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Robust, Stable Time-Domain Methods for Solving
MPDEs of Fast/Slow Systems

Ting Mei, Jaijeet Roychowdhury, Member, IEEE, Todd S. Coffey, Scott A. Hutchinson, and David M. Day

Abstract—In this paper, we explore the stability properties of
time-domain numerical methods for multitime partial differential
equations (MPDEs) in detail. We demonstrate that simple tech-
niques for numerical discretization can lead easily to instability. By
investigating the underlying eigenstructure of several discretiza-
tion techniques along different artificial time scales, we show that
not all combinations of techniques are stable. We identify choices of
discretization method and step size, along fast and slow time scales,
that lead to robust, stable time-domain integration methods for
the MPDE. One of our results is that applying overstable methods
along one time-scale can compensate for unstable discretization
along others. Our novel integration schemes bring robustness to
time-domain MPDE solution methods, as we demonstrate with ex-
amples.

Index Terms—Discretization, eigenstructure, envelope, multi-
time partial differential equation (MPDE), stability, time-domain.

I. INTRODUCTION

MANY signals in analog, mixed-signal, and RF circuits
contain both “fast” and “slow” components, i.e., they

exhibit widely-separated time scales of variation. Examples of
circuits that feature such signals include: mixers, phase-locked
loops, voltage-controlled oscillators, automatic gain-control
circuits, microwave amplifiers, etc. Simulating such circuits
with conventional SPICE-like integration methods is usually
computationally expensive, since time-steps must always be
made small enough to accurately capture the fastest-varying
component(s) in the solution. Since the information content of
interest is typically in the slowest component (often termed the
envelope), a large number of time-steps can be required. Per-
forming such long simulations can be impractical, especially
when many simulations are embedded within a comprehensive
design methodology.

Recently, a class of time-domain techniques, arising from
multitime partial differential equation (MPDE) circuit formula-
tions [1]–[3], have shown promise in providing large simulation
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speedups for such problems. In the MPDE formulation, mul-
tiple artificial time variables are introduced to decouple compo-
nents with different rates of variation. This leads to a compact
representation of the multiple-rate signals, with each disparate
signal being represented by “its own” artificial time scale. By
this transformation, it has been shown (e.g., [3]) that the circuit
equations, originally ordinary differential equations (ODEs) or
differential-algebraic equations (DAEs), are transformed into
partial differential equation form, resulting in the MPDE. The
utility of this transformation is that, when the circuit features
signals with widely separated time scales with underlying peri-
odic structure, discretizing and solving the MPDE numerically
can, in fact, be far more efficient than solving the original circuit
equations directly. Indeed, the MPDE is capable of generating
different types of solutions by appropriate choice of boundary
conditions [3], including quasiperiodic (also known as multi-
tone) as well as envelope solutions, to be discussed later.

However, it has been observed empirically that there are often
robustness issues related to numerical solution of the MPDE.
For example, as illustrated in Section III, simple circuits can
exhibit spurious oscillatory behavior when solved by MPDE
discretization. While progress has been made on understanding
MPDE robustness for Fourier-envelope methods (see Sec-
tion II), the causes of undesirable numerical behavior for purely
time-domain methods, and approaches to prevent them, have
not been exposed to date. Clarifying these issues is crucial for
enabling practical application of time-domain MPDE methods.
Purely time-domain methods are necessary for solving strongly
nonlinear circuits, since Fourier approaches are not best suited
for representing strong nonlinearities efficiently.

In this paper, we explore the underlying cause of the time-
domain MPDE robustness problem by investigating the eigen-
structure of the discretized MPDE system. We find that time-do-
main discretization introduces fast-frequency components in the
eigenvalues of the discretized system. This results in a change
of stability properties from that of the original DAE.

We show that instability can be easily obtained for certain
combinations of discretizations. We look into such stability
changes in two steps. First, the stability impact of discretizing
the fast time scale, and then, the additional effect of discretizing
the slow time scale. We show that, in some cases, spurious
instability introduced by the first discretization can be removed
by the second, provided relative step-sizes are appropriately
chosen. We also present a number of discretization schemes for
which MPDE time-domain discretizations are stable, regardless
of step size.

We thus achieve time-domain MPDE integration methods
that work in a robust, predictable and stable manner. We

0278-0070/$20.00 © 2005 IEEE



MEI et al.: ROBUST, STABLE TIME-DOMAIN METHODS FOR SOLVING MPDES OF FAST/SLOW SYSTEMS 227

apply our novel methods to a down-conversion mixer and a
fully differential opamp. The methods enable us to deliver the
speedups, over traditional time-stepping DAE methods, that
constitute one of the attractions of MPDEs.

The remainder of the paper is organized as follows. In Sec-
tion II, we provide a brief discussion of relevant previous work.
In Section III, we demonstrate the stability problem of time-
domain MPDE techniques with certain discretization choices.
This is followed by Section IV, where we develop the stability
analysis of several combinations of discretization and integra-
tion methods, resulting in some predictably stable time-domain
MPDE methods. In Section V, we apply our methods to circuits,
demonstrating robustness and speedups.

II. RELEVANT PREVIOUS WORK

A number of efficient techniques are available for the nu-
merical analysis of fast/slow systems. An underlying task that
is basic to most such techniques is the determination of the
(quasi-)periodic steady state of a given system. The techniques
of shooting, finite-difference time-domain (FDTD) analysis,
and harmonic balance (HB) are most commonly used for
finding the steady state. Steady-state techniques are often used
to handle fast components of a fast/slow waveform; building on
these, variants of transient integration are applied to handle the
slow components efficiently.

A. Steady-State Analysis

Finding the steady state of analog and mixed-signal circuits
is an important task in itself as a means of determining distor-
tion and intermodulation performance. Furthermore, as men-
tioned above, steady-state calculation methods often underlie
more powerful slow/fast simulation techniques, such as those
used to compute slow envelopes. Several methods are available
for computing the periodic steady state. One such technique is
the shooting algorithm (e.g., [4], [5]).

Shooting solves for an initial condition that leads to a per-
fectly periodic solution. Specifically, it starts with a guess for
the initial condition, then integrates the system for one fast pe-
riod using transient simulation. The solution at the end of the
period is used to adjust the initial condition by any nonlinear
solver, usually the Newton–Raphson method, until periodicity is
satisfied. However, shooting is only suitable for one-tone prob-
lems. When signals involve widely separated rates, shooting can
be very inefficient, since it uses transient simulation which can
take a large number of time steps.

A related method for solving steady-state problems is the
FDTD method, also known as time-domain collocation [6]. In
this method, finite difference approximations are used to dis-
cretize differential equations over one period. This results in
a system of algebraic equations, which are solved simultane-
ously to find solutions of all time points in the discretization.
This may be considered to be an “unrolled” form of shooting. It
was noted [7] that shooting usually converges faster than FDTD.
In shooting, only the initial condition is guessed and then the
system is integrated accurately by transient simulation. How-
ever, in FDTD, all discretization points are guessed simultane-
ously, some of which may not be close to solutions. In some

cases, this may cause slow convergence of Newton–Raphson so-
lution methods for an FDTD system.

In the frequency domain, HB (e.g., [6], [8]–[11]) is the com-
monly used method for finding steady states. HB uses Fourier
series to approximate the node voltages or branch currents in a
circuit. A system of algebraic equations, in terms of Fourier co-
efficients, is formed and can be solved by the Newton-Raphson
method. One significant advantage of HB is that it is capable
of solving multitone, or quasiperiodic problems. Moreover, HB
can be combined with time-domain methods to solve for slow
envelopes, as discussed later.

For shooting, the size of the equation system is the same as
that of the circuit DAE. However, the computation time can be
considerable for large problems, since the Jacobian matrix is
dense. The FDTD system, on the other hand, is sparse, although
it is larger than the shooting system by a factor of the number
of discretization points. However, it is still difficult to solve nu-
merically, since fill-ins tend to appear in certain block-columns
when LU factorization is applied to the Jacobian matrix. For HB,
the system is both large (larger by a factor of the number of har-
monics used when compared to shooting) in size and dense in
structure. This limits traditional HB to relatively small circuits.

The superlinear computation limitation inherent in all the
above methods was alleviated significantly with the advent of
so-called fast methods [12]–[14], based on iterative techniques
for linear matrix solution (e.g., [15], [16]). Unlike traditional
linear solvers, which are typically based on LU factorization,
iterative linear methods solve linear systems by applying a se-
ries of matrix-vector products. In fast variants of HB, the dense
HB Jacobian matrix is decomposed into products and sums of
sparse matrices or special matrices, such as DFTs, that have
regular structure. These matrices can be applied or inverted
quickly. Therefore, the multiplication of the Jacobian matrix
with a vector can be performed in almost linear time; further,
the (dense) Jacobian matrix is never computed or stored explic-
itly, thereby saving memory. These methods, combined with
good preconditioners (e.g., [17]), significantly reduce the cost
of solving the HB system, making steady-state computation
practical for circuits with upto several thousand nodes. Shortly
after, fast methods were proposed for HB [12], [13], they were
also applied successfully to shooting and collocation/FDTD
to improve speed and memory requirements [18]. Therefore,
all steady-state methods, whether time- or frequency-domain
have roughly the same computation complexity, when precon-
ditioned iterative linear techniques are applied.

B. Solving for the Envelope

In addition to steady-state analysis, designers are often inter-
ested in finding slowly varying transient components (the “en-
velope”) of the system. The earliest time-domain envelope tech-
nique, to our knowledge, was proposed by Petzold [19]. This
method exploits the fact that when the solution of highly oscil-
latory ODEs is sampled at every time-period (the period of
the fast oscillations), the resulting samples can be interpolated
as a curve that varies slowly. This curve is defined as the “en-
velope” (dashed line in Fig. 1). Since the envelope varies orders
of magnitude slower than the fast oscillation frequency, it can
be followed by large steps. In Petzold’s method, a cycle of the
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Fig. 1. Illustration of envelope and Petzold’s method.

fast-varying oscillation is integrated accurately using a standard
time-integration method, as shown in Fig. 1 (from point A to
B). A secant line between and can then be extrapolated
over a large time step, which may be many cycles, to obtain the
solution at . Starting from this new point, the process is re-
peated until the end of the time interval of interest is reached.
Petzold’s envelope method, variants of which apply explicit and
implicit Adams formulae, was adapted and used for the simu-
lation of switching power and filter circuits [20]. Similar ideas
were presented in [6], [21], and [22], where it is assumed that the
sequence can be described by Fourier series with a
few terms, thus can be computed by HB.

Another class of envelope methods, using a combination of
HB and time-domain integration methods, was proposed in [1],
[23], and [24]. These kinds of techniques are called Fourier en-
velope methods. In these methods, HB is used to solve the steady
state of the fast component of signals. DAEs in terms of Fourier
coefficients are then formed, which capture the slow behavior
of circuits. Time-domain integration methods can be used to
solve these DAEs to obtain the slow envelopes. However, these
frequency-domain methods are limited to weakly nonlinear cir-
cuits since. For example, pulses or sharp edges, often generated
by strong nonlinearities, cannot be represented well with only
a few Fourier coefficients. Moreover, strong nonlinearities de-
stroy the block-diagonal dominance of the HB Jacobian matrix,
which makes preconditioned iterative techniques [13], [25] inef-
fective. This can limit HB to small circuits, since preconditioned
iterative linear solution techniques are needed for fast HB tech-
niques to be applied to large circuits.

Recently, a novel class of methods based on MPDEs have
shown promise in further reducing computation times for
fast/slow systems, while being applicable to a wider range of
circuits encompassing both strong and weak nonlinearities, as
well as oscillators [26]. MPDEs form a framework in which
previous envelope methods can be interpreted, and have also
led to new methods in both time and frequency domains [2],
[3], [27].

Although these novel methods have a number of advantages,
they can sometimes suffer from instabilities when solved using

Fig. 2. Transient simulation of the standard test problem.

time-domain techniques. The advantage of these methods can be
utilized only when they work stably and robustly for practical
circuits and systems. Whereas stability results have long been
known for DAEs [28]–[30], and have led to robust numerical
integration methods (e.g., Gear methods), the same has not so
far been true of MPDE-based methods.

Recently, in [31], the lack of robustness in Fourier enve-
lope methods was noted. Fourier envelopes use HB along the
fast time scale; for such techniques, [31] proposed solutions
to address robustness issues. For fully time-domain methods,
however, the MPDE stability question has so far remained open.
It has been observed in practice that, instead of generating a
slow-varying envelope, time-domain MPDE methods often
show nonphysical oscillatory behaviors, typical of instability.

III. ILLUSTRATION OF STABILITY PROBLEMS IN EXISTING

TIME-DOMAIN MPDE METHODS

Consider the standard test problem for multistep integration
methods [30]

(1)

Without loss of generality, we use 10 and
here. Physically, this corresponds to an RC net-

work, with time constant 100 ms and an sinusoidal voltage
source at 100 Hz, where is the voltage across the capacitor.

Fig. 2 shows the transient simulation result of the system.
In addition to the fast-varying component resulting from the
100 Hz input, there is also a slow transient envelope caused by
the slow RC time constant.

Following [3], the MPDE corresponding to (1) is

(2)

In this equation, we choose to be the slow time scale and
to be the fast time scale. Periodic boundary conditions are as-
sumed on the fast time scale [3]. The time steps along the slow
and fast time scales are denoted by and , respectively. To
solve the MPDE in the time domain, we first discretize the fast
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Fig. 3. Test ODE: MPDE solutions. The fast-varying component resulting
from 100 Hz input has a period of 10 ms. The fast time scale was discretized
with 10 points, i.e., the time step along the fast time scale, h , is 1 ms. The time
step along the slow time scale, h , is also 1 ms. (a) Multitime solution, (b) slice
at t = 0.

time scale with points, using a finite difference approxima-
tion such as forward differences (FDs), backward differences
(BDs), or centered differences (CDs). Note that, due to the pe-
riodicity of the fast time scale, there does not appear to be a
strong reason to choose BDs over FDs. This results in the trans-
formation of the MPDE into an ODE (or a DAE, in the general
case). Then, the differential equation is integrated along the slow
time scale using conventional time-integration methods such as
backward Euler (BE), trapezoidal, or Gear’s methods. The tran-
sient solution can then be recovered from the MPDE solution by
interpolating along the characteristics, in this case the diagonal
line .

From Fig. 2, the envelope for this system is a slowly de-
caying curve. However, depending on the choice of discretiza-
tion method for the time scales, the MPDE approach can fails to
find this slowly-varying envelope. Fig. 3 shows a multitime so-
lution of this system with FD and BE applied in the fast and slow
time scales, respectively, with 1 ms. The slow en-
velope, which is the variation of in [shown in 3(b)],
not only contains large oscillations, but eventually becomes un-
bounded for this case.

Fig. 4. Discretize the fast time scale by BD.

In the remainder of this paper, we first develop a clear un-
derstanding of such undesirable phenomena by investigating the
stability properties of the system, and then establishing methods
to circumvent instabilities.

IV. STABILITY ANALYSIS OF TIME-DOMAIN MPDE METHODS

In time-domain MPDE methods, different discretization
methods can be applied to each time scale, but, as we will show,
not all combinations are stable. To find the underlying cause of
instability, we investigate the eigenstructure of the system after
the fast time scale is discretized. We then examine the effect of
discretization on the slow time scale.

A. Effect of Discretization Along the Fast Time
Scale on Poles and Eigenvalues

When the BD method is applied along the fast time axis, the
ODE corresponding to (2) becomes

(3)

Here, is the solution along the line , as
shown in Fig. 4. Recall that for the linear problem ,
if is the fundamental solution , then

(4)

where . So, the question of the stability of relates to
the stability of its homogeneous problem (i.e., with )
[32], [33].

Collecting the (3) along all slices leads to
equations and the corresponding homogeneous problem

where (5)

Here, the matrix is sparse with the structure

. . .
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Fig. 5. Effect of discretization along fast time scale on poles/eigenvalues.

(6)

Because of periodicity conditions along the fast time scale, the
matrix A has a circular structure. Here, is the identity matrix
and is a permutation matrix. The identity matrix only shifts
the eigenvalues by and the permutation matrix
has its eigenvalues around a circle, i.e., . Therefore, has

distinct eigenvalues (as shown in Fig. 5)

(7)

is diagonalizable and a similarity transformation can trans-
form into , a diagonal matrix of the eigenvalues of

(8)

With the change of variables , we have a decoupled
system of equations

(9)

Here, for each , there is a test equation . Thus,
the stability for , and for as well, is determined by the
eigenvalues; stability is guaranteed if , for all

.
Following the same procedure, we obtain the eigenstructure

of the system when discretizing the fast time scale by FD

methods (see the Appendix for further details), as indicated in
Fig. 5

(10)

If CDs are used, the corresponding matrix has eigen-
values (see the Appendix):

(11)

Fig. 5 summarizes the transformation of the eigenvalues
due to discretization (note that the original ODE system has
one negative eigenvalue). For comparison, we have also shown
the eigenstructure of Fourier envelope methods [31] for this
problem. When BD, CD, or Fourier methods are used along the
fast time scale, all eigenvalues of the resulting DAE are located
on the negative half plane. Therefore, discretization of the fast
time scale by these methods results in a stable system. FD, on
the other hand, can result in some eigenvalues on the positive
half plane when is small while it keeps all eigenvalues
negative only when is large. In actuality, when the two time
scales are widely separated, , so .
In this case, discretization by FD leads to an unstable system.

An interesting result of this analysis is apparent if one con-
siders the original system (1) for which the solution is always
stable. When an FD method is applied to the fast time scale,
the intermediate system may become unstable. The reason for
this change in the stability is due to the introduction of the term

, which is usually much bigger than , to the eigenvalues
of the new system. Therefore, the stability is now dominated

by this term instead of as in the original system (1).
Discretization by BD also has a similar effect; however, note

that the difference between these two methods is a sign change
of [compare (7) and (10)]. While all eigenvalues from BD
discretization are located on the left of , the eigenvalue of the
original ODE, they locate on the right of for FD case.

However, unlike the cases with FD and BD, when CD is ap-
plied on the fast time scale, the term does not have any
effect on stability because it only appears in imaginary parts of
the eigenvalues. Stability in this case is solely determined by the
original . The same is true for Fourier envelope methods. Note
that eigenvalues are equally spaced for Fourier methods, while
they are sparse at the center but dense at the two ends for the
CD case.

We could also consider higher order methods, such as th
order Gear’s methods . Here, we derive the eigenstruc-
ture for the case when the second-order Gear’s method is used
on the fast time scale. Higher order Gear’s methods have similar
eigenstructures. The corresponding DAE is

(12)
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Fig. 6. Locations of eigenvalues after fast time discretization by Gear’s
second-order method ((1)=(h ) = 20; � = 10).

The matrix has the circulant structure

. . .
. . .

. . .
(13)

where

It has distinct eigenvalues (as shown in Fig. 6)

(14)

All eigenvalues are located on the negative half plane. Thus,
the resulting system, after discretizing the fast time scale by the
second-order Gear’s method, is a stable one. For the third-order
method, there may appear positive eigenvalues, depending on
the values of both and , as shown in Fig. 7 (see the Ap-
pendix for the eigenstructure of this case). In fact, when the two
time scales are widely separated, , and there can
be positive eigenvalues when third or higher order methods are
used. The trend is that the higher the order of the method, the
less stable the resulting system becomes, with positive eigen-
values becoming more likely. In other words, there is a tradeoff
between accuracy and stability.

B. Effect of Discretization on the Slow Time Scale

Continuing this analysis, the slow time scale is discretized
next by a conventional DAE integration method (e.g., the BE
method or the trapezoidal rule). When the fast time scale is dis-
cretized by methods which only generate eigenvalues/poles on
the negative half plane (such as BD, CD, Fourier, or second-
order Gear), using any A-stable method along the slow time
scale results in a stable solution. (Recall that a method is said
to be A-stable if its stability region includes the entire left half

Fig. 7. Locations of eigenvalues after fast time discretization by 3rd Gear’s
method. (a) case 1: (1)=(h ); � are not widely separated (1)=(h ) = 20; � =
10, (b) case 2: (1)=(h ) � � ((1)=(h ) = 10 ; � = 10).

Fig. 8. Stability regions of RK methods.

plane). Several popular implicit methods, such as BE, the trape-
zoidal rule, second-order Gear and implicit Runge–Kutta (RK)
methods (e.g., [34], [35]), are A-stable. The third-order Gear’s
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Fig. 9. Relative locations of � = h �̂, and the unstable circle of the BE method. The stability region of BE is the shaded area [32], [33].

algorithm, although not A-stable, also could be an option since
its stability region almost covers the entire left-half plane.

Explicit methods, like the forward Euler method, are usually
not preferred, since their stability regions only include small
portions of the left half plane. Explicit RK methods, which
have both higher accuracy and better stability regions than
many other explicit methods, are also not good choices for the
slow time discretization. The stability regions for th order RK
methods are shown in Fig. 8. From the previous
section, note that the imaginary part of could be
as large as . When the two time scales are widely
separated, typically . However, from Fig. 8, even for
the fourth-order RK method, the stability region cannot be
beyond along the imaginary coordinate; therefore, it results
in unstable solutions.

Some implicit methods, such as BE and the second-order
Gear’s method, are overly stable; they are stable even for ODEs
with positive eigenvalues. This suggests a way to obtain a stable
solution, even when the system has positive eigenvalues. For in-
stance, with suitable time step sizes along the slow time scale

, BE can damp out artificial instabilities introduced by FD
discretization along the fast time scale. As a result, nonexhaus-
tive empirical experiments with such combinations of methods
can easily reach the erroneous conclusion that FDs are not dif-
ferent from BDs for MPDE discretization.

We next look into how to choose in order to obtain a stable
solution in this case. From (10), we know that is lo-
cated on a circle with center and radius

. With fixed , a change in not only moves the center
but also changes the radius. Fig. 9 illustrates the relative loca-
tions of (dashed line) and the unstable circle of the
BE method (solid line). The stability region of BE is the area
outside this solid line circle (shaded area). In order to obtain a
stable solution, we only need to choose the step size to en-
sure that (dashed circle) lies outside the solid circle.

When is small, the center of is located to the left
of the instability circle of the BE method, i.e.,

. To ensure that all are located outside the
instability circle, the radius of the dashed circle must be

, i.e.,

(15)

Hence,

(16)

TABLE I
TEST-PROBLEM: BEHAVIOUR FOR DIFFERENT h VALUES

Fig. 10. Discretization flow.

TABLE II
STABILITY SUMMARY

As increases, the center of the dashed circle moves to
the right. At some point, and the two
centers overlap. In this situation, the radius of dashed circle

and the solution is always stable.
As grows, and the center of the

dashed circle moves to the right of (1, 0). To ensure that all
are outside the instability circle, the radius of the

dashed line must be , i.e.,

(17)

It is obvious that this equation always holds. Considering these
three situations, we conclude that must satisfy (16) to ensure
stability of the solution.

To illustrate this point, Table I depicts the above analysis for
different values. (These results are backed by simulations in
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Fig. 11. Test problem: FD and BE along fast and slow time scale, respectively. (a) h1 = 0.9 ms, (b) h1 = 1 ms, (c) h1 = 1.1 ms, (d) h1 = 10 ms.

Section V-A, which match perfectly). For the same , even a
small change in can totally change the stability of the solu-
tion. For example, if 1 ms, with 1 ms, the solution
is unstable, while with 1.1 ms, the solution will be stable.

Notice here that only needs to be approximately larger than
to ensure a stable solution with stability being proportional

to the size of . In reality, when the two time scales are widely
separated, we usually choose . Therefore, the stable
solution is usually obtained, without uncovering the potential
instability inherent in this combination.

C. Stable Time-Domain MPDE Methods

To summarize the above analysis, we consider the case of in-
terest . We begin with a stable DAE and
transform it to a MPDE form. At this point, prior to discretiza-
tion, the equation is still stable. However, when this MPDE form
is discretized along the fast time scale, the stability condition
of the resulting slow-time DAE changes. With the FD method,
the result is an unstable system while with BD, CD, or the
second-order Gear’s method, the result is a stable system. Then,
when numerically integrating the slow time scale, the stability
properties change once more. For the former case, only using the

“overly” stable methods will result in a stable solution provided
that (for BE). For the latter case, any A-stable method
will result in a stable solution, but explicit methods should be
avoided. The results are summarized in Table II; the discretiza-
tion flow is shown in Fig. 10.

To ensure the stability of the time-domain MPDE solution,
one should always use the “Good” combinations in Table II.
Note that if one chooses to use FD and BE (or second-order
Gear) along the fast and slow time scales, respectively, the re-
sulting combination will yield a stable overall solution but an
unstable form was created after the discretization of the fast time
scale. In other words, applying overly stable methods along the
slow time scale can compensate for the unstable discretization
along the fast time scale. The results obtained by using these
“ok” combinations are correct since they match those obtained
by applying “Good” combinations, as shown in Figs. 11(d) and
12 in Section V-A.

D. Projection-Based Perspective

Broadly speaking, the instability of time-domain MPDE
methods can be thought to stem from the difficulty of enforcing
the slowly-varying constraint along the slow time scale. By
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Fig. 12. Test problem: BD and BE along fast and slow time scale, respectively. (a) h1 = 0.9 ms. (b) h1 = 1 ms. (c) h1 = 1.1 ms. (d) h1 = 10 ms.

transforming circuit equations (usually ODEs/DAEs) into
MPDEs, one introduces extra degrees of freedom, to balance
which extra constraints must be imposed that require that the
solution along the slow time scale vary slowly.

One way of discarding unwanted degrees of freedom might
be to apply projection-based model reduction methods [36], [37]
to reduce the fast time discretized MPDE systems to smaller
ones that abstract out the slow envelope components. This con-
cept can be concretized for linear time invarying (LTI) systems
using standard projection methodologies to abstract only the
nonshifted eigenvalues. However, the MPDE is most useful only
for non-LTI systems. For linear time varying (LTV) systems,
projecting the system to a smaller one that abstracts only the
envelope components is a natural and useful concept. This idea
is, in fact, implicit in [38], where one can select one or a few
harmonics of Fourier envelopes of interest as outputs. Unfor-
tunately, for nonlinear systems in general, the projection idea
appears more difficult to apply, though it remains an interesting
subject for further study. The results of this paper may be inter-
preted as a practical way to achieve roughly the same goal (i.e.,
abstracting the envelope) implicitly, via numerical methods that,
by nature, reject fast-varying components.

V. RESULTS

We have implemented time-domain MPDE methods,
using the discretization schemes described above, in quick
analog prototyping platform (QAPP) and Myce, which
are MATLAB-based packages for prototyping and testing
analog-simulation algorithms. All simulations were performed
using MATLAB on a 2.4 GHz, Athlon XP-based PC running
Linux (kernel 2.4 series).

A. Simple Linear Test Problem

Simulation results for the simple linear test problem of (1)
are shown in Figs. 11 and 12. Here, we plot the envelope solu-
tion along the slice. Note that the scales are different.
Fig. 11 demonstrates how BE along the slow time scale damps
out instabilities introduced by the FD discretization of the fast
time scale. Fig. 11(b) is the unstable example of Section III [also
shown previously in Fig. 3(b)].

For comparison, we use the same values in Table I for the
“Good” combinations. In the interest of brevity, we only present
results for the BD BE combination. Other “Good” combina-
tions show the same stability properties. Fig. 12 indicate that
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Fig. 13. Balanced CMOS direct-downconversion mixer.

Fig. 14. Simulation results: at output. (a) Multitime solution. (b) Slice at t =

0.

the envelope solution is always stable for any step size along
the slow time scale .

Fig. 15. Simulation results: at drains of lower MOSFETs. (a) Multitime
solution. (b) Slice at t = 0.

B. CMOS Direct-Downconversion Mixer (Four
Active Transistors)

A balanced CMOS direct-downconversion mixer (based on
[39]) is shown in Fig. 13. The lower pair of MOSFETs gener-
ates a current that doubles the local oscillator (LO) frequency
while the upper pair form a differential pair. This circuit im-
plements a multiplication of the RF and LO signals, with the
high-frequency component of the product filtered out by the RC
network. In our example, the LO signal is a 450-MHz sinusoid
modulated by a 2.5-kHz sinusoid. The RF signal is a 900 MHz
carrier modulated by a bit-stream at 10 Kb/s.

The simulation results are illustrated in Figs. 14 and 15, using
BD and BE in the fast and slow time scales, respectively. As
pointed out in Table II, this is always a stable strategy. The fig-
ures show both the multitime solution and a slice through the so-
lution at . Fig. 14 shows the voltage at one output node.
The voltage at the drains of the lower MOSFETs is shown in
Fig. 15. As can be seen, they double the frequency of the LO
signal. The envelope, as expected, is a slowly-varying curve. In
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Fig. 16. Fully differential OPAMP.

addition, the slowly changing amplitude of bits illustrates the
change of the downconversion gain, which is caused by ampli-
tude changes in the 450-MHz LO signal.

As this example demonstrates, more than two orders of
magnitude of speedup can be obtained from robust and stable
time-domain MPDE methods compared to traditional DAE
integration (such as transient analysis in SPICE). Furthermore,
the wider the separation between fast and slow time scales, the
greater the speedup.

C. Fully Differential OPAMP (28 Transistors)

A fully differential opamp is shown in Fig. 16, [40]. It is com-
posed of two single-ended output current-mirror opamps with
their inputs connected in parallel and each of their outputs being
one of the fully differential circuit outputs. Here we use the sum
of a fast sinusoid and a slow bit stream as the input. The intent
of this simulation is to investigate nonlinearities in the ampli-
fier that can cause intermodulations. The simulation results of
the differential output and one internal node (V1) are shown in
Figs. 17 and 18. Time-domain MPDE envelope integration on
this example runs about 100 times faster than ordinary DAE in-
tegration.

VI. CONCLUSION

In this paper, we have used eigenstructure analysis to in-
vestigate the stability properties of a variety of discretization
methods for time-domain MPDE solution. We have proposed
robust and stable methods to circumvent instabilities based on
the insight provided by this analysis, which has been confirmed
by numerical simulations. We have applied our new robust time-
domain MPDE techniques to mixed-signal circuits with strong
nonlinearities and demonstrated speedups of two–three orders
of magnitude over transient simulations. We expect the adoption
of our methods to lead to significant improvements in simulation
speed for practical applications with fast/slow signal character-
istics.

Although our stability analysis has been for MPDEs with two
time scales, similar analysis is possible for more than two time
scales, provided that only the slowest time scale is potentially
nonperiodic (all other time scales are periodic). Block-circular

Fig. 17. Simulation results: at differential output (Vout1–Vout2). (a) Multitime
solution. (b) Slice at t = 0.

matrix structures arise for three or more time scales; prelimi-
nary work indicates that the broad conclusions obtained here
will hold true for more time scales as well. Further, these re-
sults for ODE-based MPDEs, analogous to classical results on
stability analysis of ODEs, can also be extended to DAE-based
MPDEs, though the DAE case has not been considered here.
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Fig. 18. Simulation results: at one internal node. (a) Multitime solution. (b)
Slice at t = 0.

APPENDIX

A. Eigenstructure After Fast Time Scale Discretization by FD

When the fast time scale is discretized by the FD method, the
DAE corresponding to (2) becomes

(18)

The matrix has the structure

. . .

(19)

with distinct eigenvalues

(20)

B. Eigenstructure After Fast Time Scale Discretization by CD

When CDs are used to discretize the fast time scale, the DAE
corresponding to (2) becomes

(21)

The matrix has the structure

. . .
(22)

with eigenvalues

(23)

C. Eigenstructure After Fast Time-Scale Discretization
by the Third-Order Gear Method

For Gear’s third-order method, the corresponding DAE after
fast time scale discretization is

(24)

Similar to second-order Gear’s method, the matrix has the
structure

(25)

where

It has distinct eigenvalues (as shown in Fig. 7)

(26)
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