumed small, corresponding to a near vacuum.

Representative values of the elements in Fig. 7 are k ,
F, F, F/V, and

H. The nonlinear negative-resistance element’s
current-voltage characteristic was given by

(26)

where , and .
An envelope simulation was conducted using purely time-do-

main numerical techniques for both and axes. The initial
control voltage of 1.5 V resulted in an initial frequency of about
0.75 MHz; Fig. 8 shows the variation of the sinusoidal control-
ling voltage, with time-period 30 times that of the unforced os-
cillator. Fig. 9 shows the resulting change in local frequency,
which varies by a factor of almost 3.

Fig. 10 depicts the bivariate waveform of the capacitor
voltage (i.e., one entry of the vector , with the warped

axis scaled to the oscillator’s nominal time-period of 1s).
It is seen that the controlling voltage changes not only the local
frequency, but also the amplitude and shape of the oscillator
waveform.

The circuit was also simulated by time-stepping numerical
ODE methods (“transient simulation” in SPICE terminology).
The waveform from this simulation, together with the 1-D wave-
form obtained by applying (15) to Fig. 10, are shown in Fig. 11.
The match is so close that it is difficult to tell the two wave-
forms apart; however, the thickening of the lines at about 60s
indicates a deviation of the transient result from the WaMPDE
solution. FM can be observed in the varying density of the un-
dulations.

Fig. 9. VCO: FM.

Fig. 10. VCO: bivariate representation of capacitor voltage.

Fig. 11. VCO: WaMPDE versus transient simulation.

The VCO was simulated again after two modifications: the
damping of the MEMS varactor was increased to correspond to
an air-filled cavity, and the controlling voltage was varied much
more slowly, i.e., about 1000 times slower than the nominal pe-
riod of the oscillator. The controlling voltage was the same si-
nusoid shown in Fig. 8, but with a period of 1 ms. Fig. 12 shows
the new variation in frequency; note the settling behavior and
the smaller change in frequency, both due to the slow dynamics
of the air-filled varactor.
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Fig. 12. Modified VCO: FM.

Fig. 13. Modified VCO: bivariate capacitor voltage.

Fig. 14. Modified VCO: WaMPDE versus transient (a few cycles at 10% of
the full run; phase errors from transient increase later).

Fig. 13 depicts the new bivariate capacitor voltage wave-
form. Note that unlike Fig. 10, the amplitude of the oscillation
changes very little with the forcing. This was corroborated by
transient simulation, the full results of which are not depicted
due to the density of the fast oscillations. A small section of
the 1-D waveform, consisting of a few cycles around 0.3 ms, is
shown in Fig. 14. The 1-D WaMPDE output of (15) is compared
against two runs of direct transient simulation, using 50 and
100 points per nominal oscillation period, respectively. It can
be seen that even at an early stage of the simulation, direct

Fig. 15. Moving boundaries cannot generate steady-state solutions.

transient simulation with 50 points per cycle builds up signifi-
cant phase error. This is reduced considerably when 100 points
are taken per cycle, but further along (not shown), the error
accumulates again, reaching many multiples ofby the end
of the simulation at 3 ms. In contrast, the WaMPDE achieves
much tighter control on phase because the phase condition (a
time-domain equivalent of (20)) explicitly prevents build-up
of error. To achieve accuracy comparable to the WaMPDE,
transient simulation required 1000 points per nominal cycle,
with a resulting speed disadvantage of two orders of magnitude.

V. CONCLUSION

We have presented a multitime equation formulation useful
for oscillatory systems. The approach generalizes the MPDE
[1], [2] by applying time-warping functions to represent fre-
quency-modulated signals efficiently. A local frequency vari-
able appears explicitly in the resulting MPDEs, which we dub
the WaMPDE. The WaMPDE can be used as a starting point
for analysis and simplification of oscillator equations if they are
available in closed form. It can also be applied to obtain numer-
ical methods that provide new capabilities and are more accurate
and efficient than existing techniques.

Other applications of the WaMPDE, being investigated cur-
rently, include perturbation and noise analysis of oscillators.
The concept of warped time has also been expanded to obtain
more general forms of the WaMPDE. It is possible that fur-
ther understanding of complex phenomena in oscillators and
other dynamical systems may result from new applications and
generalizations.

APPENDIX

CURVED BOUNDARIES AND FM

For simplicity, assume a two-rate state-equation form for the
MPDE of a forced oscillator

(27)

Assume that is the slow time scale, is the fast time scale,
and that is independent of , as is reasonable for a forced os-
cillator. Now assume that this system can be solved for periodic
solutions on a moving boundary in thedirection, given by the
scalar function , which is periodic (see Fig. 15). This
is equivalent to assuming the solution to be in the form

is (1,1) periodic. (28)
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Now expand the partial differentiation terms of (27) using (28)

secular term

(29)

(30)

Note that (29) contains a so-calledsecular term[23], i.e., a term
that increases linearly with if is not a constant. Note
further that all other terms of (27) are of the form of (28), i.e.,
periodic, whereas the secular term increases unboundedly with

. Therefore, no solution of the form of (28) can exist, unless
is independent of (i.e., rectangular boundaries). A sim-

ilar argument can be used to establish that even the DAE of the
forced oscillator cannot admit solutions of the type , with

in the form (28). This conclusion is also physically reason-
able, for the secular term would imply that the instantaneous fre-
quency of the signal grows unboundedly, which is unphysical.

APPENDIX

GENERALIZED WaMPDE FORMS

The WaMPDE (13) is a special case of more general MPDE
forms. In this section, we outline these more general forms.

Let be an integer number of artificial time scales. Define
“phase functions” as

...
... (31)

Also define “local frequency” functions to be

... (32)

Let and be related by

(33)

Note that (33) is a nonlinear PDE, akin to an ODE (as opposed
to a DAE) in the sense that the left-hand side is the differentia-
tion of the unknown vector . This relation is a generalization
phase to the local-frequency relationship (14).

Based on the above, we define a general MPDE form for (12)
to be

(34)

Next, we prove a key theorem: that ifand together consti-
tute a solution of (34), then solves (12),
if .

Proof:

This can be written as a matrix-vector product

...

Now, each component of the vector above can be expanded
using the chain rule as

hence the vector itself is

...

which, using (33), becomes

...

Hence, we have

which is simply the first term of (34) evaluated at
. Hence, using (34), we have

which proves the assertion.
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