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Abstract— Simple, accessible and intuitive treatments of oscillator
injection locking, that at the same time maintain rigour especially
with regard to nonlinearities, appear to be lacking in the literature.
We present a novel analysis that incorporates all these features but
uses only basic mathematical and circuit theory concepts. We develop
a graphical procedure for finding the nonlinear relationship between
injection amplitude and lock range that is both accurate and insightful.
We also provide freely downloadable MATLAB scripts [2] implementing
our analysis and graphical procedures. These scripts can be easily
adapted to any negative-resistance LC oscillator and used for convenient
and accurate exploration of injection locking and other properties.

I. INTRODUCTION

Injection locking is a nonlinear phenomenon universal to all free-
running oscillators. When an oscillator is perturbed by an external
signal, its natural frequency can change to exactly equal (i.e., lock
to) the perturbing frequency, under the right circumstances. This
phenomenon has been noted in virtually every physical discipline
involving oscillators, from biologicall, chemical, mechanical and
optical systems to electronic ones.

While unintended injection pulling/locking can be a severe problem
in circuit applications, the effect has been increasingly exploited
as a useful design technique. For example, in RF design, mutually
injection-locked arrays of oscillators have been used to control the
aperture phase of phased-array antennas [14]; in high-frequency PLL
design, where the power consumption of frequency dividers is of
concern, superharmonically injection-locked oscillator dividers can
offer low-power alternatives [18]; in analog fiber-optic applications,
injection locking is used to increase laser bandwidth, improve fre-
quency stability and reduce noise and chirp [3], [8]; and so on [11],
[15], [16], [19]. Given its ubiquity and myriad applications, it is not
surprising that there has been great interest in developing analytical
and computational methods for understanding the phenomenon [15],
[16], [18]-[21].

An obvious means of predicting injection locking is brute-force
simulation at the SPICE level. This approach, while straightforward,
is far from ideal even if the goal is simply simulation (see, e.g.,
[10]). From a design perspective, it provides little understanding of
or insight into mechanisms behind injection locking. A variety of
analytical approaches have been proposed for this purpose (e.g., [1],
[6], [9], [19]), of which Adler’s classic 1946 paper [1] is possibly
the best known. Adler was able, using linear concepts, to obtain
formulae for injection locking in negative-resistance LC oscillators. In
particular, Adler’s analysis predicted that the locking range (i.e., the
maximum deviation of the perturbing frequency from the oscillator’s
natural frequency) of an injection-locked oscillator is linearly related
to the amplitude of injection; this prediction has been confirmed for
small injection levels. The validity of Adler’s approach begins to
falter at higher injection levels, however; measurements have shown
that locking range deviates significantly from Adler’s predictions as
the injection strength grows. In addition, Adler’s analysis did not
deal satisfactorily with circuit nonlinearity, which plays a crucial
role in the injection locking process. As noted recently [15], [19]
and elaborated upon further in this paper, nonlinearity cannot simply
be wished away as a second-order effect for oscillators; it is necessary
to take it into account to obtain a proper understanding of even basic
features of oscillator operation. For example, it is easily shown that

'Indeed, there is speculation (e.g., [12]) that complex locking phenomena
within large systems of interacting oscillators is fundamental to life itself.
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amplitude-stable oscillation [5], [7] and especially injection locking
[10], [16] cannot occur at all in purely linear systems.

The importance of nonlinearities in injection locking was rec-
ognized by Verma, Rategh and Lee [15], [19], who employed
polynomial nonlinearities to obtain relatively complex formulae for a
variety of injection locking scenarios. Such prior nonlinear analyses
of injection locking have tended, however, to sacrifice to a large
extent the simplicity, intuition and insight that is the chief attraction
of linearized analyses like those of Adler [1] and Razavi [16].

In this work, we present a simple and intuitive analytical technique
for understanding and predicting injection locking effects in negative-
resistance LC oscillators. In spite of its simplicity, our technique is a
fully nonlinear one that is rigorously developed in logical fashion. A
key feature of our approach is that it uses only basic circuit concepts
and considerably simpler mathematics than investigations such as
[15], [19]), relying instead on a graphical development that provides
considerable insight into the core nonlinear mechanisms responsible
for injection locking. Furthermore, our approach is not limited to
specific nonlinear forms (such as polynomials) but can treat any type
of nonlinear negative resistance element. In the remainder of this
section, we outline the flow of our approach.

We start (Section II) by addressing the issue of how to find the
oscillation amplitude of a free-running negative-resistance oscillator
with no external injection. We first review classic linear feedback
structures and Barkhausen’s criterion for oscillation [17], noting
shortcomings that we proceed to address. We show how a negative-
resistance LC oscillator can be interpreted as a nonlinear feedback
structure. We present a simple but rigorous analysis of this nonlinear
feedback structure, our only approximation being a natural one related
to the Q factor of the LC tank. As part of this analysis, we explain
intuitively why the tank voltage should be highly sinusoidal, while
its current can be extremely distorted. We show how the amplitude of
the tank voltage can be estimated using a simple graphical procedure,
providing an analytical example as illustration. We also show how
this procedure can be framed in equation form and solved using
MATLAB, employing simple, freely-downloadable code which we
provide [2].

We then proceed to analyze and understand injection locking
using small modifications of the above nonlinear feedback structure
(Section IIT). We show how the fundamental mechanism of injection
locking can be understood via simple phasor diagrams, nonlinear
generalizations of similar diagrams from linear analysis [1], [16].
From these phasor diagrams, we derive a simple and insightful
graphical procedure, and provide MATLAB code, for predicting the
nonlinear relationship between lock range and injection amplitude
accurately. Finally, we show how Adler’s classic result can be
immediately visualized as a simple special case of our approach.

II. NONLINEAR FEEDBACK ANALYSIS: AMPLITUDE AND
FREQUENCY OF NEGATIVE-RESISTANCE LC OSCILLATORS

X(s) 4 Y(s)
=gy

Fig. 1. Linear feedback structure.
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Oscillator operation is conventionally viewed [17] as a limiting
case of the (linear) feedback amplifier shown in Fig. 1. A(s) is the
transfer function of an amplification block, f is a feedback factor,
X (s) is the input and Y (s) the output; all quantities are in the Laplace
domain. The input-output relationship of this feedback system is
given by

Als)
Y(s) = ————=X(s). 1
() = A ¥ m
This relationship is valid for all values of 3 and A(s), except when
BA(s) = —1, i.e., when the denominator of (1) vanishes, a condition

called the Barkhausen criterion [17]. If the Barkhausen criterion
is satisfied at some frequency s = jay, the feedback amplifier is
assumed to go into self-oscillation at that frequency, based on the
loose reasoning that even when the input X (s) = 0, the output Y (s)
can be nonzero.

While Barkhausen’s oscillation criterion has the merit of simplicity,
and indeed generates insights valuable for practical oscillator design,
it also raises basic questions that hint at shortcomings. If the system
does oscillate, what is the output amplitude? Is the output waveform
always sinusoidal? What happens if the input X (s) is nonzero while
Barkhausen is satisfied — can the output amplitude blow up to infinity?
Such egregious implications are typically countered by noting that
B or A(s) are in fact nonlinear and that they actually change with
the amplitude of X or Y; hence that the quantities in (1) should
be interpreted in some kind of “average” sense, “over an oscillation
cycle”. But such notions, while certainly intuitive, have so far been of
limited predictive value in design, failing to provide even qualitative
insight into observed phenomena like injection locking. One of the
purposes of this paper is to show that such intuition can in fact
be made rigorous and predictive, while at the same time enhancing
insight and understanding.
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Fig. 2. Negative-resistance LC oscillator as a nonlinear feedback system.

The first step towards achieving this is to interpret negative-
feedback LC oscillators, such as the one depicted in Fig. 2(a), as
feedback systems similar to Fig. 1, but with the crucial difference that
nonlinearity is incorporated explicitly from the start. Such a nonlinear
feedback system is shown in Fig. 2(b). To appreciate the equivalence,
we view the boxed LC tank circuit in Fig. 2(a) as an input-output
system with input current —i(¢) and output voltage v(¢). The nonlinear
resistor is also viewed as a memoryless input-output system, with
input voltage v(r) and output current i(¢) related by i = f(v), where
f(-) is a suitable negative resistance nonlinearity, to be discussed
further shortly. It is these input-output blocks that are shown in the
feedback structure of Fig. 2(b), together with connections implied by
the nodal connections of Fig. 2(a).

Next, as shown in Fig. 2(c), we cut the feedback loop on the
voltage side. (Note that cutting only the voltage side of the feedback
loop is an abstraction, not easy to achieve physically by, e.g., cutting
the wire at the upper Fig. 2(a) — this would correspond to cutting
both voltage and current sides of Fig. 2(c).). This enables us to
investigate how the opened loop acts, on any vy, (7) that we apply,
to produce voy(t). For reasons that will become clear shortly, we
choose to apply a sinusoid vi, (1) = A cos(wpt).

Observe that vi, () is first acted upon by the memoryless nonlinear
resistor to produce i(f) = f(viy(r)). Since vi,(1) is periodic (with
period T = %), i(t) must also be periodic with the same period,
regardless of what the nonlinearity f(-) is. Since any periodic
waveform can always be expressed in Fourier series [13] (i.e., in terms
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of DC, fundamental and higher harmonic sinusoidal components), we
can express i(f) as

0= 3, LA)ero. @

k=—co

In (2), It(A) are complex numbers that represent the ampli-
tudes/phases of the harmonics of i(t). We shall be concerned pri-
marily with the fundamental harmonic component, I; (A), for reasons
again to be noted later. Note that all the harmonics depend on the
input amplitude A and, of course, on the nature of the nonlinearity
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(a) plot of i = f(v) (b) plots of vi,(#) (upper) and

i() = f(vin(1)) (lower)

Fig. 3. Simple hard negative resistance nonlinearity: f(v) = =+1

We illustrate how [j(A) is related to A using a simple con-
crete example of a “hard” negative-resistance nonlinearity, shown
in Fig. 3(a). The current through this nonlinear resistor switches
abruptly between +1 as the voltage across it changes from negative
to positive; in other words, the “resistor” behaves like a ideal current
source of value +1, except at v =0, where it has infinite negative
differential resistance. (Note that such a nonlinearity is not amenable
to representation using polynomials.) If a sinusoidal voltage of any
nonzero amplitude A is applied across this nonlinearity, the current
i(t) through it is a square wave as a function of time, as shown in
Fig. 3(b). The first harmonic component (i.e., the fundamental) of
this current has amplitude % and a phase shift of 180° or 7 radians.
Hence, for this nonlinearity, /;(A) can be expressed analytically as

2o A>0 . . .
L(A)= 6‘ Ao The magnitude of /;(A) is plotted vs A in
, =0.
: 07
N+ 06
05 tanh 05 I1,(A)] for +1
= 04
z <
T =03 [ ™ [I,(A)] for tanh
-05 0.2
0.1
-1
S5 4 s o o5 1 i % oz o4, 06 08 1
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(a) (b)

Fig. 4. (a) Negative resistance. (b) I(A) versus A.

Fig. 4(b) for this f(v) (black line). A “softer” tanh(-) nonlinearity,
more representative of real nonlinear resistors encountered in practice
(particularly in cross-coupled CMOS topologies), is shown by the
blue line in Fig. 4(a). The plot of |I;(A)| vs A for this nonlinearity
is also depicted in blue, in Fig. 4(b). Such plots of |I;| vs A can be
easily generated for any nonlinear resistor using a simple MATLAB
routine [2]; for many analytical nonlinearities, closed-form formulae
are available as well.

We have already noted above that for the memoryless nonlinearity
of Fig. 3(a), a phase shift of 7 is obtained from the input fundamental
to the output fundamental. This fact is true for any nonlinear
resistor with a negative differential operating characteristic. Even
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more generally, it can be shown that for any nonlinearity f(v), the
phase of 7;(A) will be either 0 or , possibly changing from one to
the other as A is changed?.
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Fig. 5.
tank.

So far, we have seen that when a sinusoidal waveform of am-
plitude A is applied at vj,(7), the resulting current i(z) through the
memoryless negative-resistance nonlinearity features a fundamental
component /;(A), with phase shift 7 and amplitude varying with
A as shown in Fig. 4(b). The current will, in general, also feature
DC and higher harmonic components, possibly very significant ones
depending on how strongly nonlinear f(v) is. We now consider the
effect of the LC tank circuit on i(r). Observe that the tank acts as a
Sfilter on i(t) to produce voy(z). The filter characteristic is simply the
impedance of the tank, plotted in Fig. 5. The amplitude characteristic
peaks (with value R), and the phase characteristic passes rapidly
through zero, at the resonant frequency . = 1/v/LC. We now set the
frequency of the input vy, (1), @y, to equal the filter’s center frequency
.

The rate at which the filter’s amplitude characteristic rolls off
depends on the Q factor of the tank [4]; for any reasonable value of
Q, the roll-off is rapid, with the amplitude characteristic becoming
essentially zero at the higher harmonics of @y (and exactly zero at
DC). It is for this reason that we have not been concerned with higher
harmonics of i(t), since only its fundamental component survives
at vouc(¢) after filtering by the LC tank. This observation justifies
our original purely sinusoidal choice of vi,(t). At the fundamental
frequency @y = @, the LC tank simply scales its input fundamental
component /j(A) by —R (recall that the minus sign stems from
reversing i(¢) as it enters the tank (Fig. 2(b)). This corresponds to
a magnitude scaling of R and an additional phase shift of .

We are now in a position to understand the nonlinear feedback
system of Fig. 2(c) both intuitively and quantitatively. We have shown
that if vi,(¢) is a sinusoid of magnitude A at the tank’s resonant
frequency @y, then vou(f) is also a sinusoid at the same frequency,
with amplitude 2R|I; (A)| and relative phase shift 27 (or equivalently,
0). To close the loop as in Fig. 2(b), we must have vi,(7) = vout(f),
or

Open-loop magnitude (a) and phase (b) characteristics of the RLC
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Fig. 6.
Solving (3) determines the amplitude of oscillation As. The boxed

Solution Ay using nonlinear feedback analysis.

2a proof of this fact is omitted for brevity.
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form of (3) is particularly insightful from a graphical perspective, as
shown in Fig. 6, where the left hand side ZA;R is overlaid on Fig. 4(b)
as a straight line with slope #. The intersection of the two traces
represents the solution of (3) for the amplitude of oscillation Aj.
Using Fig. 6, the effect of changes to tank or nonlinear resistor
parameters on the oscillator’s amplitude can be understood in an
intuitive, visual manner. The solution of (3) can also be obtained
via the simple MATLAB scripts provided [2].

III. INJECTION LOCKING VIA NONLINEAR FEEDBACK

We now consider the situation when the oscillator is perturbed by
an external injection signal. Fig. 7(a) depicts how an injected voltage
source modifies the circuit, while Fig. 7(b) shows the corresponding
modification to the cut nonlinear feedback structure of Fig. 2(c).
(Note that we could also consider current source injections; the
analysis and conclusions obtained are essentially equivalent, particu-
larly for injection frequencies close to the fundamental.) We consider
a sinusoidal injection v;(¢) = A;cos(w;t + ¢;), where @; is assumed
close to the fundamental frequency ay.

*’( ) tnut Vout (1) +vi(r)
RLC Tank
vi(t)

(a) into circuit

(b) into feedback structure

Fig. 7. Negative-feedback LC oscillator with voltage injection

If the oscillator is injection locked, then only the injection fre-
quency o; will remain and the natural frequency wp will disappear.
Motivated by this observation, we re-enact the nonlinear open-loop
analysis of the previous section, but with the difference that the input
is now taken to be vi, () = Acos(wjt), i.e., at the injection frequency
w; instead of at the natural frequency wp = ;.

Since the nonlinearity is memoryless, all conclusions about i(7)
and 7;(A) from the previous section (i.e., upto Fig. 4) remain exactly
the same in spite of the frequency change. Moreover, since we have
assumed that @j; is close to @, (the LC tank filter’s center frequency),
all non-fundamental harmonics of i(¢) still remain far from the @,
peak, hence are filtered out. The only change is the impact of the tank
filter on the fundamental component I; (A) of i(z), no longer centered
exactly at the amplitude peak (or the zero phase shift point) of the
filter. As a result, the fundamental component of the filtered output
vout(7) is H(@;)I1 (A), where H(®;) now has a nonzero phase shift and
an amplitude less than the peak value of R. The change in amplitude
and phase is depicted pictorially in Fig. 5. The filter characteristic’s
amplitude at @; is |H(®;)| < R and its phase is ¢ = ZH(w;).

If the injection amplitude were zero, we would not be able to close
the feedback loop and set vy, (1) = vout (), since there would be some
phase shift ¢ around the loop — even if the modified amplitude
condition A = 2|H(ay)||I;(A)| were satisfied. From this observation,
the main role of the injection v;(7) immediately becomes clear: to add
to the output of the tank filter so as to restore the total loop phase shift
to exactly 21 and the amplitude to exactly A. This requirement for
locking, that the output of the tank filter should add to the injection
to exactly equal the input, is depicted pictorially using phasors in
Fig. 8(b). Note that the phasor illustration captures both amplitude
and phase requirements for locking and is, furthermore, completely
valid regardless of how large the injection amplitude is, what the
injection frequency @; is, or how strongly nonlinear the negative
resistor is. The only assumption on which Fig. 8(b) is predicated is
that all non-fundamental harmonics of i(#) have been filtered out by
the LC tank filter. The phasor locking diagram is easily expressed in
equation form and solved using, e.g., the simple MATLAB programs
supplied [2]. Considerably more insight into locking and its limits is
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Fig. 8. Phase relationship between input and output

obtained, however, by a simple graphical procedure for approximately
solving these equations, which we now outline.

The lock range of an oscillator, for a given injection amplitude
Aj, is usually of great design interest. The condition for locking
encapsulated in Fig. 8(b) suggests a simple graphical procedure to
find the lock range. The natural amplitude of oscillation of the
unlocked oscillator is first found and marked as a phasor on Fig. 8(b).
A circle of radius A; is drawn, centered at the tip of the phasor, and
the tangent from the origin to this circle is drawn to determine the
maximum value of ¢ supported for injection locking. The frequency
deviation @y, (from the center @) for this ¢ is then read off the
phase characteristic of Fig. 8(a). This frequency deviation is a phase-
dominated upper limit for the lock range.

0.03

:
0.025 © nonlinear °

> 0.02

—mo)/m

0.015

g

0 0.1 0.2 03 0.4 05

Fig. 9. Lock range: Adler vs @y,

To ascertain if @y, is indeed the real lock range, it is necessary to
confirm that the amplitude gain at @y, supports oscillation. This can
also be achieved in an intuitive graphical fashion, using Fig. 8(b).

A

The straight line 75 is simply replaced by W, with a slope
»

greater than z‘iRA If the two curves still intersect, then the lock range
is determined primarily by the phase and equals @j,. If there is
no intersection, however, the lock range is smaller than @y, being
limited by amplitude gain constraints. This smaller lock range wy,
can also be estimated graphically, by first finding the maximum slope
% of any straight line that supports an intersection point in Fig. 8(b).
By marking off S on the vertical axis of the amplitude characteristic
of Fig. 8(a) and reading off the corresponding frequency deviation,
the (amplitude-limited) lock range wy, can be found.

Finally, we note that the well-known result of Adler [1], that
the locking range is linearly proportional to the injection A;, is
simply an (extreme) simplification of the above procedure: the phase
characteristic of Fig. 5/Fig. 8(a) is simply assumed to be perfectly
linear around the point of its maximum slope at ®., as depicted
within Fig. 5(b) (the amplitude condition is not considered at all
in Adler’s analysis). A better estimate, still ignoring the amplitude
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condition, is given by the phase-limited lock range @, as noted
above. Fig. 9 compares the (over-conservative) prediction by Adler
against the more accurate @y.

IV. SUMMARY

We have presented a rigorous, yet simple and intuitive, nonlinear
analysis method for understanding and predicting injection locking
in LC oscillators. We use minimal mathematics and rely largely on
graphical procedures and insight instead of formulae. Our technique is
easily extended to provide insight into, and quantitative calculations
for, a variety of other injection related phenomena, including sub-
and super-harmonic locking, multiplicative injection, efc.. We have
provided code implementing our approach as freely-downloadable
MATLAB scripts.
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