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ABSTRACT 

During the design of electronic circuits and systems, partic- 
ularly those for RF communications, the need to abstract a sub- 
system from a greater level of detail to one at a lower level of 
detail arises frequently. One important application is to gener- 
ate simple, yet accurate, system-level macromodels that capture 
circuit-level non-idealities such as distortion. In recent years, 
computational (“algorithmic”) techniques have been developed 
that are capable of automating this abstraction process for broad 
classes of differential-equation-based systems (including non- 
linear ones). In this paper, we review the main ideas and tech- 
niques behind such algorithmic macromodelling methods. 

1. INTRODUCTION 
Electronic systems today, especially those for communica- 

tions and sensing, are typically composed of a complex mix of 
digital, analog and RF circuit blocks. Simulating or verifying 
such systems is critical for discovering and correcting problems 
prior to fabrication, in order to avoid re-fabrication which is 
typically very expensive. Simulating entire systems to the ex- 
tent needed to generate confidence in the correctness of the to- 
be-fabricated product is, however, also usually very challenging 
in terms of computation time. 

A common and useful approach towards verification in such 
situations, both during early system design and after detailed 
blockdesign, is to replace large and/or complex blocks by small 
macromodels that replicate their input-output functionality well, 
and verify the macromodelled system. The macromodelled sys- 
tem can be simulated rapidly in order to evaluate different choices 
of design-space parameters. Such a macromodel-based verifi- 
cation process affords circuit, system and architecture design- 
ers considerable flexibility and convenience through the design 
process, especially if performed hierarchically using macro- 
models of differing sizes and fidelity. 

The key issue in the above methodology is, of course, the 
creation of macromodels that represent the blocks of the sys- 
tem well. This is a challenging task for the wide variety of 
communication and other circuit blocks in use today. The most 
prevalent approach towards creating macromodels is manual 
abstraction. Macromodels are usually created by the same per- 
son who designs the original block, often aided by simulations. 
While this is the only feasible approach today for many com- 
plex blocks, it does have a number of disadvantages compared 
to the automated alternatives that are the subject of this pa- 
per. Simulation often does not provide abstracted parameters 
of interest directly (such as poles, residues, modulation fac- 
tors, etc.); obtaining them by manual postprocessing of sim- 
ulation results is inconvenient, computationally expensive and 
error-prone. Manual structural abstraction of a block can eas- 
ily miss the very nonidealities or interactions that detailed ver- 
ification is meant to discover. With semiconductor device di- 
mensions shrinking below lOOnm and non-idealities (such as 
substrate/interconnect coupling, degraded device characteris- 
tics, etc.) becoming increasingly critical, the fidelity of manually- 
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generated macromodels to the real subsystems to be fabricated 
eventually is becoming increasingly suspect. Adequate incor- 
poration of non-idealities into behavioral models, if at all pos- 
sible by hand, is typically complex and laborious. Generally 
speaking, manual macromodelling is heuristic, time-consuming 
and highly reliant on detailed internal knowledge of the block 
under consideration, which is often unavailable when subsys- 
tems that are not designed in-house are utilized. As a result, the 
potential time-to-market improvement via macromodel-based 
verification can be substantially negated by the time and re- 
sources needed to first generate the macromodels. 

It is in this context that there has been considerable interest 
in automated techniques for the creation of macromodels. Such 
techniques take a detailed description of a block - for exam- 
ple, a SPICE-level circuit netlist - and generate, via an auto- 
mated computational procedure, a much smaller macromodel. 
The macromodel, fundamentally a small system of equations, is 
usually translated into Matlab/Simulink form for use at the sys- 
tem level. Such an automated approach, i.e., one that remains 
sustainable as devices shrink from deep submicron to nano- 
scale, is essential for realistic exploration of the design space 
in current and future communication circuits and systems. 

Several broad methodologies for automated macromodelling 
have been proposed. One is to generalize, abstract and automate 
the manual macromodelling process. For example, common 
topological elements in a circuit are recognized, approximated 
and conglomerated (e.g., [ I  1,451) to create a macromodel. An- 
other class of approaches attempts to capture symbolic macro- 
models that capture the system’s input-output relationship, e.g., 
[24,4042,44,46]. Yet another class (e.g., [2,10,15]) employs 
a black-box methodology. Data is collected via many simula- 
tions or measurements of the full system and a regression-based 
model created that can predict outputs from inputs. Various 
methods are available for the regression, including data mining, 
multi-dimensional tables, neural networks, genetic algorithms, 
etc ... 

In this paper, we focus on another methodology for macro- 
modelling, often termed algorithmic. Algorithmic macromod- 
elling methods approach the problem as the transformation of 
a large set of mathematical equations to a much smaller one. 
The principal advantage of these methods is generality - so long 
as the equations of the original system are available numer- 
ically (e.g., from within SPICE), knowledge of circuit struc- 
ture, operating principles, etc., is not critical. A single algorith- 
mic method may therefore apply to entire classes of physical 
systems, encompassing circuits and functionalities that may be 
very disparate. Three such classes, namely linear time invariant 
(LTI), linear time varying (LTV), and nonlinear, are discussed 
in Sections 11, 111 and IV of this paper. Algorithmic methods 
also tend to be more rigorous about important issues such as fi- 
delity and stability, and often provide better guarantees of such 
characteristics than other methods. 

11. MACROMODELLING LINEAR TIME INVARIANT (LTI) 
SYSTEMS 

Often referred to as reduced-order modelling (ROM) or model- 
order reduction (MOR), automated model generation methods 
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for Linear Time-Invariant (LTI) systems are the most mature 
amongst algorithmic macromodelling methods. Any block com- 
posed of resistors, capacitors, inductors, linear controlled sources 
and distributed interconnect models is LTI (often referred to 
simply as “linear”). The development of LTI MOR methods has 
been driven largely by the need to “compress” the huge inter- 
connect networks, such as clock distribution nets, that arise in 
large digital circuits and systems. Replacing these networks by 
small macromodels makes it feasible to complete accurate tim- 
ing simulations of digital systems at reasonable computational 
expense. Although interconnect-centric applications have been 
the main domain for LTI reduction, it is appropriate for any sys- 
tem that is linear and time-invariant. For example, “linear am- 
plifiers”, i.e., linearizations of mixed-signal amplifier blocks, 
are good candidates for LTI MOR methods. 

ODEs/PDEs 
Transfer function H(s) 

Fig. 1. Linear Time Invariant block 

Figure 1 depicts the basic structure of an LTI block. u( t )  
represents the inputs to the system, and y ( t )  the outputs, in the 
time domain; in the Laplace (or frequency) domain, their trans- 
forms are U ( s )  and Y (s) respectively. The definitive property 
of any LTI system [48] is that the input and output are related 
by convolution with an impulse response h(t)  in the time do- 
main, i.e., y ( t )  = x ( t )  * h( t ) ) .  Equivalently, their transforms are 
related by multiplication with a system transfer function H ( s ) ,  
i.e., Y ( s )  = H ( s ) X ( s ) .  Note that there may be many internal 
nodes or variables within the block. The goal of LTI MOR 
methods is to replace the block by one with far fewer internal 
variables, yet with an acceptably similar impulse response or 
transfer function. 

In the majority of circuit applications, the LTI block is de- 
scribed to the MOR method as a set of differential equations, 
i.e., 

EX = Ax(t)  +Bu(t )  
(1) 

In (l), u( t )  represents the input waveforms to the block and y ( t )  
the outputs. Both are relatively few in number compared to the 
size of n( t ) ,  the state of the internal variables of the block. A, B, 
C ,  D and E are constant matrices. Such differential equations 
can be easily formed from SPICE netlists or AHDL descrip- 
tions; especially for interconnect applications, the dimension n 
of x ( t )  can be very large. 

The first issue in LTI ROM is to determine what aspect of 
the transfer function of the original system should be retained 
by the reduced system; in other words, what metric of fidelity 
is appropriate. In their seminal 1990 paper [28], Pileggi and 
Rohrer used moments of the transfer function as fidelity metrics, 
to be preserved by the model reduction process. The moments 
mi of an LTI transfer function H ( s )  are related to its derivatives, 
i.e.. 

y ( t )  = C T X ( t )  +Du(t)  

where SO is a frequency point of interest. Moments can be 
shown to be related to practically useful metrics, such as de- 
lay in interconnects. 

In [28], Pileggi and Rohrer proposed a technique, Asymp- 
totic Waveform Evaluation (AWE), for constructing a reduced 
model for the system ( I ) .  AWE first computes a number of mo- 
ments of the full system ( I ) ,  then uses these in another set of 
linear equations, the solution of which results in the reduced 
model. Such a procedure is termed explicit moment matching. 
The key property of AWE was that i t  could be shown to pro- 
duce reduced models whose first several moments (at a given 
frequency point so) were identical to those of the full system. 
The computation involved in forming the reduced model was 
roughly linear in the size of the (large) original system. 

While explicit moment matching via AWE proved valuable 
and was quickly applied to interconnect reduction, it was also 
observed to become numerically inaccurate as the size of the 
reduced model increased beyond about 10. To alleviate these, 
variations based on matching moments at multiple frequency 
points were proposed [ 11 that improved numerical accuracy. 
Nevertheless, the fundamental issue of numerical inaccuracy as 
reduced model sizes grew remained. 

In 1994, Gallivan et al [5] and FeldmannFreund [3,4] identi- 
fied the reason for this numerical inaccuracy. Computing the kth 
moment explicitly involves evaluating terms of the form A-kr,  
i.e., the kth member of the K?ylov subspace of A and r. If 
A has well separated eigenvalues (as it typically does for cir- 
cuit matrices), then for k - 10 and above, only the dominant 
eigenvalue contributes to these terms, with non-dominant ones 
receding into numerical insignificance. Furthermore, even with 
the moments available accurately, the procedure of finding the 
reduced model is also poorly conditioned. 

Recognizing that these are not limitations fundamental to the 
goal of model reduction, [3,5] proposed alternatives. They 
showed that numerically robust procedures for computing Krylov 
subspaces, such as the Lanczos and Arnoldi (e.g., [38]) meth- 
ods, could be used to produce reduced models that match any 
given number of moments of the full system. These approaches, 
called Krylov-subspace MOR techniques, do not compute the 
moments of the full system explicitly at any point, i.e., they 
perform implicit moment matching. In addition to matching 
moments in the spirit of AWE, Krylov-subspace methods were 
also shown to capture well the dominant poles and residues of 
the system. The Padk-via-Lanczos (PVL) technique [ 3 ]  gained 
rapid acceptance within the MOR community by demonstrat- 
ing its numerical robustness in reducing the DEC Alpha chip’s 
clock distribution network. 

Krylov-subspace methods are best viewed as reducing the 
system (1) via projection [6]. They produce two projection ma- 
trices, V E Knxq and W T  E Z7-qxfl, such that the reduced system 
is obtained as 

W T E i  = WTAVx(t )  + WTBu( t )  - +  v 
B d B 

( 3 )  
y ( t )  = CTVx(t) +Du(t) .  w 

For the reduction to be practically meaningful, q, the size of the 
reduced system, must be much smaller than n, the size of the 
original. If the Lanczos process is used, then WTV = I  (i.e., the 
two projection bases are bi-orthogonal). If the Arnoldi process 
is applied, then W = V and WTV = I .  

an important milestone in LTI macromodelling. However, re- 
duced models produced by both AWE and Krylov methods re- 
tained the possibility of violating passivity, or even being un- 
stable. A system is passive if it cannot generate energy under 
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any circumstances; it is stable if for any bounded inputs, its re- 
sponse remains bounded. In LTI circuit applications, passivity 
guarantees stability. Passivity is a natural characteristic of many 
LTI networks, especially interconnect networks. It is essential 
that reduced models of these networks also be passive, since the 
converse implies that under some situation of connectivity, the 
reduced system will become unstable and diverge unboundedly 
from the the response of the original system. 

The issue of stability of reduced models was recognized early 
in [5], and the superiority of Krylov-subspace methods over 
AWE in this regard also noted. Silveira et a1 [ 161 proposed 
a co-ordinate transformed Arnoldi method that guaranteed sta- 
bility, but not passivity. Kerns et al [ 131 proposed reduction of 
admittance-matrix-based systems by applying a series of non- 
square congruence transformations. Such transformations pre- 
serve passivity properties while also retaining important poles 
of the system. However, this approach does not guarantee match- 
ing of system moments. A symmetric version of PVL with im- 
proved passivity and stability properties was proposed by Fre- 
und and Feldmann in 1996 [30]. 

The passivity-retaining properties of congruence transforma- 
tions were incorporated within Arnoldi-based reduction meth- 
ods for RLC networks by Odabasioglu et al [20,21] in 1997, 
resulting in an algorithm dubbed PRIMA (Passive Reduced- 
Order Interconnect Macromodelling Algorithm). By exploit- 
ing the structure of RLC network matrices, PRIMA was able to 
preserve passivity and match moments. Methods for Lanczos- 
based passivity preservation [29,47] followed. 

All the above LTI MOR methods, based on Krylov-subspace 
computations, are efficient (i.e., approximately linear-time) for 
reducing large systems. The reduced models produced by Krylov- 
subspace reduction methods are not, however, optimal, i.e., they 
do not necessarily minimize the error for a macromodel of given 
size. The theory of balanced realizations, well known in the 
areas of linear systems and control, provides a framework in 
which this optimality can be evaluated. LTI reduced-order mod- 
elling methods based on truncated balanced realizations (TBR) 
(e.g., [8,9]) have been proposed. Balanced realizations are 
a canonical form for linear differential equation systems that 
“balance” controllability and observability properties. While 
balanced realizations are attractive in that they produce more 
compact macromodels for a given accuracy, the process of gen- 
erating the macromodels is computationally very expensive, i.e., 
cubic in the size of the original system. However, recent meth- 
ods [I71 that combine Krylov-subspace techniques with TBR 
methods have been successful in approaching the improved com- 
pactness of TBR, while substantially retaining the attractive 
computational cost of Krylov methods. 

1x1. MACROMODELLING LlNEAR TIME VARYING (LTV) 
SYSTEMS 

A. Linear Time Varying (LTV) Macromodelling 
LTI macromodelling methods, while valuable tools in their 

domain, are inapplicable to many functional blocks in mixed- 
signal systems, which are usually nonlinear in nature. For ex- 
ample, distortion or clipping in amplifiers, switching and sam- 
pling behaviour, etc., cannot be captured by LTI models. In gen- 
eral, generating macromodels for nonlinear systems (see Sec- 
tion IV) is a difficult task. 

However, a class of nonlinear circuits (including RF mixing, 
switched-capacitor and sampling circuits) can be usefully mod- 
elled as linear time-varying (LTV) systems. The key difference 
between LTV systems and LTI ones is that if the input to an LTV 
system is time-shifted, it does not necessarily result in the same 
time shift of the output. The system remains linear, in the sense 

that if the input is scaled, the output scales similarly. This latter 
property holds, at least ideally, for the input-to-output relation- 
ship of circuits such as mixers or samplers. It is the effect of a 
separate local oscillator or clock signal in the circuit, indepen- 
dent of the signal input, that confers the time-varying property. 
This is intuitive for sampling circuits, where a time-shift of the 
input, relative to the clock, can be easily seen not to result in 
the same time-shift of the original output - simply because the 
clock edge samples a different time-sample of the input signal. 
In the frequency domain, more appropriate for mixers, it is the 
time-varying nature that confers the key property of frequency 
shifting of input signals. The time-varying nature of the system 
can be “strongly nonlinear”, with devices switching on and off 
- this does not impact the linearity of the signal input-to-output 
path. 

Impulse response h(t,tau) 

Transfer function H(t,s) 

T-V ODESPDES 

Fig. 2. Linear Time Varying block 

Figure 2 depicts the basic structure of an LTV system block. 
Similar to LTI systems, LTV systems can also be completely 
characterized by impulse responses or transfer functions; how- 
ever, these are now functions of two variables, the first cap- 
turing the time-variation of the system, the second the changes 
of the input [48]. The detailed behaviour of the system is de- 
scribed using time-varying differential equations, e.g., 

E ( f ) x  = A( t )x ( t )  + B ( t ) u ( t )  
y ( t )  = C(t)’x(r) +D(r)u(t) .  (4) 

Time variation in the system is captured by the dependence of 
A,  B,  C ,  D and E on t .  In many case of practical interest, this 
time-variation is periodic. For example, in mixers, the local 
oscillator input is often a sine or a square wave; switched or 
clocked systems are driven by periodic clocks. 

The goal of macromodelling LTV systems is similar to that 
for LTI ones: to replace (4) by a system identical in form, but 
with the state vector x ( t )  much smaller in dimension than the 
original. Again, the key requirement is to retain meaningful 
correspondence between the transfer functions of the original 
and reduced systems. 

Because of the time-variation of the impulse response and 
transfer function, LTI MOR methods cannot directly be applied 
to LTV systems. However, Roychowdhury [33-351 showed that 
LTI model reduction techniques can be applied to LTV systems, 
by first reformulating (4) as an LTI system similar to (l), but 
with extra art$cial inputs that capture the time-variation. The 
reformulation first separates the input and system time varia- 
tions explicitly using multiple time scales [36] in order to obtain 
an operator expression for H ( t , s ) .  This expression is then eval- 
uated using periodic steady-state methods [14,32,43] to obtain 
an LTI system with extra artificial inputs. Once this LTI sys- 
tem is reduced to a smaller one using any LTI MOR technique, 
the reduced LTI system is reformulated back into the LTV sys- 
tem form (4). The use of different LTI MOR methods within 
this framework has been demonstrated, including explicit mo- 
ment matching [33] and Krylov-subspace methods [25,34,35]. 
Moreover, Phillips [25] showed that the LTV-to-LTI reformu- 
lation could be performed using standard linear system theory 
concepts [48], without the use of multiple time scales. 
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IV. MACROMODELLING NONLINEAR SYSTEMS 
While wires, interconnect, and passive lumped elements are 

purely linear, any mixed-signal circuit block containing semi- 
conductor devices is nonlinear. Nonlinearity is, in fact, a fun- 
damental feature of any block that provides signal gain, or per- 
forms any function more complex than linear filtering. Even 
though linear approximations of many nonlinear blocks are cen- 
tral to their design and intended operation, it is usually im- 
portant to consider the impact of nonlinearities with a view to 
limiting their impact. For example, in "linear" amplifiers and 
mixers, distortion and intermodulation, caused solely by non- 
linearities, must typically be guaranteed not to exceed a very 
small fraction of the output of the linearized system. This is 
especially true for traditional RF and microwave designs. Such 
weakly nonlinear systems comprise an important class of blocks 
that can benefit from macromodelling. 

Additionally, many nonlinear blocks of interest are not de- 
signed to be approximately linear in operation. Examples in- 
clude digital gates, switches, comparators, etc., which are in- 
tended to switch abruptly between two states. While such op- 
eration is obviously natural for purely digital systems, strongly 
nonlinear behaviour is also exploited in analog blocks such as 
sampling circuits, switching mixers, analog-to-digital convert- 
ers etc.. Furthermore, oscillators and PLLs, which are common 
and basic components in mixed-signal systems, exhibit com- 
plex dynamics which are fundamentally strongly nonlinear. 

Unlike for the classes of linear systems considered in the pre- 
vious sections, no technique currently exists that is capable, 
even in principle, of producing a macromodel that conforms 
to any reasonable fidelity metric for completely general nonlin- 
ear systems. The difficulty stems from the fact that nonlinear 
systems are richly varied, with extremely complex dynamical 
behaviour possible that is very far from being exhaustively in- 
vestigated or understood. This is in contrast to linear dynamical 
systems, for which comprehensive mathematical theories exist 
(see, e.g., [48]) that are universally applicable. In view of the 
diversity and complexity of nonlinear systems in general, it is 
difficult to conceive of a single overarching theory or method 
that can be employed for effective macromodelling of an ar- 
bitrary nonlinear block. It is not surprising, therefore, that 
macromodelling of nonlinear systems has tended to be manual, 
relying heavily on domain-specific knowledge for specialized 
circuit classes, such as ADCs, phase detectors, etc.. 

been extended to handle weakly nonlinear systems. Other tech- 
niques based on piecewise approximations have also been de- 
vised that are applicable some strongly nonlinear systems. As 
described below in more detail, these approaches start from a 
general nonlinear differential equation description of the full 
system, but first approximate it to a more restrictive form, which 
is then reduced to yield a macromodel of the same form. The 
starting point is a set of nonlinear differential-algebraic equa- 
tions (DAEs) of the form 

In recent years, however, linear macromodelling methods have 

where f(.) and q( - )  are nonlinear vector functions. 

( 5 )  

and q(x) replaced by the first few terms of a Taylor series about 
an expansion point no (typically the DC solution); for example, 

f ( x )  = f (xo)  + A I  (x - xo) +Aq(x  - xo)@ + . .. , (6) 

where a@ represents the Kronecker product of a with itself i 
times. When (6) and its q(.) counterpart are used in ( 5 ) ,  a sys- 
tem of polynomial differential equations results. If q ( x )  = x 
(assumed for simplicity), these equations are of the form 

The utility of this polynomial system is that it becomes possi- 
ble to leverage an existing body of knowledge on weakly poly- 
nomial differential equation systems, i.e., systems where the 
higher-order nonlinear terms in (6) are small compared to the 
linear term. In particular, Volterra series theory [39] and weakly- 
nonlinear perturbation techniques [ 191 justify a relaxation-like 
approach for such systems, which proceeds as follows. First, 
the response of the linear system, ignoring higher-order polyno- 
mial terms, is computed - denote this response by XI ( t ) .  Next, 
XI ( t )  is inserted into the quadratic term A ~ ( X - X ~ ) @  (denoted a 
distortion input), the original input is substituted by this wave- 
form, and the linear system solved again to obtain a pertur- 
bation due to the quadratic term - denote this by x z ( t ) .  The 
sum of XI and xq is then substituted into the cubic term to ob- 
tain another weak perturbation, the linear system solved again 
for x3(r), and so on. The final solution is the sum of XI, x2, 
xg and so on. An attractive feature of this approach is that the 
perturbations x2, xg, etc., which are available separately in this 
approach, correspond to quantities like distortion and intermod- 
ulation which are of interest in design. Note that at every stage, 
to compute the perturbation response, a linear system is solved 
- nonlinearities are captured via the distortion inputs to these 
systems. 

reduced linear system 
input ! , ( I )  

Fig. 3. Block structure of reduced polynomial system 

A. Polynomial-based weakly nonlinear methods 
To appreciate the basic principles behind weakly nonlinear 

macromodelling, it is first necessary to understand how the full 
system can be treated if the nonlinearities in ( 5 )  are approxi- 
mated by low-order polynomials. The polynomial approxima- 
tion concept is simpiy an extension of iinearization,-with f ( x )  

The basic idea behind macromodelling weakly nonlinear sys- 
tems is to exploit this fact; in other words, to apply linearrnacro- 
modelling techniques, appropriately modified to account for 
distortion inputs, to each stage of the relaxation process above. 
In the first such approach, proposed in 1999 by Roychowdhury 
[35], the linear system is first reduced by LTI MOR methods 
to a system of size 91, as shown in Figure 3, via a projection 
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basis obtained using Krylov-subspace methods. The distortion 
inputs for the quadratic perturbation system are then expressed 
in terms of the reduced state vector of the linear term, to obtain 
an input vector of size q: . The quadratic perturbation system 
(which has the same linear system matrix, but a different in- 
put vector) is then again reduced via another projection basis, 
to size q 2 .  This process is continued for higher order terms. 
The overall reduced model is the union of the separate reduced 
models with outputs summed together, as depicted in Figure 3. 

By tailoring projection bases for each nonlinearly-perturbed 
linear system, this approach focusses on accuracy; however, 
this is achieved at the cost of increased macromodel size ql + 
qz + . . . . Recognizing the size issue, Phillips in 2000 [26,27] 
proposed that a single projection basis be applied to the system 
(7) (analogous to LTI MOR systems), and also observed that 
Carlemann bilinearization [37] could be employed to obtain a 
canonical equation form. Intuitively, the use of a single pro- 
jection basis consolidates the commonality in the three reduced 
models shown in Figure 3, leading to smaller overall models. 

In 2003, Li and Pileggi proposed the NORM method [23], 
which combines and extends the above two approaches. Similar 
to [35], NORM generates tailored projection bases for each per- 
turbed linear system, but instead of retaining separate macro- 
models as in Figure 3, it compresses these projection bases into 
a single projection basis. NORM then employs this single pro- 
jection basis to reduce the system (7) as proposed in [27]. A 
particularly attractive property of NORM is that it produces a 
macromodel that matches a number of multidimensional mo- 
ments of the Volterra series kernels [39] of the system -indeed, 
the distortion terms for each perturbed system are pruned to en- 
sure matching of a specified number of moments. The authors 
of NORM also include a variant that matches moments at mul- 
tiple frequency points. 

B. Piecewise approximation methods 
The polynomial approximations discussed above are excel- 

lent when the intended operation of the system exercises only 
weak nonlinearities, as in power amplifiers, ‘‘linear’’ mixers, 
etc.. Outside a relatively small range of validity, however, poly- 
nomials are well known to be extremely poor global approxi- 
mators. This limitation is illustrated in Figure 4, where it can 
be seen that, outside a local region where there is a good match, 
even a sixth-degree Taylor-series approximation diverges dra- 
matically from the function it is meant to represent. 

~ : l  I J 
-5 0 5 10 

Fig. 4. Limitations of global polynomial approximations 

It is for this reason that other ways of approximating ( 5 )  that 
have better global approximation properties than polynomials 
have been sought. One approach is to represent the nonlinear 
functions f ( . )  and q(.)  in ( 5 )  by piecewise linear (PWL) seg- 
ments. The state space is split into a number of disjoint re- 
gions, and within each region, a linear approximation is used 
that matches the nonlinear function approximately within the 
region. By using a sufficiently large number of regions, the 
nonlinear function can be represented accurately over the entire 
domain of interest. From a macromodelling perspective, the 
motivation for PWL approximations is that since the system is 
linear within each region, linear macromodelling methods can 
be leveraged. 

Piecewise linear approximations are not new in circuit sim- 
ulation, having been employed in the past most notably in at- 
tempts to solve the DC operating point problem [ 12,221. One 
concern with these methods is a potential exponential explosion 
in the number of regions as the dimension of the state space 
grows. This is especially the case when each elemental device 
within the circuit is first represented in piecewise form, and the 
system of circuit equations constructed from these piecewise 
elements. A combinatorial growth of polytope regions results, 
via cross-products of the hyperplanes that demarcate piecewise 
regions within individual devices. 

To circumvent the explosion of regions, which would severely 
limit the simplicity of a small macromodel, Rewienski and White 
proposed the Trajectory PWL method (TPWL) [31] in 2001. In 
TPWL, a reasonable number of “center points” is first selected 
along a simulation trajectory in the the state space, generated by 
exciting the circuit with a representative training input. Around 
each center point, system nonlinearities are approximated by 
linearization, with the region of validity of the linearization de- 
fined implicitly, as consisting of all points that are closer to the 
given center point than to any other. Thus there are only as 
many piecewise regions as center points, and combinatorial ex- 
plosion resulting from intersections of hyperplanes is avoided. 
The implicit piecewise regions in TPWL are in fact identical to 
the Voronoi regions defined by the collection of center points 
chosen. 

Within each piecewise region, the TPWL approach simply 
reduces the linear system using existing LTI MOR methods to 
obtain a reduced linear model. The reduced linear models of 
all the piecewise regions are finally stitched together using a 
scalar weight function to form a single-piece reduced model. 
The weight function identifies, using a closest-distance met- 
ric, whether a test point in the state space is within a particular 
piecewise region, and weights the corresponding reduced linear 
system appropriately. 

The TPWL method, by virtue of its use of inherently bet- 
ter PWL global approximation, avoids the blow-up that occurs 
when polynomial-based methods are used with large inputs. It 
is thus better suited for circuits with strong nonlinearities, such 
as comparators, digital gates, etc ... However, because PWL ap- 
proximations do not capture higher-order derivative informa- 
tion, TPWL‘s ability to reproduce small-signal distortion or in- 
termodulation is limited. 

To address this limitation, Dong and Roychowdhury pro- 
posed a piecewise polynomial (PWP) extension [ 181 of TPWL 
in 2003. PWP combines weakly nonlinear MOR techniques 
with the piecewise idea, by approximating the nonlinear func- 
tion in each piecewise region by a polynomial, rather than a 
purely linear, Taylor expansion. Each piecewise polynomial re- 
gion is reduced using one of the polynomial MOR methods out- 
lined above, and the resulting polynomial reduced stitched to- 
gether with a scalar weight function, similar to TPWL. Thanks 
to its piecewise nature, PWP is able to handle strong nonlin- 
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earities globally; because of its use of local Taylor expansions 
in each region, it is also able to capture small-signal distortion 
and intermodulation well. Thus PWP expands the scope of ap- 
plicability of nonlinear macromodelling to encompass blocks 
in which strong and weak nonlinearities both play an important 
functional r61e. 

V. CONCLUSION 
Automated bottom-up macromodelling is rapidly becoming 

critical for the effective hierarchical verification of large mixed- 
signal systems. We have discussed the main algorithmic macro- 
modelling approaches available today. Linear time-invariant 
methods, the subject of research for more than a decade, have 
already proven their usefulness for interconnect analysis. Is- 
sues such as the fidelity, compactness, dynamical stability and 
passivity of generated macromodels have been identified and 
addressed. Extensions to linear time-varying systems, useful 
for mixers and sampling circuits, have also been demonstrated 
to produce useful, compact models. Interest in macromodelling 
nonlinear systems has grown rapidly over the last few years and 
a number of promising approaches have emerged. It is likely 
that further research in automated nonlinear macromodelling 
will translate into practically useful tools in the near future. 
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