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Abstract

We obtain analytical expressions for eigenfunctions that charac-
terize the phase noise performance of generic LC oscillator struc-
tures. Using these, we also obtain analytical expressions for the
timing jitter and spectrum of such oscillators. Our approach is
based on identifying three fundamental parameters, derived from
the oscillator’s steady state, that characterize these eigenfunctions.
Our analysis accounts for the nonlinear mechanism that stabilizes
oscillator amplitudes. It also lays out, quantitatively and in analyt-
ical form, how symmetry in an LC oscillator’s negative resistance
mechanism impacts the oscillator’s eigenfunctions and its phase
noise/jitter characteristics. We show that symmetry results in par-
ticularly simple forms for the PPV and resultant phase noise. We
compare our expressions with existing LC oscillator design for-
mulae and show that the expressions match for symmetric nonlin-
earities. We validate our analytical results against simulation on
practical CMOS LC oscillator circuits. Our expressions and sym-
metry results are expected to be useful tools for optimizing phase
noise performance during the design of LC oscillators.

1 Introduction

Oscillators are systems that, spontaneously and without external
input, generate a periodic signal indefinitely. They are omnipresent
in electronic circuits; for example, they are an integral part of
phase-locked loops, clock recovery circuits, frequency synthesiz-
ers and so on. Several classes of electronic oscillators exist (e.g.,
ring, relaxation, LC, etc.); of these, LC oscillators are arguably the
most important for high-performance and communication applica-
tions.

An important concern during oscillator design is to quantify
its noise performance, particularly its phase noise and jitter [2,
8, 10, 11]. Phase noise in oscillators significantly affects its time-
domain and frequency-domain properties. In the time domain, it
results in uncertainties in switching or timing instants. This phe-
nomenon, called jitter, is of serious concern, especially in digital
systems synchronized to clock signals from oscillators. The same
effect, viewed in the frequency domain, results in the spread of
discrete tones to a continuous range of neighboring frequencies.
This spread, commonly termed phase noise, is a serious problem
in communication circuits. Since the design of low-noise LC os-
cillators is a topic of current interest in the analog/mixed-signal
design community, characterizing phase noise and jitter correctly
is of crucial practical importance.

There has been a great deal of interest in the phase noise prob-
lem over decades (see [2] for a review). The most recent and rig-
orous theory that addresses the phenomenon quantitatively has re-
sulted in efficient numerical techniques for simulating phase noise
at the SPICE level [2]. However, during early design and analy-
sis of oscillators, analytical formulae for phase noise are of great
value. Previous analytical formulae for LC oscillators (see Section
2 for a brief review) rely on approximations that do not fully ac-
count for the fundamental nonlinear mechanism of an oscillator’s
dynamics. Such formulae, while valuable for certain LC topolo-
gies and parameter choices, lose their predictive ability for others.
In particular, some of the previous approaches do not distinguish
correctly between symmetric and asymmetric nonlinearities, result-
ing in inaccurate formulae for the latter case.

In this paper, we develop more general and accurate analytical
expressions for phase noise and jitter in LC oscillators than previ-
ously available. Our approach is based on starting from the rigor-
ous nonlinear theory of [2] and following a step-by-step mathemat-
ical procedure with only a single, clearly identified, approximation.
We show that this approximation (truncation of a Fourier series) is
valid to a high degree for practical LC oscillators with reasonable
Q factors. For oscillators with arbitrary nonlinear i-v characteris-
tics, we show that the DC component and first two harmonics of
the incremental conductance of the oscillator nonlinearity, when
excited sinusoidally, are parameters critical in determining phase
noise and jitter characteristics. First, we obtain analytical expres-
sions for phase noise eigenfunctions, i.e., the Perturbation Projec-
tion Vector (PPV) [2], in terms of these three fundamental parame-
ters (which can be obtained numerically or analytically for a given
oscillator). Using these analytical PPV forms, we then obtain for-
mulae for jitter and noise spectrum.

Further, we investigate the special case of oscillators with sym-
metric nonlinear i-v characteristics, and show that for such oscil-
lators, the three harmonic parameters above drop out, resulting in
simple formulae that are identical to those obtained by Hajimiri
et al [10]. We emphasize that these simple formulae do not rely
on circuit structural symmetry, only on symmetry in the nonlin-
ear i-v characteristic, which have no relation to each other. We
reiterate that when the nonlinearity is not symmetric, the simple
expressions are invalid; our more general formulae, involving the
three parameters mentioned above, must be employed. We present
results that verify the accuracy of our analytical formulae by com-
paring against numerical simulations carried out for practical LC
oscillator circuits.

The remainder of the paper is organized as follows. In Section
2, we briefly review previous work on analytical models for phase
noise in oscillators. In Section 3 we discuss the nonlinear operat-
ing mechanism of a generic LC oscillator, thus providing insight
and motivating an approximation employed later. Next, in Section
4, we form the steady-state Jacobian matrix of the oscillator ana-
lytically, prove its singularity, and use this fact to obtain analytical
expressions for the PPV. In Section 5, we use the PPV expressions
to obtain analytical formulae for oscillator’s jitter and power spec-
trum and, for the symmetric case, compare them against earlier
analytical models [11, 14]. Finally, in Section 6, we present re-
sults to verify the accuracy of our analytical formulae against the
numerical simulations for a CMOS LC oscillator and a tanh-based
negative resistance oscillator.

2 Previous Work

An established body of literature, developed over decades, is avail-
able on various aspects of the phase noise problem [2,3,10,11,14].
Here, we focus on previous work on developing analytical formu-
lae for phase noise in terms of noise source values and circuit pa-
rameters. Though relevant to our discussion, we do not provide a
discussion of the studies contributing to the theory as they are not
the central to our contribution, but we refer the interested reader
to [2, 12].

Leeson [11,12] was first to propose a simple but extremely use-
ful phenomenological model for phase noise, in terms of the noise
currents of the oscillator’s circuit elements and empirical param-
eters. He noted that the power spectrum of an oscillator consists
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Figure 1: Generic LC oscillator circuit

of a 1

f 2 region, which he identified as being caused by the white

noise sources in the circuit. He also noted that, close to the os-
cillation frequency, flicker noise sources in the oscillator affected

its spectrum. Cutler [13] confirmed that flicker ( 1

f
) noise results

in a 1

f 3 region that dominates the 1

f 2 shape close to the oscillation

frequency. The Leeson and Leeson-Cutler models are empirical
and have limitations; for example, they fail to predict phase noise
power correctly at frequencies close to the carrier frequency.

Craninckx and Steyaert [14] arrived at phase noise expressions
by employing linear time-invariant (LTI) analysis. They identi-
fied the noise contributions of the individual components of the
LC tank and arrived at expressions largely similar to Leeson’s ex-
pressions. Razavi [8] retained the LTI analysis but in addition he
considered different categories of noise sources (such as additive
noise sources, high frequency multiplicative noise sources and low
frequency multiplicative noise sources) to develop more accurate
models for phase noise in relaxation oscillators. The LTI models
discussed above fail to account properly for the amplitude limiting
mechanism inherent to oscillators, in addition to having the same
drawback as Leeson-Cutler near and at the oscillator’s center fre-
quency.

Hajimiri’s [10] phase noise model is one of the more recent and
accurate analytical models for phase noise in LC oscillators. Based
on a linear time-varying (LTV) analysis, Hajimiri obtained analyti-
cal formulae for phase noise in terms of noise currents and Fourier
coefficients of a function called the impulse sensitivity function
(ISF).

Thus while oscillators are nonlinear time-varying systems, the
majority of the available analytical phase noise models are based
on either linear time-invariant or linear time-varying theories.

A recent rigorous nonlinear theory for phase noise [2], appli-
cable to oscillators of all types, has been successful in addressing
fundamental deficiencies in linear phase noise analysis approaches.
However, little has been done to translate this theory to obtain ana-
lytical formulae for phase noise. In this paper, we address the task
of applying this theory to obtain analytical expressions for phase
noise in LC oscillator structures.

3 Generic Feedback LC Oscillator

A generic LC oscillator structure is shown in Fig. 1(a). The i �
f

�
v � nonlinearity [4, 5] represents the active part of the oscillator

that typically comprises of the MOS or BJT devices in parallel
with the passive RLC tank circuit. The operation of the generic
LC oscillator can be explained from the standpoint of the negative
resistance concept. The i � f

�
v � nonlinearity in effect presents a

negative resistance to the circuit. Negative resistance signifies that
as the applied voltage v increases the current i drawn by the circuit
decreases (Fig. 2). In the absence of i-v nonlinearity, the tank cir-
cuit when excited by a noise impulse responds with a decaying os-
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Figure 2: i
�
vertical � � v

�
horizontal � nonlinearity plot from Spice

cillatory behavior due to heat losses in the resistive part of the tank.
In the presence of noise impulses, if the i-v nonlinearity presents a
negative resistance that matches (and cancels) the equivalent par-
allel resistance of the tank circuit, the tank oscillates indefinitely.
Under such conditions it can be shown that Barkhausen criteria [7]
that are the necessary conditions for a feedback circuit to oscillate
are satisfied [16]. The Barkhausen criteria are given by: a) The
magnitude of the loop gain around the closed loop of a feedback
circuit should be equal to 1 and b) The total phase shift for a signal
around the closed loop of a feedback circuit should be equal to 2π.

For the purpose of analyzing the oscillator’s phase noise, let’s
consider Fig. 1(b), which is simply an equivalent representation of
the mechanism by which the LC oscillator operates. The structure
in Fig. 1(b) is a self-exciting feedback circuit with the feedback
provided at node E. The i � f

�
v � part of the circuit acts as a nonlin-

ear time-varying process that takes in voltage v
�
t � as an input and

generates current i
�
t � at its output. The RLC tank circuit forms

a LTI block which takes in current � i
�
t � as input and generates

voltage v
�
t � at its output. A mirror node F exists between the two

blocks in Fig. 1(b), where current undergoes a π phase change.
The reason the node F exists is due to the direction in which the
current i

�
t � enters the RLC tank in Fig. 1(a), as against the polarity

of the voltage v across the tank circuit. The π phase shift due to F
is necessary for the oscillator so as to have a total phase shift of 2π
around the closed loop as per the Barkhausen criterion.

For the generic LC oscillator structure of Fig.1, we assume a
steady state voltage of v

�
t � � A cos

�
ω0t � , where A is a analytical

variable which is a function of the circuit parameters. This assump-
tion of considering just the first harmonic of the steady state volt-
age is well justified as the RLC tank circuit filters out the higher-
order harmonics in the steady state voltage. The dc component
of the steady state solution is taken as zero, because the inductor
current would build up indefinitely otherwise.

Let’s consider some special Lemma’s that are relevant to this
section and are applicable to any LC oscillator with an odd-symmetric
i � f

�
v � function. Lemmas 3.1 and 3.2 together show that a phase

shift of π exists from v
�
t � to i

�
t � if the function i � f

�
v � is an odd-

symmetric function. Lemma 3.3 gives the widely-known formula
for the fundamental oscillation frequency for i-v symmetric LC os-
cillators. The proofs for the Lemma’s are omitted for lack of space.

Lemma 3.1 The phase shift from v
�
t � to i

�
t � for the function i �

f
�
v � � k v, is either 0 or π depending on whether k is a positive or

negative constant

Lemma 3.2 For the generic LC oscillator circuit, there is a phase
shift of π from v

�
t � to i

�
t � if i � f

�
v � is an odd-symmetric function.

Lemma 3.3 For the generic LC oscillator circuit, the oscillation
frequency is given by the resonance frequency of the tank circuit

ω0
� 1�

LC
, if i � f

�
v � is an odd-symmetric function

Note: Lemmas 3.2 and 3.3 reinforce the fact that a node F
exists in Fig. 1(b) at which there is a phase shift of π. From the
Lemmas, we can see that for any LC oscillator (with just the first
harmonic in the steady state voltage) the i-v block presents a π

phase shift, and the RLC block a zero phase shift as ω0L � 1

ω0C
.

Since the phase shift around the loop of a oscillator should be 2π
according to the Barkhausen criterion, it is obvious that a node F
which provides a π phase shift exists such that the circuit oscillates.
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4 Obtaining the PPV of the Oscillator from
the Steady State Analytical Solution

Once we have the analytical steady state solution of the oscilla-
tor, the next step in our procedure is to determine the phase noise
eigenfunctions or the Perturbation Projection Vector (PPV) [2] of
the generic LC oscillator. For obtaining the PPV, the Harmonic
Jacobian matrix JHB is first formed using the steady state analyti-
cal solution of the oscillator. We then prove that the JHB matrix is
singular, and use the condition for singularity to solve for the null-
space of the adjoint of JHB, which gives us the fourier coefficients
of the PPV.

The Lemmas below lead us to finding the PPV of the generic
oscillator. Lemma 4.1 gives the Harmonic Balance equations for
the generic LC oscillator. We consider only the dc term and the first
positive and the negative harmonic components for the state vari-
ables v

�
t � (voltage across the capacitor) and iL

�
t � (current through

the inductor), and the current i
�
t ��� f

�
v
�
t � � . Considering just the

dc term and first positive and the negative harmonic components
suffices, as the effect of the higher order harmonics on calculating
the PPV and the PPV itself is negligible, as we will see from the
numerical simulations in Section 6.

Lemma 4.1 The system of state equations of the generic oscillator
circuit of Fig. 1 are given by

V0

R

�
IL0

�
Y0

�
V1 � V0 � V1 � � 0

V1

� 1
R

�
jω0C � � IL1

�
Y1

�
V1 � V0 � V1 � � 0

V1

� 1
R � jω0C � � IL1

�
Y1

�
V1 � V0 � V1 � � 0

V0 � 0 � IL1

�
jω0L � � V1 � 0 � � IL1

�
jω0L � � V1 � 0

(1)

V0, V1, V1 are respectively the dc term, first fourier coefficient
for positive frequencies and the first fourier coefficient for negative
frequencies of v

�
t � ; and Y1, Y1, Y1 are respectively the dc term,

first fourier coefficient for positive frequencies and the first fourier
coefficient for negative frequencies of i

�
t � � f

�
v
�
t � � . The above

equations can be arranged in the form of

H
�
X � � 0 (2)

where XT ���V0 V1 V1 IL0 IL1 IL1 	
Lemma 4.2 shows that a phase shift in the state variables sim-

ply translates to the exact same phase shift in i
�
t ��� f

�
v
�
t � � . This

result leads to the proof that the Harmonic Jacobian matrix JHB is
singular as discussed further in this Section.

Lemma 4.2

H
�
Dθ X � � Dθ H

�
X � (3)

where Dθ � diag
�
1 � e jθ � e 
 jθ � 1 � e jθ � e 
 jθ �

Note: The Harmonic Jacobian matrix of the generic oscillator

is given by (a � 1

R

�
γ0

�
jω0C)

JHB � ∂H

∂
�
V0 � V1 � V1 � IL0 � IL1 � IL1 �

� ������

1

R

�
γ0 γ1 γ1 1 0 0

γ1 a γ2 0 � 1 0
γ1 γ2 a 0 0 � 1
1 0 0 0 0 0
0 1 0 0 jω0L 0
0 0 1 0 0 � jω0L

� ������ (4)

where γ0, γ1, γ2 are the dc term and the first two harmonics
of the Rr

�
t � , which is defined as the incremental conductance of

the oscillator nonlinearity valued at the steady state voltage v
�
t � �

Acos
�
ω0t � .
Rr

�
t � � ∂ f

�
v
�
t � �

∂v � v � t � � ∂y
�
t �

∂V0
� γ0 � 1

T � T

0

Rr

�
t � dt

γ1 � Re
�
γ1 � � jIm

�
γ1 � � 1

T � T

0

Rr

�
t � e jω0t dt

γ2 � Re
�
γ2 � � jIm

�
γ2 � � 1

T � T

0

Rr

�
t � e j2ω0t dt

(5)

Lemma 4.3 shows that the matrix JHB and its adjoint JHB � are
singular. From Lemma 4.2, we can clearly see that a continuum of
phase shifts in the state variables v

�
t � and iL

�
t � leads to a contin-

uum of phase shifts in i
�
t � � f

�
v
�
t � � . Hence, the derivative of the

H(X) with respect to the phase shift is zero. Lemma 4.3 follows
from this argument.

Lemma 4.3 JHB (and hence JHB � ) are singular.

Lemma 4.4 gives the Perturbation Projection Vector (PPV) of
the generic oscillator. Solving for the null-space of the JHB � ma-
trix, i.e. solving the equation JHB ��� P � 0 gives us P, which is a
column vector of the fourier coefficients of the PPV.

Lemma 4.4 The PPV vector of the generic LC oscillator circuit is
given by

PPV
�
t � ��� p2 e 
 j ω0t � p0

�
p1 e j ω0t

p5 e 
 j ω0t � p3

�
p4 e j ω0t � (6)

where p0, p1, p2 are respectively the dc term, first positive and
the first negative fourier coefficients of the PPV of v

�
t � and p3, p4,

p5 are respectively the dc term, first positive and the first negative
fourier coefficients of the PPV of iL

�
t � defined as

p0 � 0 � p1 � β � p2 � β � p3 � � γ1 β � γ1 β

p4 � � j β

ω0L
� p5 � j β

ω0L
and

β � K � ω0C � 1

ω0L � Img
�
γ2 � � j � 1

R

�
γ0

�
Re
�
γ2 � ��� (7)

where K is a real constant determined by the orthonormality con-

dition PPV
�
t � T � ˙xs

�
t ��� 1 and xs

�
t � is the steady state vector.

˙xs

�
t � is given by ˙xs

�
t � T ���C ˙v

�
t � L ˙iL

�
t � 	

Lemma 4.5 gives the PPV of LC oscillators with odd-symmetric
i-v nonlinearities in terms of the circuit parameters. .

Lemma 4.5 The PPV of any LC oscillator with an odd-symmetric
i-v nonlinearity and with a steady state voltage v

�
t � � A cos

�
ω0 t
�

θ � , where 0 � θ � 2Π is given by

PPV
�
t � ��� �! L

C
1

A
sin
�
ω0 t
�

θ �
1

A
cos
�
ω0 t
�

θ �#" (8)

where L is the inductance, C the capacitance, ω0 the fundamen-
tal oscillation frequency and A the amplitude of the steady state
voltage.

5 Obtaining the Phase Noise Jitter and Power
Spectrum

The generic LC oscillator circuit with a noise source b
�
t ��� N n

�
t �

is shown in Fig. 3 where n
�
t � is a noise source of unit double-sided

Power Spectral Density (PSD) and N is a constant that indicates
the intensity of the noise source. The scalar constant c [2] that
characterizes phase noise analytically is given by

c � p

∑
i $ 1

1

T � T

0 % v1
T � τ � Bi

�
τ � & 2 dτ � p

∑
i $ 1

ci (9)
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where B
� � �

: R
n �

R
n � p represents the modulation of the inten-

sities of the noise sources, p is then number of noise sources i.e.,

the column dimension of B
�
xs

� � � �
, and Bi

� � �
is the ith column of

B
�
xs

� � � �
which maps the ith noise source to the equations of the

system.
Lemma 5.1 gives the expression for noise constant c in terms

of the parameters γ0, γ1 and γ2 and the circuit parameters.

Lemma 5.1 The noise characterization constant c in the presence
of noise source N n

�
t
�

is given by

c � 2N2K2 � � ω0C � 1

ω0L
� Img

�
γ2

� �
2 � � 1

R
� γ0
� Re
�
γ2

� �
2 	
(10)

where K is the real constant from Lemma 4.4 obtained from the or-

thonormality condition PPV
�
t
� T 
 ˙xs

�
t
� � 1 and xs

�
t
�

is the steady
state vector.

Lemma 5.2 gives the formula for c in LC oscillators with odd-
symmetric i-v nonlinearities in terms of the circuit parameters.

Lemma 5.2 The noise characterization constant c in LC oscil-
lators with odd-symmetric i-v nonlinearities in the presence of a
noise source N n

�
t
�

is given by

c � N2 ω2

0
L2

2 A2
� N2

2 ω2

0
C2 A2

� N2

2

L

C

1

A2
(11)

where L is the inductance, C the capacitance, ω0 the fundamental
oscillation frequency and A is the amplitude of the steady state
voltage, n

�
t
�

is a noise source of unit double-sided PSD and N is
the intensity of the noise source.

NOTE: The PSD of the phase noise around the first harmonic is
typically of interest to designers. The single-sideband phase noise
power denoted by L

�
fm

�
measured in dBc/Hz which is widely-

used [2] is defined as

L
�
∆ω
���

10 log10
� f0

2 c

π2 f0
4 c2 � fm

2

	�
 0 � fm � f0�
10 log10 � � f0

fm

	 2

c � 
 π f0
2c � fm � f0 (12)

where ω0 � 2π f0 is the fundamental oscillation frequency and
∆ω � 2π fm is the offset from the fundamental oscillation fre-
quency.

As a special case, let’s consider the phase noise of i-v sym-
metric oscillators due to only the parallel resistance of the tank, in
the vicinity of the first harmonic of the oscillation frequency. The

double-sided PSD of the noise source due to the parallel resistance

R of the tank circuit is given by N2 � in1
2 � f � 2kT

R
. From (12)

and using the result from Lemma 5.2, we get an expression for the
phase noise power in this case as

L
�
∆ω
� � 10 log10

� kT

A2

1

R
�
ω0C
�
2 � ω0

∆ω � 2 	 (13)

which matches with the phase noise expression derived by Hajimiri
et al. [10] for the case of a generic LC oscillator in which noise is
contributed only by the parallel resistance of the tank.

The double-sided PSD of the total noise for the generic LC
oscillator (includes the noise contributions of the active devices

and the parallel resistance) can be approximated by N2 � in2
2 � f �

2FkT
R

, where F is called the device excess noise factor. For this
case, we get the expression for the phase noise power as

L
�
∆ω
� � 10 log10 � 2FkT

Pavg

� ω0

2 QL ∆ω
	 2 � (14)

where Pavg � A2 � � 2R
�

is the average power consumed in the par-
allel resistance of the tank. This expression matches with the phase

noise expression of Leeson-Cutler model [11] for the 1

f 2 region of

the frequency spectrum.
NOTE: The variance of the timing jitter [2] for the generic LC

oscillator structure in the presence of phase noise is given by

E � � tm � m T
�
2 � � c m T (15)

where tm � m T , m � 1 
 2 � � � are the times of clock transitions in a
perfect oscillator unaffected by phase noise and T is the clockpe-
riod.

From Lemma 5.2 and (15), we can get a simple expression for
the variance of timing jitter in LC oscillators with symmetric i-v
nonlinearities as

E � � tm � m T
�
2 � � N2

2

L

C

1

A2
m T (16)

In this Section, we can observe that the simple expressions de-
rived for the phase noise power spectrum and jitter in (14), (13)
and (16) are valid only for i-v symmetric oscillators. For the LC
oscillators with asymmetric i-v nonlinearities, the analytical ex-
pression for c and hence the analytical expressions for the power
spectrum and the timing jitter contain the factors γ0, γ1 and γ2

(derived from the incremental conductance of the oscillator’s non-
linearity) and the circuit parameters.

6 Validation of analytical expressions against
numerical simulation

The analytical formulae derived in the previous sections are veri-
fied against numerical simulations [2] for two cases of practical LC
oscillators described by the following state equations ( the function
f
� � �

differs for the two oscillators).

C
dv

dt
� f
�
v
� � v

R
� iL � 0

L
diL

dt
� v � 0

(17)

The simulations for each oscillator were done for two cases:(a)
Using the dc term and the first 30 positive and 30 negative harmon-
ics for each of the state variables and the function i

�
t
� � f
�
v
�
t
� �

(61
Harmonic components in all for each variable), and (b) Using the
dc term and the first positive and negative harmonics for each of
the state variables and the function i

�
t
�

(3 Harmonic components
in all for each variable).
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Figure 5: Simulation for PPV - 61 Components - CMOS oscillator

6.1 2.5 GHz, Cross-coupled CMOS LC Oscillator

The oscillator used in this case is a 2.5 GHz. cross-coupled CMOS
LC oscillator circuit designed by Bunch et al. [4] with an odd-
symmetric i � f

�
v � function. The i � f

�
v � nonlinearity for this

LC oscillator was obtained by Bunch et al. [5] by fitting a least-
squares curve to the i � v curve obtained from SPICE simulation.
The values of the circuit elements are L = 4 nH and C = 1 pF
and the equivalent parallel resistance of the tank circuit R = 150
Ω. The steady state solution of the circuit (Fig.4) was obtained
from a transient simulation as well as by Harmonic Balance as
v
�
t � � A cos

�
ω0 t � � 1 � 96cos

�
1 � 58e10t � and

iL
�
t � � 0 � 03sin

�
1 � 58e10t � . From Section 3 we have from Lemma

3.2, that for an LC oscillator with an odd-symmetric i � f
�
v � func-

tion, ω0 � 1�
LC
� 1 � 58e10rad/s which matches with the value from

simulation. Also from the state equations we can obtain iL
�
t � �

A
ω0 L

sin
�
ω0t ��� 0 � 03sin

�
1 � 58e10t � which again matches with the

values from simulation. From Lemma 4.5 and with L=4 nH, C=1 pF
and A= 1.96, we get

PPV
�
t � � � � 32 � 31sin

�
1 � 58e10t �

0 � 51cos
�
1 � 58e10t �	� (18)

and from Lemma 5.2, we get c � 521 � 84 for N = 1. The results
for the PPV of v

�
t � and iL

�
t � obtained by our analytical formulae

plotted against the results from numerical simulation for 61 Har-
monic components case are shown in Fig.5 and for the 3 Harmonic
case are shown in Fig.6. The phase noise constant c from numeri-
cal simulation for N � 1 was obtained as 515.83 for the case of 61
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Figure 6: Simulation for PPV - 3 Components - CMOS oscillator

Harmonic components and as 521.86 for the case of 3 Harmonic
components. We can observe that the results obtained from our
formulae are in good agreement with the results from the numeri-
cal simulations for both the cases of 61 Harmonic components and
3 Harmonic components.

6.2 900 MHz, Q=4 tanh Oscillator

The oscillator used in this case is a LC oscillator circuit [3] whose
i � f
�
v � function is defined by a tanh curve. The i-v function for

this circuit is given by i � Stanh 
 Gn

S
v � where S � 1

R
and� Gn � 1

R
( � 1 
 01

R
for this oscillator) are the parameters that capture

the negative-resistance mechanism that enables oscillations. The
i � f
�
v � function of this oscillator is odd-symmetric. The values

of the circuit elements are L = 2 nH, C = 15 pF and the equivalent
parallel resistance of the tank circuit R = 3 Ω.

The steady state solution of the circuit (Fig. 7) was obtained
from a transient simulation as well as by Harmonic Balance as
v
�
t � � Acos

�
ω0 t � � 0 � 20cos

�
5 � 77e9t � and

iL
�
t � � 0 � 02sin

�
5 � 77e9t � . From Section 3 we have for an LC oscil-

lator with a symmetric i-v nonlinearity, ω0 � 1�
LC
� 5 � 77e9rad/s

which matches with the value from simulation. Also from the state
equations we can obtain iL

�
t � � A

ω0 L
sin
�
ω0t � � 0 � 02sin

�
5 � 77e9t �

which again matches with the values from simulation.
From Lemma 4.5 with L=2 nH, C=15 pF and A = 0.1985, we

get

PPV
�
t � � � � 58 � 17sin

�
5 � 77e9t �

5 � 04cos
�
5 � 77e9t ��� (19)

and from Lemma 5.2, we get c � 1691 � 95 for N = 1 The results
for the PPV of v

�
t � and iL

�
t � obtained by our analytical formulae

plotted against the results from simulation for 61 Harmonic com-
ponents case are shown in Fig. 8 and for the 3 Harmonic compo-
nents case are shown in Fig 9. The phase noise constant c from
simulation for N � 1 was obtained as 1695.35 for the case of 61
Harmonic components and as 1692.26 for the case of 3 Harmonic
components. We can observe that the results obtained from our an-
alytical formulae are in good agreement with the results obtained
from the numerical simulations for both the 61 Harmonic and the
3 Harmonic cases of the simulation. It is to be noted that our ana-
lytical formulae were developed assuming just the dc term and the
first positive and negative harmonics for the state variables and
the function i

�
t � . The excellent accuracy of our analytical results

strongly validates the only assumption we made in Section 3.

7 Conclusion

We identify three crucial parameters, derived from the incremen-
tal conductance of the oscillator’s nonlinearity, that determine the
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Figure 8: Simulation for PPV - 61 Components - tanh oscillator
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Figure 9: Simulation for PPV - 3 Components - tanh oscillator

phase noise and jitter characteristics of LC oscillators with arbi-
trary i-v nonlinearities. We derive accurate analytical expressions
in terms of these parameters for phase noise eigenfunctions, phase
noise power and timing jitter of generic LC oscillator structures.
In doing so, we completely account for the nonlinear mechanism
of the oscillator’s dynamics. For the case of LC oscillators with
symmetric i-v nonlinearities, we show that the phase noise power
and jitter expressions take a simple form independent of the three
parameters and show that our formulae match with the phase noise
expressions from early analytical models. Comparison of our an-
alytical formulae against numerical simulations demonstrates an
excellent match.
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