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ABSTRACT

In this paper, we explore in detail the stability properties of time-
domain numerical methods for multi-time partial differential equa-
tions (MPDEs). We demonstrate that simple techniques for numer-
ical discretization can lead easily to instability. By investigating
the underlying eigenstructure of several discretization technigues
along different artificial time scales, we show that not al} combina-
tions of techniques are stable. We identify choices of discretization
method and of step size along slow time scales that lead to robust,
stable time-domain integration methods for the MPDE. One of our
results is that applying overstable methods along one time-scale can
compensate for unstable discretization along others. Qur novel in-
tegration schemes bring robustness to time-domain MPDE solution
methods, as we demonstrate with examples.

Categories and Subject Descriptors: B.7.2 [integrated Circuits]:
Design Aids — simulation

General Terms: Algorithms, Theory, Verification

Keywords: MPDE, stability, eigenstructure, time-domain discretiza-
tion, envelope

1. INTRODUCTION

In many mixed-signal circuits, internal signals can contain fast
an¢d slow components that vary at widely disparate rates. Examples
of such circuits include mixers, phase-locked loops, VCOs, auto-
matic gain-control circuits, microwave amplifiers, efc.. In such ap-
plications, it is often important to find the slow envelope that rides
on fast-varying signal components, Simulation using conventional
time integration of the circuit’s Differential Algebraic Equations
(DAESs) is usually computationally expensive, since the time steps
chosen must be small enough to accurately track the fastest-varying
component(s) of the solution. This results in large numbers of time
steps being needed to resolve the desired slow envelopes, hence
leads to very long computation times. As many simulations are
typically carried out during a system’s design flow, the computa-
tional problem is further compounded.

Researchers have therefore endeavoured to develop faster nu-
merical methods to apply to such problems, with a number of tech-
niques having been developed to solve for slow envelopes. Pet-
zold [1] was apparently first to propose a time-domain envelope-
following technique for systems of differential equations. Exten-
stons were used for the simulation of switching power and filter cir-
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cuits [2]. Later, so-called Fourier-envelope methods were proposed
(e.g., [3, 14, 4]), which combined harmonic balance (HB) with
time-domain integration methods. This was followed by the advent
of the multitime partial differential equation (MPDE) formulation
{15, 5], which reformulated the circuit’s DAEs as partial differen-
tial equations in separate artificial time scales. The MPDE formula-
tion unified prior time-domain and frequency-domain steady-state
and envelope methods, in addition to leading to novel, purely time-
domain, solution methods for computing envelopes as well as mul-
titone steady states. One of the advantages of the MPDE formula-
tion is that it provides a framework in which the numerical proper-
ties of a variety of envelope and multitone steady state methods can
be clearly understood and contrasted. For example, the causes of
instability in Fourier envelope methods were determined using the
MPDE-based analysis in [8), and workarounds proposed. So far,
howeyver, the numerical stability properties of purely time-domain
metheds for solving the MPDE, important for highly nonlinear cir-
cuits, do not appear to have been systematically investigated. In
this context, we note that stability results have long been known for
ODEs and DAEs (e.g., [6, 7]} and have been instrumental in the
development of robust numerical time-integration methods.

It is this gap that we address in this paper: we provide a system-
atic analysis of the numerical stability properties of purely time-
domain techniques for solving the MPDE. The motivation for do-
ing so is to clarify which time-domain discretization methods are
useful for practical MPDE solution algorithms, and which are not.
As with Fourier envelope techniques [8], some purely time-domain
MPDE solution methods have been observed empircally to suffer
from numerical instability. Understanding the causes is crucial to
the wide applicability of time-domain MPDE methods, useful for
solving strongly nonlinear circuits, since Fourier approaches can-
not efficiently represent strong nonlinearities.

During numerical solution of time-domain MPDEs, one is free
to choose different discretization methods for each artificial-time
dimension. Not surprisingly, this choice can greatly impact the sta-
bility of the solution, due to coupling between artificial time di-
mensions. We first identify concrete combinations of discretization
methods that lead to instability. We then explore the underlying
cause of the problem by looking into the eigenstructure of the dis-
cretized system. We find that applying time-domain discretization
methods introduces fast frequency components in the eigenvalues
of the discretized system. This results in a change of stability prop-
erties from that of the original DAE, explaining the instability of
certain combinations of discretizations. We develop our analysis in
two hierarchical steps: first, the stability impact of discretizing the
fast time scale, and then, the effect of further discretizing the slow
time scale. We demonstrate that strange behaviors can be avoided
by careful choice of step size along the slow time scale and of com-
binations of discretization methods for different time scales.

As a result of our analysis, we are able to devise robust time-
domain MPDE methods that work in a predictable and stable man-
ner. We confirm our results with numerical simulations on a down-
conversion mixer and a fully differential opamp. We succeed in



finding slow envelope bitstreams robustly, thus reaping the 2-3 or-
ders of magnitude less computation expected of MPDE techniques
[5] compared to straightforward time integration of DAEs.

The remainder of the paper is organized as follows. In Sec-
tion 2, we demonstrate stability problems in certain time-domain
discretizations of the MPDE. This is followed by Section 3, where
several combinations of discretization and integration methods are
analysed for stability, leading to predictably stable time-domain
MPDE methods. In Section 4, we confirm our analysis with nu-
merical simulations of circuits and demonstrate improvements in
computation time.

2. STABILITYISSUES FOR TIME-DOMAIN

MPDE METHODS

Consider the standard test problem for multi-step integration meth-

ods {13]:
i+Ax=5{r). N
Without loss of generality, we use A = 10 and b(¢) = sin{21100t)
here. Physically, this corresponds to a RC network, with time con-
stant T = 100 ms and an sinusoidal voltage source at 100 Hz, where
x(t) is the voltage across the capacitor.
Figure 1 shows the transient simulation result of the system. In
addition to the fast-varying compoenent resulting from the 100 Hz

input, there is also a slow transient envelope caused by the slow RC
time constant.
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Figure 1: Transient simulation of the standard test problem.
Following {5], the MPDE corresponding to (1) is

if(fl,fg) + ia?(z] 202) + A% = sin(27100z;).
dry oty

In this equation, we choose # 10 be the slow time scale and #; 10
be the fust time scale. The time steps along the slow and fast time
scales are denoted by & and k, respectively. To solve the MPDE
in the time domain, we first discretize the fast time scale with ny
points, using a finite difference approximation such as forward dif-
ferences (FD), backward differences (BD) or centered differences
(CD). Note that, due 1o the periodicity of the fast time scale, there
does not appear 10 be a strong reason to choose backward differ-
ences over forward differences. This results in the transformation
of the MPDE into an ODE (or a DAE in the general case). Then,
the differential equation is integrated along the slow time scale us-
ing conventional time-integration methods such as backward Euler
(BE), trapezoidal or Gear’s methods. The transient solution can
then be recovered from the MPDE solution by interpolating along
the characteristics, in this case the diagonal line t) =, =1,

From Figure 1, the envelope for this system is a slowly-decaying
curve, However, with the cheice of different discretization methods
for different time scales, the MPDE method sometimes fails to find
this slow-varying envelope. Figure 2 shows a multi-time solution of
this system with FD and BE applied in the fast and slow time scales,
respectively, with f#1 = hy = 1 ms. The slow envelope, which is the
variation of #{ry,#2) in # (shown in 2(b)), not only contains large
oscillations but eventually becomes unbounded for this case.

In the remainder of this paper, we first develop a clear under-
standing of such undesirable phenomena by investigating stability
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properties of the system and then establish methods to avoid the

instability.
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Figure 2: Unstable example: FD and BE are applied in the fast
and slow time scales, respectively (4; = 43 = 1 ms).

3. STABILITY ANALYSIS OF TIME-DOMAIN
MPDE METHODS

In time-domain MPDE methods, different discretization meth-
ods can be applied to each time scale, but, as we will show, not all
combinations are stable. To find the underlying cause of instability,
we investigate the eigenstructure of the system after the fast time
scale is discretized. We then examine the effect of discretization
on the slow time scale. Based on the results from these analysis,
robust time-domain MPDEs are established to avoid instability.

3.1 Effect of discretization along the fast time
scale on poles/eigenvalues

When the backward difference (BD) methed is applied along the
fast time axis, the ODE corresponding to (2) becomes

fn)—fialn) .
L (3

d,
——x,-(tl) = h_z

- (1) +b(12)

vie{l,...,m} 3

Here #; is the solution along the line 1, = {i — 1)h;. The question
of stability of £; relates to the stability of its homogeneous problem
(i.e., with b(t2) = 0) [9, 10].

Collecting the equations (3) along all f; = (i — 1)4; slices leads
to np equations and the corresponding homogeneons problem
4

X=Ax, where X=[f1,...,8,] .

Here, the matrix A € R™*" is sparse with the structure

—11171“7‘- 7112
B —m—A 1 1
2 2 . .
A= (o A+P. )
1 1
BoOTR M

Here 1 is the identity matrix and P is a permutation matrix. The
identity matrix only shifts the cigenvalues by —1/h; — X and the *
permutation matrix has its eigenvalues around a circle, i.e., e,
Therefore, A has n; distinct eigenvalues (as shown in Figure 3):

N 1 1 2

Ai=———A+—e® 0="(i—1
' h2 + hy 19 ( )

Vie{l,...,m}. (6)

A is diagonalizable and a similarity transformation can transform
A into A, a diagonal matrix of the eigenvalues of A:

M1AM = A. @



With the change of variables y = M~ 'x, we have a decoupled sys-
tem of equations

y=Ay. ®)
Here, for each y;, there is a test equation y; = A :vi. Thus, the sta-
bility for y, and for x as well, is determined by the eigenvalues and
stability is guaranteed if Re(A;) <0, foralli=1,...,n2.

Following the same procedure, we obtain the eigenstructure of
the system when discretizing the fast time scale by forward differ-
ernce, as indicated in Figure 3.

~ 1 1 2n
iEm — — A — j8 — i
A 7 hze ,0 - {(i-1)

vie{l,...,n}. ©)

For the case when centered differences are used, the correspond-
ing matrix A has the structure

1 1
Hm o=
T
Th; Zhy
A= : o , (10)
1 L
~ 2 W
with n; eigenvalues
2 1. n .
Ai=—h— E;smﬁ, 6= E(t_ 1}
Yie{l,...,m}. (11)
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Figure 3: Effect of discretization along the fast time scale on
poles/eigenvalues.

Figure 3 summarizes the transformation of the eigenvalues due to
discretization; note that the original ODE system has one negative
eigenvalue. For comparison, we have also shown the eigenstructure
of Fourier envelope methods [8] for this problem. When BD, CD or
Fourier methods are used along the fast time scale, all eigenvalues
of the resulting DAE are located on the negative half plane. There-
fore, discretization of the fast time scale by these methods results
in a stable system. Forward difference, on the other hand, can re-
sult in some eigenvalues on the positive half plane when 4 is small
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while it keeps all eigenvalues negative only when A; is large. In ac-
tuality, when the two time scales are widely separated, i, < % S0
2/hs >» k. In this case, discretization by forward difference leads
to an unstable system.

An interesting result of this analysis is apparent if one consid-
ers the original system (1) for which the solution is always stable.
When a FD method is applied to the fast time scale, the intermedi-
ate system may become unstable. The reason for this change in the
stability is due to the introduction of the term 1/4;, which is usu-

ally much bigger than A, to the eigenvalnes (A) of the new system.
Therefore, the stability is now dominated by this term instead of A
as in the original system (1).

Similarly, discretization by BD also has this effect. However,
notice that the only difference between these two methods is a sign
change of kil (compare Equations 6 and 9). While all eigenvalues
from BD discretization are located on the left of —A, the eigenvalue
of the original ODE, they locate on the right of —X for FD case.

However, unlike the cases with FD and BD, when CD is applied
on the fast time scale, the term 7:12 does not have any effect on sta-
bility because it only appears in imaginary parts of the eigenvalues.
Stability in this case is solely determined by the original A. The
same is true for Fourier envelope methods. Notice that eigenvalues
are equally spaced for Fourier's methods while they are sparse at
the center but dense at two ends for CD case.

We could alse consider higher order methods, such as k-th order
Gear’s methods(k > 2). Here, we derive the eigenstructure for the
case when the second-order Gear’s methed is used on the fast time
scale. Higher order Gear’s methods have similar eigenstructures.
The corresponding DAE is

() — 48 () + ()
2k
= Lii(r) +b{2).

The matrix A has the structure:

d .
aTlxl(tl) =

{12)

a ¢ b
b a c
¢ b a

= al + 5P +cP?, (13)

where
3 2 1

— 3y
It has ny distinct eigenvalues (as shown in Figure 4):

. ; 2
Xi=a+be’®+cei®® 0= —ﬂ:[i- 1)
n

Vie{l,...,n}. (14)

All eigenvalues are located on the negative half plane. Thus, the
resulting system after discretizing the fast time scale by the 2nd-
order Gear’s method is a stable one. For the third order method,
there may appear positive eigenvalues, depending on the values of
both hy and A. The trend is that the higher the order of the method,
the less stable the resulting system becomes, with positive eigen-
values becoming more likely; in other words, there is a trade-off
between accuracy and stability.

3.2 Effect of discretization on the slow time
scale

Continuing the MPDE analysis, the slow time scale is numeri-
cally solved utilizing a conventional DAE integration method {e.g.,
backward Euler or the trapezoidal rule). When the fast time scale
is discretized by methods which only generate eigenvalues/poles
on the negative half plane {such as BD, CD, Fourier, or 2nd-order
Gear), using any A-stable method on the slow time scale results in
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Figure 4: Locations of poles/eigenvalues after fast time dis-
cretization by 2-nd Gear’s method.

a stable solution. (Recall that a method is said to be A-stable if its
stability region includes the entire left half plane.) Some implicit
methods, such as backward Euler, the trapezoidal rule and 2nd-
order Gear, are A-stable. The 3rd-order Gear’s algorithim, although
not A-stable, also could be an option since its stability region al-
most covers the entire left half plane.

Explicit methods, like the forward Euler method, are usually not
preferred, since their stability regions only include small area on
the left half plane. Explicit Runge-Kutta (RK) methods, which
have both higher accuracy and better stability regions than many
other explicit methods, are also not good choices for the slow time
discretization. The stability regions for i order RK methods (i =
1,2,3,4) are shown in Figure 5. From the previous section, the
imaginary part of 6 = A1A could be as large as +/- k| /h2. When
two time scales are widely separated, we usually choose k; 3> fs.
However, from Figure 3, even for the 4th-order RK method, the sta-
bility region can not be beyond +3 along the imaginary coordinate;
therefore, it results in unstable solutions.
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Figure 5: Stability regions of Runge-Kutta methods.

Some implicit methods, such as backward Euler and the 2nd-
order Gear’s method, are “overly stable”: they are stable even for
ODEs with positive eigenvalues. This suggest a way to get a sta-
ble solution even when the system has positive eigenvalues. For
instance, with suitable time step sizes along the slow time scale
(71), BE can damp out the artificial instabilities introduced by the
forward difference discretization of the fast time scale. Early ex-
periments with these methods could easily miss this distinction and
reinforce the idea that forward differences are not different from
backward differences for MPDE methods.

We next look into how to choose 4] in order to obtain a stable

solution in this case. From (9), we know that 6 = h; Lislocated at a
circle with the center (#)(1/h; —X),0) and the radius h; /h;. With
fixed h3, a change in 4 not only moves the center but also changes
the radius. Figure 6 illustrates the relative locations of o = hA
(dashed line) and the unstable circle ot:\ the BE method (solid line).
When k| is small, the center of & = k; A is located to the left of that
of the instability circle of the BE method, ie., Ay (1/hy —A) < L.
To ensure all 6 = ;A are located outside the instability circle, the
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radius of dashed line |0A| > |OA'|, i.e.,

2
hl 2 2‘
Zx

As hy increases, the center of the dashed circie moves to the
right. At some point, i) (1/h; — L) = 1 and the two centers overlap.
In this situation, the radius of dashed circle iy /iy = 14+ A >1
and the solution is always stable. As fhy grows, iy (1/in —A) > 1
and the center of the dashed circle is located to the right of (1,0).

To ensure all & = X are outside the instability circle, the radius
of dashed line |OB| > |OB'|, iL.e.,

hy 1
— 2 h{——-2). 16
2 1{ . ) (16)
It is obvious that this equation always holds. Considering these
three situations, we conclude that #) must satisfy (15) to ensure the
stability of the solution.

(15}

Figure 6: The relative locations of 0 = hli and the unstable
circle of the BE method. The stability region of BE method is
the shaded area.

To illustrate this point, Table 1 shows the results derived from
the above analysis for different i values using the test problem (1).
Simulation results in Section 4.1 show a perfectly match with the
analysis results. For the same A3, even a small change in #; may
totally change the stability of the solution. For example, if £ =
1 ms, with /; = 1 ms, the solution is unstable, while with A =
1.1 ms, the solution is stable.

Ehz ‘ PR | hy > 1—2—1 | stability
hy
I'ms | 0.9 ms No unstable, blows up quickly
ITms | Tms No unstable, blows up slowly
Ims | 1.1 ms Yes damps slowly
Tms | T0ms Yes damps quickly

Table 1: Calculation results for the test problem using differing
hy values.

Notice here that #; only needs to be approximately larger than
ko to ensure a stable solution with stability being proportional to
the size of A;. In reality, when two time scales are widely sepa-
rated, we usualty choose k; 33 hy. Therefore, we usnally obtain
stable soluticns without uncovering the potential instability of this
combination.

3.3 Stable time-domain MPDE methods

To summarize the above analysis, we consider the case of inter-
est (% — A >0). We begin with a stable DAE and transform it to
a MPDE form. At this point, the equation is still stable prior to
applying any discretization. However, when this MPDE form is
discretized along the fast time scale, the stability condition of the
resulting slow-time DAE changes. With the FD method, the result
is an unstable system while with BD, CD or the 2nd-order Gear’s
method, the result is a stable system. Then, when numerically in-
tegrating the slow time scale, the stability properties change once
mere. For the former case, only using the “overly” stable methods
will result in a stable solution provided that iy > h; (for BE). For
the latter case, any A-stable method will result in a stable solution



but the explicit methods usually do not work. The results are sum-
marized in table 2 and the discretization flow is shown in Figure 7.

Therefore, to ensure the stability of the MPDE solution, one
sheuld always use the “Good” combinations in Table 2. Note that
if one chooses to use FD and BE (or 2nd-order Gear) along the
fast and slow time scales, respectively, the resulting combination
will yield a stable overall solution but an unstable form was created
after the discretization of the fast time scale.

slow
fast FE BE | Trap | 2nd Gear | RK
FD BAD ok BAD ok BAD
BD BAD | Good | Good Good BAD
CD BAD | Good | Good Good BAD
2nd Gear | BAD | Good | Good Good BAD
Fourier BAD | Good | Good Good BAD
Table 2: Stability summary.
: : &' unstable
! DAE | —BE
: %nstable: o G~ stable ‘
DAE MPDE : . for 1 > h2 (BE}
stable stable cD F - 1 .
' pp—Fourier i ww stable
! 2nd Gear Dt:lfl: : \
: SEP Explict snstable
| 1
et R kP
1
Figure 7: Discretization flow.
4, RESULTS

We have implemented time¢-domain MPDE methods using the
discretization schemes described above in GnuQAPP and Myce,
which are MATLAB-based packages for prototyping and testing
analog simulation algorithms. All simulations were performed us-
ing MATLAB on an 2.4 GHz, Athlon-XP based PC running Linux
(kernel 2.4 series).

4.1 Simple linear test problem

Simulation results for the simple linear test problem of Equation
1 are shown in Figures 8 and 9. Here we plot the envelope solution
along the ¢ = 0 slice. Note that the scales are different. Figure 8
demonstrates how BE along the slow time scale damps out instabil-
ities introduced by the forward difference discretization of the fast
time scale.

For comparison, we use the same values in Table 1 for the “Good”
combinations. In the interest of brevity, we only present results for
BD+BE combination. Other “Good” combinations show the same
stability properties. Figure 9 indicates that the envelope solution is
always stable.

4.2 Simple CMOS down-conversion mixer
(4 active transistors)

A balanced CMOS direct-downconversion mixer (based on {11]}
is shown in Figure 10. The lower pair of MOSFETs generates a
current that doubles the LO frequency while the upper pair form a
differential pair. This circuit implements a multiplication of the RF
and LO signals, with the high-frequency component of the product
filtered out by the RC network. In our example, the LO signal is a
450 MHz sinusoid modulated by 2 2.5 kHz sinusoid. The RF signal
is a 900 MHz carrier modulated by a bit-stream at 10 kbps.

The simulation results are illustrated in Figures 11 - 12, using BD
and BE in the fast and slow time scales, respectively. As pointed out
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Figure 8: Test problem: FD and BE along the fast and slow
time scale, respectively.
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Figure 9: Test problem: BD and BE along the fast and slow
time scale, respectively.

Figure 10: Balanced CMOS direct-downconversion mixer.



in Table 2, this is always a stable strategy. The figures show both
the multi-time solution and a slice through the solution at 1z = 0.
Figure 11 show the voltage at one output node. The voltage at the
drains of the lower MOSFETS is shown in Figure 12. As can be
seen, it doubles the frequency of the LO signal. The envelope, as
expected, is a slowly-varying curve. In addition, the slowly chang-
ing amplitude of bits illustrates the change of the downconversion
gain, which is caused by amplitude changes of LO signal.

As this example demonstrates, more than 2 orders of magnitude
of speedups can be obtained {rom robust and stable time-domain
MPDE methods compared to traditional time-domain methods. Fur-
thermore, the wider the separation between fast and slow time scales,
the greater the obtained speedup. In addition, if the envelopes are
the only features of interest, we do not even need to interpolate the
multi-time solution, resulting in further speed improvement.

(a) multi-time solution (b) sliceatt, =0

Figure 11: Simulation results: at output.
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{a) multi-time solution (0) sliceatrn =0

Figure 12; Simulation resulis:at drains of lower MOSFETs.

4.3 Fully differential op-amp (28 transistors)

‘We also simulate a fully differential opamp composed of two
single-ended output current-mitror opamps {12, page 286]. Here
we use the sum of a fast sinusoid and a slow bit stream as the input.
The intent of this simulation is to investigate nonlinearities in the
amplifier that can cause intermodulations. The simulation results
of the differential output are shown in Figure 13. It is obvious
that the amplifier saturates: at bit '1”, the sinusoidal wave becomes
flatter than that at bit *0°. Time-domain MPDE envelope integration
on this example runs about 100 times faster than ordinary DAE
integration.

5. CONCLUSIONS

In this paper, we have used eigenstructure analysis to investigate
the stability properties of a variety of discretization methods for
time-domain MPDE solution. We have proposed robust and sta-
ble methods to circumvent instabilities based on the insight pro-
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(a) multi-time solution

(b) slice at t; = 0 and
H=0.57

Figure 13: Simulation results: at differential ontput.

vided by this analysis, which has been confirmed by numerical
simuiations. We have applied our new robust time-domain MPDE
techniques to mixed-signal circuits with strong nonlinearities and
demonstrated speedups of 2-3 orders of magnitude over traditional
transient simulations. We are currently extending stability analysis
to the Warped MPDE, useful for analyzing autonomous systems
such as voltage-controlled oscillators and phase-locked loops. We
expect the adoption of our methods to lead to significant improve-
ments in simulation speed for practical applications with fast/slow
signal characteristics.
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