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Abstract— In this paper, we present a analytical method for predicting
injection locking in the LC and ring oscillators. Our method is very
convenient for analyzing the injection locking phenomenon in oscillators,
since it doesn’t require the Q factor, as the Adler equation [1] does. We
show that our analytical solution is equivalent with Adler’s equation for
LC oscillators. Moreover, our method can predict injection locking in ring
oscillators, where Adler’s equation fails since the operating mechanism
is different. We demonstrate the proposed techniques on LC and ring
oscillator circuits, comparing results from our analytical equations
against full SPICE-level circuit simulations. Numerical experiments show
our methods are able to predict injection locking in oscillators with great
accuracy.

I. INTRODUCTION

Injection locking [4] is a nonlinear phenomenon that can be
observed in many natural oscillators: when an oscillator is perturbed
by a weak signal whose frequency is close to the oscillator’s free-
running frequency, the oscillator’s frequency changes to be identical
to that of the perturbation signal. Recently, this phenomenon has been
increasingly used in high speed oscillator designs. In optics, injection
locking has been used in lasers to improve the frequency stability
and reduce the frequency noise of laser diodes [5], [8]. In electronic
system, injection locking is a well known and practical technique
for phase locked loops (PLLs) to increase pull-in range and reduce
output phase jitter [12]. As a result, fast and accurate prediction of
injection locking is very important.

The direct computational method for analyzing injection locking is
to simulate the oscillator circuit at the SPICE level, and to compare
the circuit’s response to the injected signal. Unfortunately, predicting
injection locking via SPICE-like simulations can be extremely diffi-
cult: The accurate simulation of oscillators requires large number of
small timesteps for each oscillation cycle, and a high Q oscillator may
need thousands of cycles to lock to the external signal. In addition,
for small injections at frequencies close to the oscillator’s natural
frequency, it is very difficult to observe injection locking from time
domain waveforms, as the beat note – periodic variations of frequency
and amplitude – due to the perturbation is very small. Since the
direct simulation method is usually inefficient and inaccurate for
predicting injection locking, a method to capture injection locking
without performing full circuit simulation is of great interest.

To overcome the shortcoming of full circuit simulations, various
analytical approaches [6], [9], [10] are used to predict injection
locking in oscillators. They are all based on Adler’s classic 1946
paper [1], which provides a simplified quantitive explanation of the
phenomenon for simple harmonic oscillators, leading to formulae
for their lock range. Adler’s equation provides a simplified way to
predict injection locking in LC oscillators. However, this method is
not general, being derived form the concept of LC tank and limited to
harmonic oscillators with an explicit Q factor. As a result, it cannot
be applied to analyze other oscillators, such as ring oscillator, which
is widely used in digital circuits for frequency synthesis, since the
operating mechanism is totally different.

In [7], an efficient numerical approach that overcomes the lim-
itation of the Adler equation is presented. The method exploits
the perturbation projection vector (PPV) [2] of oscillators to pre-
dict injection locking. Developing upon a rigorous nonlinear phase
macromodel for oscillators [2], this technique is applicable to any
oscillators, regardless of operating mechanism. Moreover, the method

improves significantly on Adler’s method in terms of accuracy for
LC oscillators, as it uses the exact expression of the circuit equations
instead of the first-order approximation proposed by Adler. However,
this method requires full circuit descriptions at SPICE-level, and the
calculation of the PPV can be complex and difficult as the circuit size
grows. Hence, this method can be inconvenient for fast prediction of
injection locking in oscillators.

In this paper, we present analytical solutions for the fast prediction
of injection locking in the LC and ring oscillators. We first derive
analytical representations of the PPV of the LC and ring oscillators,
based on some reasonable assumptions and simplifications. We then
apply the analytical PPVs to the method in [7] and derive the
analytical equations for predicting injection locking in the LC and
ring oscillators. We show that our solution for LC oscillator is
equivalent with Adler’s equation, except our equation doesn’t require
the Q factor. Our method is more convenient than Adler’s approach,
since the Q factor is not easy to be calculated accurately, even
for a simple LC oscillator circuit. Since Adler’s equation cannot
be applied to ring oscillators, we verify our analytical equation for
ring oscillators using full SPICE-level circuit simulations. Numerical
results show that our analytical equation is able to predict injection
locking in ring oscillators with excellent accuracy. Our analytical
solution for ring oscillator can be very useful for designers, since it
can provide fast and accurate prediction of injection locking in ring
oscillators where other injection locking approaches (e.g., Adler’s
equation) fail.

The remainder of the paper is organized as follows. In
Section II, we briefly review previous injection locking approaches.
In Section III, we derive analytical equations for predicting injection
locking in the LC and ring oscillators. In Section IV, we present
simulation results on two oscillator examples and verify our analytical
equations.

II. PREVIOUS INJECTION LOCKING APPROACHES

Various approaches have been proposed for prediction injection
locking in oscillators. In this section, we briefly summarize two
typical injection locking prediction schemes: one is the analytical
method proposed by Adler (Adler’s equation), the other is a semi-
analytical method based on the PPV of oscillators.

A. Adler’s Equation

In [1], Adler derived the phase dynamics of the oscillator from
the phase and amplitude relationship between the oscillator and the
injected signal. If an oscillator is perturbed, but not locked by the
perturbation signal, we will observe a beat note. The following equa-
tion describes the instantaneous beat frequency of the LC oscillator
perturbed by an external signal:

dα
dt

= −Vin j

V0

ω0

2Q
sin(α)+Δω0, (1)

where Vin j is the injected voltage, V0 and ω0 are the output voltage
and frequency of the unperturbed oscillator, and dα

dt is the instan-
taneous beat frequency. Δω0 is the frequency difference between
the injected signal and the free-running oscillator, which satisfies
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Δω0
ω0

� 1
2Q . When the oscillator locks to the external injection signal,

the beat frequency vanishes, resulting in the locking condition

sin(α) = 2Q
V0

Vin j

Δω0

ω0
. (2)

Since the values of sin(α) can only be between −1 and +1, the
maximum locking range of the oscillator is given by

Vin j

V0
> 2Q|Δω0

ω0
|. (3)

B. Semi-analytical Solution Based On Nonlinear Phase Macromodel

Based on the nonlinear phase macromodel proposed in [2], a semi-
analytical method is presented for predicting injection locking in
oscillators [7]. The oscillator’s maximum locking range is governed
by equation

|Δω0

ω0
| < ηAin j, (4)

where Δω0 is the frequency difference between injection signal
and the oscillator’s free-running frequency ω0, Ain j is the injection
amplitude and η is the locking factor that can be calculated by solving

η = max
t0=0→1

∫ 1

0
v1(

t + t0
f0

)sin(2πt)dt. (5)

where v1(t) is the PPV of oscillators that can be calculated by various
numerical methods [2], [3]. When the PPV is calculated, this method
can be applied to analyze injection locking in any oscillators, without
being limited to harmonic oscillators. However, the calculation of
PPVs requires full circuit description at SPICE-level. Thus, this
method is not as convenient as traditional analytical solutions.

III. ANALYTICAL SOLUTIONS FOR LC AND RING OSCILLATORS

The numerical injection locking method in Section II-B is not very
convenient, since it requires numerical calculation of the PPV. If we
can derive the analytical PPV of the oscillator under some reasonable
simplification and substitute it into (5), we can develop analytical
solutions for predicting injection locking in any oscillators. In this
section, we derive analytical injection locking equations for the LC
and 3-stage ring oscillators. Similar methods can be applied to derive
analytical solutions for ring oscillators with more than 3 stages.

A. LC Oscillator

The block diagram of a typical LC oscillator is shown as Figure 1.
The general ODE equation for this LC oscillator can be expressed as

d
dt

v(t) = − v(t)
RC

− i(t)
C

− f (v(t), i(t))
C

d
dt

i(t) =
v(t)
L

,

(6)

where C and L is the effective capacitance and inductance of the
resonant tank of the LC oscillator, R is the load resistance, while
f (v(t), i(t)) is the negative resistor that determines the oscillator’s
oscillation amplitude. Using vector notation, (6) can be expressed as

ẋ(t) = Gx(t)+F(x(t)), (7)

where x(t) = [v(t), i(t)]T , F(x(t)) = [− f (v(t),i(t))
C ,0]T , and

G =
[ − 1

RC − 1
C

1
L 0

]
.

1) Analytical PPV for LC Oscillator: If the Q factor of the
oscillator is reasonably high, the steady state of the LC oscillator
can be approximated as

xs(t) =
[

v(t)
i(t)

]
=

[
VC cos(w0t +θ)
IL sin(w0t +θ)

]
(8)

−

b(t)

i=
f(

v)

Fig. 1. A simple LC oscillator.

by ignoring some high order harmonics. Here, IL is the amplitude
of the current in the inductor L, VC is the amplitude of the voltage
swinging over the capacitor C, ω0 is the free-running frequency of
the oscillator, and we have relationship:

IL = VCω0C, VC = ILω0L. (9)

By introducing new state variable p = [IL,θ ]T , the steady state of the
oscillator can be expressed as

xs(p, t) =
[ IL

ω0C cos(w0t +θ)
IL sin(w0t +θ)

]
(10)

If the oscillator is perturbed by the noise signal B(t) = [in(t),vn(t)]T ,
IL and θ will change slowly with time. So the solution of (7) can be
given by

x(t) = xs(p(t), t). (11)

Substitute (11) in (7), we have

∂xs

∂ p
ṗ(t)+

∂xs

∂ t
= Gx(t)+F(x(t))+

[
in(t)

C
vn(t)

L

]
(12)

⇒ ∂xs

∂ p
ṗ(t) =

[
in(t)

C
vn(t)

L

]
(13)

⇒ ṗ(t) =
[

İL
θ̇

]
= J−1

[
in(t)

C
vn(t)

L

]
, (14)

where

J−1 =
∂xs

∂ p

=
[

1
ω0C cos(ω0t +θ) − IL

ω0C sin(ω0t +θ)
sin(ω0t +θ) IL cos(ω0t +θ)

]−1

=
1
IL

[
ILω0C cos(ω0t +θ) IL sin(ω0t +θ)
−ω0C sin(ω0t +θ) cos(ω0t +θ)

]
.

(15)

Substitute (15) in (14), the phase shift due to the perturbation can be
calculated by solving equation:

θ̇ =
1
IL

[−ω0C sin(ω0t +θ),cos(ω0t +θ)]

[
in(t)

C
vn(t)

L

]
(16)

⇒ α̇(t) = [− 1
IL

sin(ω0t +θ),
1

VC
cos(ω0t +θ)]B(t), (17)

where α(t) is the phase deviation of the oscillator, which has units
of time. (17) has the exact same form as the phase equation in [2],
so the PPV of the LC oscillator is

PPV(t) = [− 1
IL

sin(ω0t +θ),
1

VC
cos(ω0t +θ)]T . (18)

2) Analytical Injection Locking Equation For LC Oscillator:
Assuming a sinusoid current signal in(t) = Ii sin(ω1t) is injected into
the LC oscillator, the corresponding PPV for this injected signal is

v1(t) = − 1
IL

sin(ω0t +θ).
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Substituting v1(t) and in(t) into (5), we have

η = max
t0=0→1

∫ 1

0
− 1

IL
sin(2π(t + t0))sin(2πt)dt

=
1

2IL
.

(19)

So the maximum locking of the LC oscillator can be derived by
substituting (19) into (4):

|Δω0

ω0
| < 1

2
Ii

IL
, (20)

where Ii is the amplitude of the injected current and IL is the
amplitude of the current in the inductor L.

Using similar method, we derive the equation for voltage injection
as

|Δω0

ω0
| < 1

2
Vi

VC
, (21)

where Vi is the amplitude of the injected voltage and VC is the
amplitude of the voltage swinging over the capacitor C.

3) Comparing Our Solution With Adler’s Equation: For the LC
oscillator as shown in Figure 1, the Adler equation has the form of

|Δω0

ω0
| < 1

2Q
Ii

IR
, (22)

where Q is the quality factor of the oscillator, Ii is the injected current,
and IR is the load current of the oscillator. The reason why there is
inconsistency between these two equations is that Adler’s equation
uses the load current IR as reference, while our solution use inductor
current IL as reference. Is is obvious from Figure 1 that IL and IR has
the relation IL = QIR, so this two solutions are equivalent. Since the
inductor current IL can be easily measured in a circuit, our method
can be very convenient since it doesn’t require the Q factor.

B. Ring Oscillator

Figure 2 depicts an simple 3-stage ring oscillator. All resistors,
capacitors and inverters are assumed to be identical and all inverters
are considered to be ideal, with output voltage ±A and switching
threshold zero. In [11], an analytical PPV was derived for this
idealized 3-stage ring oscillator.

R

C

R

C

R

C b(t)

v1 v2 v3

Fig. 2. A simple ring oscillator.

1) Analytical PPV for Ring Oscillator: The ODE equation of the
3-stage oscillator can be expressed as

v̇1(t) =
f (v3(t))− v1(t)

RC

v̇2(t) =
f (v1(t))− v2(t)

RC

v̇3(t) =
f (v2(t))− v3(t)

RC
,

(23)

where f (v) is the ideal nonlinear inverter, which has the characteristic
of

f (v) =
{ −A, i f v > 0

A, otherwise. (24)

The steady state response of this idealized ring oscillator is shown
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(a) Steady state waveforms of
the ring oscillator.
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(b) PPV waveforms of the ring
oscillator.

Fig. 3. Steady state waveforms and PPV waveforms of the ring oscillator.

[11] to be

v1(t) = x(t) =

{
A(1−ϕe−

t
τ ), 0 ≤ t ≤ T

2

A(−1+ϕe−
t− T

2
τ ), T

2 ≤ t ≤ T

v2(t) = x(t − 2T
3

), v3(t) = x(t − T
3

),

(25)

where ϕ = 1+
√

5
2 ≈ 1.618, τ is the RC time constant and T = 2.887τ

is the period of the ring oscillator. Figure 3(a) depicts the steady state
waveforms of the ring oscillator.

By linearizing the ring oscillator equation (23) over its steady state
and using the time domain PPV calculation method [2], the PPV of
the ring oscillator can be derived [11] to be

PPV(t) =

⎡
⎣PPV3(t − 2T

3 )
PPV3(t − T

3 )
PPV3(t)

⎤
⎦ , (26)

where

PPV3(t) =
R
A

1+ϕ3

4−2ϕ3

(
ϕ +2

[
−u(t)+

(−1+2ϕ−1)u(t − T
2

)
])

e
t
τ

� R
A

(
0.4472−0.5528u(t − T

2
)
)

e
t
τ ,

(27)

where u(t) is a unit step function. Figure 3(b) depicts the PPV
waveforms of the ring oscillator with R = 1000Ω and A = 1V .

2) Analytical Injection Locking Equation For Ring Oscillator: For
a sinusoid current b(t) = Ii sin(ω1t)injected into the ring oscillator, as
shown in Figure 2, the maximum locking range can be approximated
by substituting (27) into (5):

η = max
t0=0→1

∫ 1

0
PPV3(

t + t0
f0

)sin(2πt)dt

= max
t0=0→1

∫ 1

0

R
A

(0.4472−0.5528u(t − 1
2
))e2.887t sin(2π(t − t0))dt

=
0.675R

A
.

(28)

|Δω0

ω0
| < ηIi =

0.675RIi

A
. (29)

(29) reveals that the maximum locking range of the ring oscillator
is proportional to the load resistance R and inversely proportional to
the inverters output voltage A. Even though our analytical solution is
derived based on the assumption that the switching of the inverter is
ideal, our numerical simulation shows that our equation can predict
injection locking in ring oscillator very well when the inverter is
non-ideal.

IV. NUMERICAL RESULTS

In this section, the analytical equations derived in Section III
are applied to predict injection locking of two types of oscillators,
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LC and 3-stage ring oscillator. For both oscillators, we run full
SPICE-level simulations, and compare the results with our analytical
solutions. For the ring oscillator case, we simulate the ring oscillator
with different switching functions, to investigate the impact of the
switching characteristic to the prediction accuracy of our analytical
equation. Simulation results show that our analytical equations are
able to predict injection locking in oscillators with good accuracy,
even for the ring oscillator with non-ideal switching characteristic.

A. LC Oscillator

The differential equation for this LC oscillator is

d
dt

i(t) =
v(t)
L

d
dt

v(t) = − i(t)
C

− v(t)
RC

− S
C

tanh
(Gn

S
v(t)

)
,

(30)

where L, R, and C are the inductance, resistance and capacitance of
the LCR tank. S and Gn are parameters of nonlinear negative resistor
that enables oscillations. The circuit exhibits autonomous oscillations
when −Gn > 1/R.

The circuit was simulated with following parameters: L = 2.5×
10−8/(2π) H, C = 4 × 10−11/(2π) F , R = 100 Ω, S = 1/R and
Gn =−10/R. With these selected parameters, the oscillator has the Q
factor of 4, the LC tank has a resonant frequency of 1 GHz, and the
oscillator has an operating voltage of 1.2V and an operating current
of 52mA.

We run full SPICE-level simulation to detect the maximum locking
range of the LC oscillator under different injection strengths and
compare the results with our analytical equations (20) and (21). The
results are shown in Figure 4. Our analytical equations produce per-
fect matches with full SPICE-level simulation for this LC oscillator
under both the voltage and current injection.
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(a) Voltage injection.
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(b) Current injection.

Fig. 4. Maximum locking range of the LC oscillator under different
perturbations.

B. Ring Oscillator

The three-stage ring oscillator is described by the following dif-
ferential equations:

v̇1(t) = − v1

RC
+

tanh(−Gmv3(t))
RC

v̇2(t) = − v2

RC
+

tanh(−Gmv1(t))
RC

v̇3(t) = − v3

RC
+

tanh(−Gmv2(t))
RC

(31)

We choose C = 2nF and R = 1kΩ in our simulation. Gm determine
the switching characteristic of the inverter. The larger the Gm, the
smaller the switching threshold of the inverter. When Gm ⇒ ∞, we
get the ideal switching inverter. In our ring oscillator simulation,
we simulate the ring oscillator with different Gms to investigate

the prediction accuracy of our analytical equation under different
switching thresholds.

We measure the maximum locking range of the ring oscillator with
different switching characteristics using full simulation, and plot the
results together with our analytical equation in Figure 5. It is obvious
that our analytical equation is able to accurately predict injection
locking in ring oscillators, even though the switching characteristics
is non-ideal.

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
0

0.05
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0.15

Injection current (mA)

Δω
0/ω

0

Full simulation (G
m

=5)
Full simulation (G

m
=20)

Full simulation (G
m

=100)

Analytical equation

Fig. 5. Maximum locking range of the ring oscillator.

V. CONCLUSIONS

We have presented analytical equations for the fast prediction
of injection locking in the LC and ring oscillators. We derived
the analytical PPVs for the idealized LC and ring oscillators, and
developed the analytical injection locking solutions with these PPVs.
Our numerical results show that our analytical solutions are able to
predict injection locking accurately, even for oscillators with non-
ideal characteristics.
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