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Abstract— Oscillators are widely used in electronic systems but
are inefficient to simulate using traditional methods. Due to this,
the macromodeling of oscillators to speed up circuit simulations
has been studied intensively, but various drawbacks have limited
the applicability of the methods. Recently, a more physically
correct approach to macro-model oscillators has been proposed.
The new macromodel utilizes the results of Floquet analysis [1]
and successfully captures the nonlinear dynamics of oscillators
and correctly predicts their phase response in the presence of
interference. The new method requires far less computational
effort compared to SPICE–level simulations.

In this paper, we present an implementation this nonlinear
oscillator macromodel using the Verilog-AMS language. Several
features in Verilog-AMS allow for a concise implementation. The
Verilog-AMS macromodel is used to study the injection locking
behavior of an LC oscillator, and the simulation results match
full SPICE transient simulations accurately. An advantage of this
implementation is that it can be used in many SPICE–like circuit
simulators due to the wide availability of Verilog-AMS compilers
and the standardization of the language.

I. INTRODUCTION

Oscillators are critical components of electronic systems.
They are especailly important in the front end of communica-
tion circuits [2]. Design of oscillating systems is an important
part of the overall system design. However, simulating oscilla-
tors presents unique challenges because of their fundamental
property of neutral phase stability.

Traditional simulation methods in SPICE–like simulators
often consume significant CPU time to simulate the transient
behavior of oscillating systems, such as phase-locked loops
(PLLs). This is especially true for oscillators under interfer-
ence, since small time steps and many simulation cycles are
required. As a result, macromodels of oscillators have been
used for decades to speed up circuit simulations and facilitate
system–level simulations. This has been an active research
topic and extensive results have been published, but most of
them have been based on the linear perturbation analysis and
have failed to correctly predict important nonlinear transient
behaviors, such as injection locking and cycle slipping.

Recently a fundamentally more correct modeling approach
was proposed [3], [4]. The new macromodel utilizes the results
of nonlinear Floquet analysis, which was used in the rigorous
analysis of free–running oscillators’ phase noise [1]. The
new method consists of a novel algorithm to compute the
oscillators’ phase and amplitude deviations by perturbations

using the Floquet vectors at the nodes where the perturbations
are applied. The macromodel produced is a combination of
a scalar nonlinear differential equation and a reduced linear
time–varying system which is computationally much simpler
and of smaller dimension than the original oscillator equations,
resulting in significant speedups in simulations. It has been
demonstrated that the new nonlinear oscillator macromodel
can accurately predict those important nonlinear behaviors
which linear macromodels cannot. This nonlinear macromod-
eling concept was used in [3] to model and simulate the phase
behavior of VCOs in PLLs and was shown to be more accurate
than linear phase–domain approaches [5].

In this work, as an extension to the original results in [4],
we present implentation details of this nonlinear oscillator
macromodel using the Verilog–AMS language [6]. Because of
its wide availibility in various commerical/in–house SPICE–
like simulators and its standardization across the industry, the
Verilog-AMS language is becoming popular in the behavioral
modeling and simulation communities. Implementing the non-
linear oscillator model using Verilog-AMS language makes
it possible for circuit and system designers to simulate the
oscillators together with other blocks modeled at the SPICE
or Verilog-AMS level. We show in this work that the nonlinear
macromodel can be implemented very concisely in Verilog–
AMS language and be readily plugged into a SPICE-like
circuit simulator.

We use the Verilog–AMS oscillator macromodel in Mica,
Freescale’s in-house analog/RF/mixed-signal circuit simulator,
to simulate the injection locking behavior of an LC oscillator,
which the linear macromodels fail to predict accurately. We
provide comparisons of simulations using the Verilog–AMS
oscillator macromodel generated for an LC oscillator versus
full SPICE–level simulations, under different perturbations.
Our simulation results show the validity of the Verilog–AMS
implementation and illustrate the advantages of the nonlinear
macromodel over linear macromodels.

The remainder of the paper is organized as follows: In
Section II, we briefly review the theory of the nonlinear
oscillator macromodel. In Section III, we present the details
of implementing the nonlinear macromodel using Verilog–
AMS. In Section IV, we present simulation results of applying
the Verilog–AMS macromodel to study the injection locking
behaviors of an LC oscillator and compare the results with
full SPICE–level simulation.
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II. THE NONLINEAR OSCILLATOR MACROMODEL

The standard approach for analyzing perturbed nonlinear
systems is to linearize around an unperturbed trajectory. How-
ever, this approach is not sufficient for analyzing oscillators. In
[1], a novel phase macromodel based on nonlinear perturbation
analysis was presented. In this section, we provide a brief
review of the nonlinear phase model in [1], which was adapted
in [4] in order to build the nonlinear oscillator phase domain
macromodel.

A general oscillator under perturbation can be expressed as

ẋ � f
�
x ��� b

�
t � (1)

where b
�
t � is a perturbation applied to the free-running oscil-

lator and x
�
t � is a vector of the oscillator’s state variables. For

small perturbations, we can linearize (1) about its unperturbed
orbit as

ẇ
�
t ����� ∂ f

�
x �

∂x
	
xs 
 t � w �

t ��� b
�
t �� A

�
t � w �

t ��� b
�
t �� (2)

where w
�
t � represents deviations due to perturbations and xs

�
t �

is the unperturbed steady-state solution of the oscillator. The
periodic time-varying linear system ((2)) can be solved using
Floquet theory [7] which obtains an expression for its state
transition matrix

Φ
�
t � τ � � U

�
t � exp

�
D
�
t � τ ��� V �

τ ��� (3)

U
�
t � and V

�
t � are T -periodic nonsingular matrices, satis-

fying biorthogonality condition vT
i
�
t � u j

�
t � � δi j, and D �

diag � µ1 ��������� µn � , where µi are the Floquet exponents. As shown
in [1], one of the Floquet exponents must be 0, and ẋs

�
t � is

one of the solutions of w
�
t � � A

�
t � w �

t � , the homogenous part
of (2).

Without loss of generality, we choose µ1
� 0 and u1

�
t � �

ẋs
�
t � . The perturbation projection vector (PPV) v1

�
t � satisfies

vT
1
�
t � u1

�
t � � 1 [1], [8]. The PPV, which represents the oscil-

lator’s phase sensitivity to perturbations, is a periodic vector
waveform with the same period as the unperturbed oscillator.

The particular solution of (2) is given by

w
�
t � � n

∑
i � 1

ui
�
t ��� t

0
exp

�
µi
�
t � τ ��� vT

i
�
τ � b � τ � dτ � (4)

where µ1
� 0. A small perturbation b

�
t � with the same fre-

quency as v1
�
t � can always be chosen to satisfy that vT

i
�
t � b � t �

has a nonzero average value; hence w
�
t � can be made to grow

unboundedly with t, despite b
�
t � always remaining small. This

contradicts the basic assumption for perturbation analysis, i.e.
that w

�
t � is always small.

A. Nonlinear Phase Macromodel

To resolve this contradiction, a key innovation of [1] was to
rewrite (1) with the perturbation b

�
t � split into two components

ẋ � f
�
x � � b1

�
t ��� b̃

�
t �� (5)

where
b1
�
t � � vT

1
�
t � α

�
t ��� b � t � u1

�
t � α

�
t ��� (6)

induces only phase deviations to the unperturbed system, while

b̃
�
t � � n

∑
i � 2

vT
i
�
t � α

�
t ��� b � t � ui

�
t � α

�
t ��� (7)

contributes to orbital deviations. The solution of ẋ � f
�
x � �

b1
�
t � is in fact given by

xp
�
t � � xs

�
t � α

�
t ����� (8)

where α
�
t � is the phase deviation due to the perturbation b1

�
t � .

Indeed, α
�
t � satisfies the nonlinear differential equation

α̇
�
t � � vT

1
�
t � α

�
t ����� b � t ��� (9)

where v1
�
t � is the PPV and α

�
t � in nonlinear has units of time.

Phase deviation in radians can be obtained by multiplying α
�
t �

by the free running oscillation frequency ω0. With the PPV
v1
�
t � available for a given oscillator, its phase deviations due

to perturbations can be efficiently evaluated by solving the
one–dimensional nonlinear differential equation (9). Effective
numerical methods are available for computing the PPV from
a SPICE–level description of the oscillator [1], [8] in either
time or frequency domains.

III. VERILOG–AMS IMPLEMENTATION OF THE
NONLINEAR OSCILLATOR MACROMODEL

In this section, we use the Verilog–AMS language to imple-
ment the nonlinear macromodel discussed in the last section.
We use a simple example: the LC oscillator presented in [4].
Figure 1 depicts the block diagram of a simple LC oscillator,
whose differential equations are

� C
d
dt

v
�
t � � v

�
t �

R
� i

�
t ��� S tanh � Gn

S
v
�
t ����� b

�
t �

L
d
dt

i
�
t � � v

�
t �� (10)

L � 4 � 869 � 10  7 ! � 2π � H, C � 2 � 10  12 ! � 2π � F , R � 100 Ω,
S � 1 ! R and Gn

� � 1 � 1 ! R. With these parameters, the LC
tank has a resonance frequency of 1 GHz, and the inductor
current has amplitude A0

� 1 � 2mA.

−

b(t)

i=
f(

v)

Fig. 1. A simple LC oscillator.

This simple circuit can be trivially simulated using Mica’s
oscillator analysis algorithm, and one period of the PPV
waveform of node 1 is presented in Figure 2.

After knowing v1
�
t � , the phase deviation α

�
t � of the LC

oscillator under any perturbation, b
�
t � , at the output node,

can be predicted by solving the nonlinear differential equation
(9), and the output of the oscillator becomes V

�
t � α

�
t ��� . The

Verilog–AMS code of the nonlinear macromodel of the LC
oscillator is presented in Figure III.
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Fig. 2. PPV of the output node of the LC oscillator.

In Verilog–AMS, the LC oscillator can be implemented
as a module with two nodes, an input node taking pertur-
bation, and an output node generating the output oscillating
waveform. (9) can be set up by creating an internal node,
alpha, and two branches, alpha1 and alpha2, between alpha
and ground. The voltage at node alpha, V(alpha), is the α
in (9). The two branches are contributed by ddt(V(alpha))
and � v1(V(alpha)+$abstime) � V(in). When this Verilog–AMS
module is plugged into Mica for a transient simulation, as sim-
ulation proceeds, $abstime increases and the KCL equation at
node alpha will force (9) to be solved at each time step. After
(9) is solved, the perturbed time, t � α

�
t � , is obtained, and

the output waveform of the oscillator is just the unperturbed
waveform shifted by α

�
t � .

A feature of Verilog–AMS, $table model is particularly
useful in setting up (9). The $table model function models the
behavior of a system by interpolating between data points that
are samples of that system’s behavior. To build such a model,
users need to provide a set of sample points,

�
xi1 � xi2 ��������� xiN � yi �

so that f
�
xi1 � xi2 ��������� xiN � � yi [6]. For our purpose, we need to

build a table describing the dependence of v1
�
t � on t. Taking

into account of the periodicity of the PPV waveform, v1
�
t � , we

only need to store one period of it in a table, ”osc ppv.table”,
and index the table using the perturbed time’s period modulus
to get the corresponding PPV value, v1

�
t � α

�
t ��� . Similarly we

store one period of the oscillator’s output waveform in another
table, ”osc output.table”, and use it to generate the perturbed
output.

An example of the PPV table with 17 time points is given
in Table I. However, we used a much larger table (513 time
points) to produce all the results presented in this work. The
second column of Table I is the value of the PPV, v1

�
t � , at

t given in the first column, which is obtained from Mica’s
oscillator analysis using harmonic balance method.

The macromodel building process is very streamlined. The
major step is simulating the full-size oscillator (the SPICE
level description) using Mica’s oscillator analysis algorithms
either in time or frequency domain to obtain one period of the
steady state and the PPV waveforms of the interesting outputs
and inputs (where perturbations are applied).

‘include "discipline.h"
‘include "constants.h"

// nonlinear macromodel implemented in Verilog-AMS
module oscillator(in, out);
// define nodes   
inout      in, out;
electrical in, out, alpha;

// define variables and parameter  
real phase, ppv, period, omega,
     perturbed_time;
   
parameter real freq=1.0e9 from(0:inf);

// define branches
branch (alpha) alpha1;
branch (alpha) alpha2;
   
analog
begin
@(initial_step)
    begin
    //set up initial condition for eq(9)  
    V(alpha) <+ 0;
    omega =  2.0*‘M_PI*freq;
    period = 1.0/freq;
    end

    // real perturbed time is given by
    // $abstime + V(alpha)
    // but our ppv table has only one period
    // so take the modulus of period
    
    perturbed_time = ($abstime+V(alpha)) % period;

    // look up table to get ppv value
    // $table_model(arg1, arg2, arg3)
    // arg1: input (independent) variable
    // arg2: name of the file storing the table
    // arg3: interpolation method, L-linear
    
    ppv =  $table_model(perturbed_time,
           "osc_ppv.table", "L");
    
    // right hand side of eq(9)
    // ppv:  v1(t+alpha(t))
    // V(in):b(t) 
    I(alpha1) <+ -ppv*V(in);
    
    // left hand side of eq(9) 
    I(alpha2) <+  ddt(V(alpha));
        
    // The KCL at alpha forces 
    //       I(alpha1) + I(alpha2) = 0 
    // so that eq(9) is solved at each time point
    
    phase = V(alpha)*omega; // output only

    // look up table to generate output
    V(out) <+ $table_model(perturbed_time,
              "osc_output.table", "L");
end
endmodule

Fig. 3. Verilog–AMS code of the nonlinear macromodel of the LC oscillator.
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TABLE I
PPV TABLE USED IN VERILOG–AMS NONLINEAR OSCILLATOR

MACROMODEL

time (sec) PPV (V  1)
0.000000e+00 5.842040e+01
5.881575e-11 -3.02776e+02
1.176315e-10 -7.10414e+02
1.764472e-10 -9.54355e+02
2.352630e-10 -9.06342e+02
2.940787e-10 -6.87832e+02
3.528945e-10 -4.95333e+02
4.117102e-10 -3.59686e+02
4.705260e-10 -1.87722e+02
5.293417e-10 1.069284e+02
5.881575e-10 5.126373e+02
6.469732e-10 8.659865e+02
7.057890e-10 9.649073e+02
7.646047e-10 8.038073e+02
8.234205e-10 5.817091e+02
8.822362e-10 4.252280e+02
9.410520e-10 2.848354e+02

As discussed in [4], the same approach can be used to
build macromodels for oscillators’ amplitude deviation as
well. However, in this work, we limit our discussions to
phase domain macromodel only because of its significance
in oscillator behaviors.

IV. SIMULATION RESULTS

One of the most interesting applications of the nonlin-
ear oscillator macromodel is to simulate the injection lock-
ing behavior of oscillators, a phenomenon which the linear
macromodels cannot correctly predict. Injection locking is a
nonlinear dynamical phenomenon occurring in all oscillators.
When an oscillator is perturbed by a weak external signal
close to its free–running frequency, the oscillator’s frequency
changes to become identical to that of the perturbing signal
[9]. Capturing injection locking using traditional simulation
presents challenges. SPICE–level simulation of oscillators is
usually inefficient, since oscillators often require thousands of
cycles to lock to an injecting signal, with each simulation cycle
requiring large numbers of very small timesteps for acceptable
phase accuracy. If the frequency of the injected signal is close
to oscillator’s free-running frequency, it also becomes very
difficult to determine injection locking from observing time-
domain waveforms.

In this section, we study the injection locking behavior using
the Verilog–AMS macromodel from Section III. Sinusoidal
perturbations at different frequencies and amplitudes are in-
jected at the output node of the LC oscillator, and its transient
behavior is simulated using the Verilog–AMS macromodel
and the full SPICE transient simulation respectively. The
frequency changes of the oscillator under different sinusoidal
perturbations are presented in Figure 4 and Figure 5, where
symbols are the results of the full SPICE simulations and solid
lines are those using the Verilog–AMS macromodel. When
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(b) Perturbation frequency = 980MHz; amplitude=50uA.

Fig. 4. Frequency Change of the LC oscillator under the perturbations close
to its oscillation frequency.

the frequency of the injection perturbation is close to the
oscillation frequency, the oscillator can lock into the injection
signal, as shown in Figure 4. The simulation results using the
Verilog–AMS match those by full SPICE transient simulations
closely. As a result of the nonlinear dynamics of the oscillator
being well captured by (9), the nonlinear macromodel predicts
the transient locking process as well as the eventual locking
behavior accurately. If the frequency of the perturbation is
out of the oscillator’s locking range [4], the oscillator cannot
synchronize with the injection, and the system shows an
unstable oscillation, as shown in Figure 5. Even in this case,
the Verilog–AMS macromodel’s prediction of the transient
behaviors still matches the full SPICE simulations accurately.

V. CONCLUSIONS

We have presented a Verilog–AMS implementation of the
nonlinear oscillator macromodel. The Verilog–AMS language
allows for a very concise implementation of the nonlin-
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Fig. 5. Frequency Change of the LC oscillator under the perturbations out
of its locking range.

ear macromodel. The generated macromodel can be read-
ily plugged into any SPICE–like simulator which supports
Verilog–AMS to study the behaviors of oscillators and per-
form system simulations. We have used the macromodel to
investigate the injection locking behaviors of an LC oscillator.
The simulation results using the Verilog–AMS match the full
SPICE simulations faithfully.
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