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Capturing Oscillator Injection Locking via
Nonlinear Phase-Domain Macromodels

Xiaolue Lai and Jaijeet Roychowdhury

Abstract—Injection locking is a nonlinear dynamical phenom-
enon that is often exploited in electronic and optical oscillator
design. Behavioral modeling techniques for oscillators that predict
this phenomenon accurately are of significant scientific and prac-
tical importance. In this paper, we propose a nonlinear approach
for generating small phase-domain oscillator/voltage-controlled
oscillator (VCO) macromodels that capture injection locking well.
Our nonlinear phase-domain macromodels are closely related to
recent oscillator phase noise and jitter theories, and can be ex-
tracted efficiently by algorithm from SPICE-level descriptions of
any oscillator or VCO. Using LC and ring oscillators as test cases,
we confirm the ability of nonlinear phase macromodels to capture
injection locking, and also obtain significant computational
speedups over full SPICE-level circuit simulation. Furthermore,
we show that our approach is equally effective for capturing the
dynamics of transition to locking, including unlocked tones and
phase jump phenomena.

Index Terms—Adler, circuit simulation, differential equa-
tions, injection locking, nonlinear macromodels, oscillator phase
response.

I. INTRODUCTION

I NJECTION locking is an interesting and useful phenom-
enon universally observed in all kinds of physical oscilla-

tors. The term refers to the fact that, under certain conditions,
when an oscillator is perturbed by an external weak signal that
is close (but not identical) to the oscillator’s natural frequency,
the oscillator’s frequency changes to become identical to that of
the perturbing signal, i.e., it “locks” to the external signal. The
phenomenon can be observed in many natural systems, from
the synchronized blinking of fireflies to electronic systems and
lasers, and it is used to advantage in many practical applications.
For example, low-cost high-performance quadrature local oscil-
lators that rely on injection locking have been proposed [10]. In
optics, injection locking has been used in lasers, for example, to
reduce linewidth and frequency noise [14], [13]. Various types
of injection-locked oscillators are used as building blocks in
phase-locked loops (PLLs) for clock recovery and frequency
synchronization.

Despite its widespread use in circuits, the simulation of injec-
tion locking presents challenges. Direct simulation of oscillators
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at the SPICE level is usually inefficient and inaccurate. In prac-
tical applications, it can take an oscillator many thousands of
cycles to lock to the external signal, as oscillators require small
time steps for even moderately accurate simulation. As a result,
a method to capture injection locking without performing full
circuit simulation is of great interest.

Prior approaches for predicting injection locking have
been based on classic simplified treatments such as the Adler
equation [1] and Kurokawa’s method [11]. Although these
approaches provide excellent intuition, as well as basic quan-
titative metrics for understanding the phenomenon, they rely
strongly on approximations such as ignoring nonlinearities
and neglecting higher-order harmonics, resulting in inaccurate
predictions if the circuit deviates significantly from these
assumptions. Moreover, these methods are not completely
general, having been derived for LC oscillators; indeed, they
require the factor of the oscillator [1], an inherently LC-tank
concept. As a result, they cannot be applied to other topologies,
such as ring oscillators or multivibrators, for which factors
cannot easily be defined or calculated.

The study of the behavior of the unlocked driven oscillator
[17] is also of great interest, as it is important for understanding
the operation and bandwidth limitations of injection-locked
electronic and laser oscillators. When an external signal does
not succeed in putting an oscillator into lock, the oscillator
displays periodic variations of frequency and amplitude. Using
Adler’s theory, Armand [2] developed an analytical approach
for finding the output spectra of the unlocked driven oscillator.
Armand’s method is useful for understanding the unlocked
behavior of oscillators; however, it suffers from similar limita-
tions as Adler’s, i.e., it can only be applied to oscillators with
an explicit factor, relies on simplifications, etc.

To circumvent full-circuit simulation during oscillator de-
sign, a common methodology is to replace the full oscillator
circuit with a much smaller phase-domain macromodel [16]. A
variety of phase macromodels are available, all based on linear
integration of a perturbing input to generate output phase de-
viation (e.g., [3], [8], [9], [12], [19], and [20]). In this paper,
we look into the question of qualitative and quantitative accu-
racy of oscillator phase macromodels for predicting the locked
and unlocked behavior of oscillators. We first show that linear
phase macromodels for oscillators suffer from a qualitative de-
ficiency: they are incapable of predicting locking behavior. We
then propose the use of nonlinear phase macromodels as gen-
eral-purpose replacements for the linear ones that have thus far
been used. The nonlinear phase macromodels, related to a re-
cent theory for computing phase noise in oscillators [4], consist
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of a single scalar nonlinear differential equation for phase devia-
tions. These macromodels can be simulated directly in the time
domain with deterministic injection inputs. A great advantage
of the proposed technique is that nonlinear phase macromodels
can be extracted in an automated fashion from SPICE-level cir-
cuit descriptions or systems of differential equations, using effi-
cient numerical procedures [5]. In contrast to prior approaches,
the proposed technique applies uniformly and generally to any
kind of oscillator, regardless of operating mechanism.

Numerical results demonstrate that the nonlinear phase
macromodel is able to predict locking accurately and efficiently
on LC and ring oscillators, with computed phases matching
full oscillator simulations acceptably well. Even for relatively
small oscillator circuits, computational improvements of
almost two orders of magnitude are obtained with the nonlinear
phase-domain macromodel. Such speedups make it possible
to fully investigate the maximum locking range of oscillators
under different injection strengths: the relationship between
injection strength and maximum locking range can be easily
generated and plotted in a few minutes, providing designers
detailed information and intuition about the conditions under
which oscillators lock to external signals. We also verify, with
numerical simulations, our proof that using linear oscillator
macromodels does not succeed in capturing injection locking
at all.

The remainder of this paper is organized as follows. In
Section II, we show that linear phase macromodels are
fundamentally incapable of capturing injection locking. In
Section III, we review the nonlinear phase macromodel and
introduce its use for predicting injection locking and analyzing
the unlocked behavior of oscillators. In Section IV, we present
simulation results on LC and ring oscillators.

II. INJECTION LOCKING AND PREVIOUS

OSCILLATOR MACROMODELS

Injection locking occurs when an external signal with fre-
quency is injected into an oscillator whose free-running fre-
quency is close to . The oscillator can lock to the injected
signal in both phase and in frequency. We illustrate the con-
cept of injection locking using the simple LC oscillator circuit
shown in Fig. 1, where represents a current injected into the
oscillator.

Fig. 2 depicts the capacitor voltage over two different time pe-
riods. In these two figures, the output voltage of the oscillator is
overlaid with the injected current, scaled in amplitude. Fig. 2(a)
depicts the situation when the current is first injected into the os-
cillator circuit. From the relative shifts of the peaks of the wave-
forms, it can be seen that initially, the oscillator is not locked to
the injected signal. Fig. 2(b) depicts the signal waveforms when
the oscillator has run approximately 500 cycles. Locking is evi-
dent: the oscillator’s waveform is perfectly synchronized to that
of the injected signal.

The obvious computational method for analyzing injection
locking is to simulate the oscillator circuit at the SPICE level,
and to compare the circuit’s response to the injected signal. Un-

Fig. 1. Simple negative-resistance LC oscillator.

fortunately, time-domain simulation of full oscillator circuits is
often inefficient and time consuming since oscillators can re-
quire thousands of cycles to lock, with each cycle requiring
many small time steps. In addition, full circuit simulation can
be inaccurate and inconvenient when the perturbation amplitude
is very small (e.g., 1% of the oscillator’s operating amplitude),
as the beat note—periodic variations of frequency and ampli-
tude—due to the perturbation is so small as to be difficult to
observe manually from time-domain waveforms.

To overcome these drawbacks, macromodeling approaches
have been proposed in which the phase of the oscillator’s re-
sponse is obtained directly. Two such approaches are reviewed
briefly below.

A. Impulse Sensitivity Function (ISF) Phase Macromodel

In [9], a linear phase macromodel based on a conjecture for
decomposing perturbations into two orthogonal components—a
pure phase deviation and an amplitude deviation—was devel-
oped. The phase shift caused by the injected signal is given
by

(1)

The summation is over all injected noise current sources in
the circuit, and the impulse response to the th noise
source is given by [9]

(2)

where is the maximum charge displacement across the ca-
pacitor on node , is the unit step function, and
is the ISF [9] for the noise source injected at node . The ISF is
a periodic function with period that attempts to capture
the phase shift resulting from applying a unit impulse at time

at node .
If all the state variables are nodal voltages of the form

(3)

where is the amplitude of the waveform on node , and
is the normalized waveform of node , then the ISF can
be written as

(4)

where represents the derivative of the normalized waveform
on node .
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Fig. 2. Injection locking in LC oscillator. At the beginning, the oscillator does not lock to the injected signal. After 500 cycles, the oscillator locks to the injected
signal with a constant phase difference. (a) Unlocked (initially). (b) Locked (after many cycles).

B. Behavioral Macromodel Based on Perturbation Analysis
and Averaging

In another linear macromodeling approach [20], a behavioral
phase macromodel based on the idea of perturbation analysis
and averaging was presented for harmonic oscillators. We
briefly review the essentials of this approach.

A general ordinary differential equation (ODE) form for har-
monic oscillator is

(5)

where and is the effective capacitance and inductance of
the resonant tank of the harmonic oscillator, respectively, while

represents the nonlinear feedback system. Equa-
tion (5) can be normalized as

(6)

with new variables , ,
, and

. Here, is the amplitude of the voltage
swinging over the capacitor , is the maximum current
delivered by the feedback system, and is the resonant
frequency of the LC tank. Using vector notation, (6) can be
expressed as

(7)

where and . Hence,
the oscillator system can be partitioned into two parts: a reso-
nant tank and a feedback sources .
The feedback sources are considered to be perturbations to the
resonant tank.

The solution of the resonant tank can be written as
. If we introduce a new vector

, then the solution of (7) can be expressed as
. If the resonant tank is perturbed, will change slowly

with time. Thus, the solution of (7) can be given by

(8)

Using as the new state variable of the oscillator and substi-
tuting (8) into (7), we have

(9)

where
. The averaging method [7] is then applied to eliminate

fast-varying processes in (9) and yeild the oscillator macro-
model. The macromodel approximates the averaged amplitude
and phase obtained from perturbation analysis using a large
time step, thus reducing computational cost.

Although aspects of such linear phase macromodels are ap-
pealing and useful, one issue they face is that they are unable to
capture injection locking. We now prove that any linear model
of the form

(10)

where is the injected signal and is any periodic
phase sensitivity function with the same frequency as that of
the free-running oscillator is incapable of capturing injection
locking. Note that (8) subsumes simple linear time invariant
phase macromodels that are often used to approximate the phase
response of oscillators.

Since the oscillator locks to the injected signal , or
“catches up” with the phase of the injected signal, we have the
relationship

or

(11)
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where is the frequency of the free-running oscillator, is the
frequency of the injected signal, and is a constant, which rep-
resents the phase difference between the locked oscillator and
injected signal. Equation (11) encapsulates the basic intuition
that if the oscillator locks, the phase shift due to the injected
signal should grow with time linearly, with a slope of .
From (10), the phase deviation is the integral of the product
of the phase sensitivity function and the injected signal

, which implies should have a dc component
that equals .

Since the phase sensitivity function has the same fre-
quency as the free-running oscillator, and the frequency of

is very close, but not equal, to , there are no common fre-
quencies in these two periodic functions. From the orthogonality
of trigonometric series, we know that the product of and

can, therefore, have no dc component. This contradicts the
requirement for injection locking that has a dc com-
ponent that equals . Hence, we have shown that no linear
phase macromodel, even if time varying, can capture injection
locking.

III. NONLINEAR PHASE-DOMAIN MACROMODEL

Here, we provide a brief overview of the nonlinear phase
macromodel in [4], which we adapt in this study to predict injec-
tion locking and analyze unlocked driven oscillators efficiently.
A general ODE for a perturbed oscillator is

(12)

where is the circuit equation of the unperturbed oscil-
lator [e.g., (21)], is the perturbation to the free-running os-
cillator. In developing the nonlinear phase model, the perturbed
oscillator solution is shown to be of the form

(13)

where is the unperturbed periodic steady-state response of
the oscillator. The effect of the perturbation to the oscillator
results in two phenomena: a phase shift to the unperturbed
oscillator and an orbital deviation . The phase shift ,
usually the quantity of greater importance in applications, can be
shown [4] to be governed by the following nonlinear differential
equation:

(14)

In the above equation, is called the perturbation projec-
tion vector (PPV); it is a periodic vector function of time, with
the same period as that of the unperturbed oscillator. A key dif-
ference between the nonlinear phase model (14) and traditional
linear phase models is the inclusion of the phase shift in-
side the PPV . in the nonlinear phase model has units
of time; the equivalent phase shift, in radians, can be obtained
by multiplying by the free-running oscillation frequency

.

Fig. 3. Typical power spectrum, unlocked driven oscillator.

A. Capturing Injection Locking Using Nonlinear
Phase Macromodel

If an oscillator locks to an injected signal, the phase shift
must satisfy (11). This phase shift can be calculated by solving
the nonlinear phase macromodel (14). Since the phase shift
in (14) has units of time, we can multiply the phase shift by
free-running frequency and obtain the phase shift in radians

(15)

Substituting (15) in (11), we have

(16)

or

(17)

where . Thus, the phase shift should change
with time linearly with a slope of .

This relationship provides a direct method for predicting
locking behavior in oscillators by simulating (14) and checking
the slope of the phase deviation or, equivalently, by
plotting . For example, if solving (14) for an oscillator
injected with a perturbation signal of frequency 10% higher
than its free-running frequency results in a phase shift that
increases linearly with a slope of 0.1, we can conclude that the
oscillator is locked by the injected signal. Since (14) is a simple
one-dimensional nonlinear differential equation that can be
solved efficiently by numerical methods, this approach offers
large speedups over full simulation since the computational
complexity of solving (14) is largely independent of the size of
the original circuit. As noted earlier, the PPV of the oscillator
can be extracted once from its SPICE-level circuit description
via efficient numerical methods, and then used in (14) to
investigate injection locking under different frequencies and
strengths of the injected signal. In contrast, during full circuit
simulation, the whole system of equations for the circuit must
be solved.
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Fig. 4. Phase shift in the LC oscillator from the ISF model. (a) Injection current has the same frequency as the LC oscillator. (b) Injection current has the frequency
5% lower than the LC oscillator.

B. Sideband Prediction in Unlocked Driven Oscillators

When an oscillator is perturbed by an injected signal, but not
locked to it, the output spectrum of the unlocked driven oscil-
lator is characterized by a nonsymmetric sideband distribution
around the carrier. A number of sideband frequency tones are
generated around the oscillator’s carrier frequency tone, but they
all fall on one side of the injected tone, as shown in Fig. 3.

Using Adler’s equation, Armand [2] derived analytical ex-
pressions for the spectral components of unlocked driven oscil-
lators. The output voltage of the driven oscillator is given by

(18)

where is the voltage amplitude of the free-running oscillator,
is the frequency of the injected signal, and is the phase

difference between the free oscillator and injected signal.
can be expressed in Fourier series form as

(19)
where and .
Multiplying (19) by provides the spectra of the unlocked
driven oscillator.

In addition to predicting injection locking, the nonlinear
macromodel (14) can also correctly predict the spectra of the
unlocked driven oscillator. The solution of the perturbed oscil-
lator can be expressed as (13). If the amplitude of the injected
signal is small, the amplitude deviation can be ignored and
the solution of the driven oscillator can be approximated to be

(20)

Since the phase shift can be simulated by solving (14)
using numerical methods, the time-domain solution of the
driven oscillator can be calculated by evaluating (20) with
the computed . Performing a Fourier transform on this
time-domain solution provides the output spectrum of the
unlocked driven oscillator.

The advantage of using the nonlinear macromodel (14) is that,
unlike Armand’s equation, which applies only to LC oscilla-
tors, it is valid for any oscillator, while providing large speedups
over full SPICE-level simulation. Moreover, using (14) provides
more accurate results than Armand’s equation, as can be seen in
Section IV.

IV. EXPERIMENTAL RESULTS: INJECTION LOCKING

AND UNLOCKED SPECTRA

Here, the methods discussed in Sections II and III are
applied to analyze the locked and unlocked behavior of two
types of oscillators, i.e., LC and ring. For both oscillators, we
run simulations using full system simulation, the linear phase
macromodel, and the nonlinear phase macromodel (14) to
study injection locking. For the unlocked driven case, we apply
full simulation, the nonlinear macromodel, and the Armand
equation to the LC oscillator; for the ring oscillator, we use only
full simulation and the nonlinear macromodel since Armand’s
equation is not applicable.

A. 1-GHz LC Oscillator

The differential equations for this LC oscillator are

(21)

where , , and are the inductance, resistance, and capac-
itance of the LCR tank. and are parameters of the non-
linear negative resistor that enables oscillations: determines
the amplitude of the oscillation, and is the gain of the non-
linear amplifier. The circuit exhibits autonomous oscillations
when .

The circuit was simulated with the following parameters:
H, F, ,
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, and . With these selected parameters,
the LC tank has a resonant frequency of 1 GHz, and the oscillator
has an operating voltage of 1.2 V and an operating current of
52 mA.

1) Full Circuit Simulation: Full system simulation was first
carried out to verify locking. The injection current was

, where was chosen to be 5% lower than the
frequency of the free-running oscillator. The circuit was simu-
lated for approximately 500 cycles to reach the steady state. The
simulation results are plotted together with the injected signal,
scaled in amplitude. Locking can be clearly seen in Fig. 2(b).

2) ISF Phase Macromodel: The LC oscillator is a second-
order system. Using the method in [9], the ISF can be
calculated by evaluating (4). Substituting the computed
in (1), we obtain the phase shift under perturbation.

We first applied an injection current with the same frequency
as that of the free-running oscillator. For this particular input

, we expect that the phase shift will
converge to a constant value since the injected signal has the
same frequency as the oscillator. Fig. 4(a) depicts the simula-
tion of phase shift using the ISF model. A constant phase shift
is not seen in this figure; on the contrary, the phase of the oscil-
lator increases linearly with time unboundedly. We then applied
an injection current with frequency 5% lower than that of the
free-running oscillator, the correct phase shift decreases with
time linearly, with a slope of 0.05. As expected, the ISF-based
result, shown in Fig. 4(b), is incorrect.

These numerical experiments confirm our proof in Section II
that the linear phase macromodel cannot capture oscillator in-
jection locking.

3) Behavioral Model Based on Perturbation Analysis and
Averaging: We also applied the behavioral model [20] to study
injection locking in this LC oscillator. The injection current is
again assumed to be , where is the
free oscillation frequency of the LC oscillator. The perturbation

was applied to the right-hand side of
(5). Thus, the feedback source in (9) can be expressed
as

(22)

where F, , V,
, and

(23)

We chose the averaging function as

(24)

Fig. 5. Normalized amplitude A(t) of the LC oscillator using behavioral
model.

By averaging for different values of ( ), we de-
veloped the oscillator model for this LC oscillator. We simulated
this oscillator for 1000 cycles using this behavioral model; the
normalized amplitude of the oscillator is shown as Fig. 5. From
the simulation result, we observe that the amplitude of oscil-
lation increases with time almost linearly and without an
upper bound. This result is incorrect, confirming that this be-
havioral model is unsuitable for predicting injection locking.

4) Nonlinear Phase Macromodel: Finally, we applied the
nonlinear phase (14) to predict injection lock behavior in the LC
oscillator. We ran simulations for two cases: one in which the
injection current has the same frequency as that of the free-run-
ning oscillator; the other with a frequency 5% lower. For case 1,
we expect the phase shift to converge to a constant, after an ini-
tial transient period, while for case 2, since the frequency of
the injection current differs by 5% from that of the free-running
oscillator, is expected to change linearly with a slope of

, when the oscillator is in lock.
We observe from Fig. 6(a) that the phase shift does converge

to a constant, unlike the linear phase macromodels above. From
Fig. 6(b), indeed decreases linearly with a slope of approx-
imately 0.05, as expected. The simulation results verify that the
nonlinear phase macromodel is capable of capturing injection
locking correctly.

Using the nonlinear phase macromodel leads to significant
speedups in simulation time. In the 1-GHz LC oscillator ex-
ample, the runtime in MATLAB for full circuit transient simu-
lation is 720 s for a simulation time of 400 cycles. However,
it takes only 8 s to simulate the same number of cycles using
the nonlinear phase macromodel—an approximately 90 times
speedup. For the nonlinear phase model, the PPV only
needs to be computed once and is reusable for multiple injec-
tion locking analyses of the same oscillator.

By solving (14) with different perturbations, the relationship
between injection amplitude and maximum locking range of
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Fig. 6. Phase shift in the LC oscillator using the nonlinear phase macromodel. (a) Injection current has the same frequency as the free-running oscillator.
(b) Injection current has the frequency 5% lower than the free-running oscillator.

Fig. 7. Relationship between injection amplitude and maximum locking range
of the LC oscillator. (a) Voltage injection. (b) Current injection.

the oscillator is easily plotted, as shown in Fig. 7. The hor-
izontal axis shows the injection amplitude, while the vertical

axis shows the corresponding maximum locking range, normal-
ized to the oscillator’s free-running frequency . The nonlinear
macromodel predicts the maximum locking range well when
the injection amplitude is smaller than approximately 10% of
the oscillator’s operating amplitude. When the injection ampli-
tude becomes larger, the nonlinear macromodel, which is par-
tially based on small-signal perturbation analysis, starts losing
accuracy. This is not a significant drawback in most practical ap-
plications, where injection amplitudes are typically very small
(e.g., 1% of the oscillator’s operating amplitude).

On an AMD Athlon 2200 processor-based workstation run-
ning MATLAB on Linux, the nonlinear macromodel plots the
figure in 10 min; in contrast, the full simulation (implemented in
the same MATLAB environment) needs several hours for a simple
high LC oscillator when the injection amplitude is small and
the injection frequency is close to the oscillator’s maximum
locking range. The plot provides a quick means to estimate in-
jection locking in the LC oscillator: if a given injected signal
falls below the curve, the oscillator locks to the injected signal;
otherwise, injection locking does not occur.

5) Phase Jumps and Transients in the Injection-Locked
Oscillator: If an oscillator locks to a frequency very close to
its maximum locking range, the lock can be unstable: a small
perturbation can drive the injection-locked oscillator out of
lock, resulting in “jumps” in phase. This phenomenon, noted
by many previous researchers [18], [6], [15], is important in
determining the stability of injection-locked oscillators. To
study phase jumps in the injection-locked oscillator, we inject a
current to the LC oscillator. From
Fig. 7(b), we know that this injection current is very close to the
LC oscillator’s maximum locking range. When the oscillator is
in lock, we apply a small impulse perturbation to this locked
oscillator and observe the output.

We simulated this situation using both full simulation and the
nonlinear macromodel; the results are shown in Fig. 8. Initially,
the oscillator locks to the injected signal and the phase shift
grows linearly, as shown in Fig. 8(b). At time , we
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Fig. 8. Simulation of phase jump in the injection-locked oscillator. (a) Full
simulation. (b) Nonlinear phase macromodel.

apply a small impulse current to the locked oscillator. We can
observe from Fig. 8(b) that the phase shift of the oscillator starts
to slow down. At time , the phase of the oscillator
changes drastically. Finally, the oscillator loses in phase
and starts a new lock after . The waveform of the full
simulation shown in Fig. 8(a) displays a strong frequency and
amplitude deviation at , which matches the drastic
phase change predicted by simulating the nonlinear phase
macromodel.

6) Output Spectra of the Unlocked Driven Oscillator: A
perturbation current is now
injected into the LC oscillator. Fig. 7(b) shows that the LC
oscillator will not lock under this perturbation. The output
spectrum for this case is calculated using full SPICE-level
simulation, the nonlinear phase macromodel and the Armand
equation; the results are compared in Fig. 9. It can be seen that
the nonlinear phase macromodel matches full simulation very
well. The run time of the full SPICE-level simulation imple-
mented in MATLAB is approximately 1 h for a simulation length

Fig. 9. Output spectra of the unlocked driven LC oscillator. (a) Full simulation.
(b) Nonlinear macromodel. (c) Armand’s equation.

of 2000 cycles; in contrast, the nonlinear phase macromodel
takes only 40 s to simulate the same number of cycles—about
a 90 times speedup, without significant loss of simulation
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Fig. 10. Phase shift in the ring oscillator using the ISF model. (a) Injected signal has the same frequency as the ring oscillator. (b) Injected signal has frequency
5% lower than the ring oscillator.

Fig. 11. Phase shift in the ring oscillator using the nonlinear phase macromodel. (a) Injection current has the same frequency as the ring oscillator. (b) Injection
current has frequency 5% lower than the ring oscillator.

accuracy. The Armand equation, being an analytical equation,
is, of course, the fastest method to produce the output spectra
of the driven oscillator; however, its accuracy is not as good as
the nonlinear phase macromodel’s, as can be seen in Fig. 9.

B. 153-kHz Three-Stage Ring Oscillator

The three-stage ring oscillator is described by the following
differential equations:

(25)

(26)

(27)

Assuming identical stages, we set nF,
k , and .

The peak current drawn by each stage of the oscillator from the
power supply is 1.2 mA.

Simulation results for the ring oscillator using the linear ISF
model, with injection currents of the same frequency as, and
frequency 5% lower than, the free-running oscillator, are shown
in Fig. 10. Again, the ISF model is unable to capture phase-
locking behavior. The behavioral model [20] is not applicable
to this ring oscillator since the behavioral oscillator model is
developed for, and only applicable to, harmonic oscillators.

In Fig. 11(a) and (b), phase shifts in the ring oscillator due to
injection currents with the same frequency as, and frequency 5%
lower than, the free-running oscillation frequency are shown. As
with the LC oscillator, the nonlinear model accurately predicts
phase locking caused by the injected current.
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Fig. 12. Relationship between injection amplitude and maximum locking
range of the ring oscillator.

Fig. 13. Output spectra of the unlocked driven ring oscillator. (a) Full
simulation. (b) Nonlinear macromodel.

Similar to the LC oscillator case, we plot the relationship be-
tween injection amplitude and maximum locking range of the
ring oscillator in Fig. 12. The nonlinear macromodel predicts
injection locking well when the amplitude of injection current is
below 0.2 mA–approximately 15% of the ring oscillator’s peak
current. Analytical methods derived from LC oscillator princi-
ples, such as Adler’s equation, cannot be applied to the ring os-
cillator, as the operating mechanisms are very different. To find
the output spectra of the unlocked driven ring oscillator, we in-
ject a perturbation current . Fig. 13
shows a good match between full simulation and the nonlinear
macromodel. As before, Armand’s analytical equation cannot
be applied in this case since it requires the factor, which is
not easily defined for ring oscillators.

V. CONCLUSIONS

We have proposed and demonstrated the use of algorith-
mically extracted nonlinear phase-domain macromodels of
oscillators for prediction injection-locking related phenomena.
Prior methods based on linear integration have been shown to
be qualitatively inadequate for this purpose. We have demon-
strated that the nonlinear macromodels correctly predict not
only injection locking, but also unlocked spectra, phase jumps,
and transients. Simulations using the nonlinear phase macro-
model provide significant speedups compared to SPICE-level
simulation, even for relatively small circuits. Further use of (13)
appears promising for capturing amplitude-related phenomena
in oscillators as well.
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