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ABSTRACT
We present applications of a recently developed automated nonlin-
ear macromodelling approach to the important problem of macro-
modelling high-speed output buffers/drivers. Good nonlinear macro-
models of such drivers are essential for fast signal-integrity and
timing analysis in high-speed digital design. Unlike traditional
black-box modelling techniques, our approach extracts nonlinear
macromodels of digital drivers automatically from SPICE-level de-
scriptions. Thus it can naturally capture transistor-level nonlinear-
ities in the macromodels, resulting in far more accurate signal in-
tegrity analysis, while retaining significant speedups. We demon-
strate the technique by automatically extracting macromodels for
two typical digital drivers. Using the macromodel, we obtain about
8× speedup in average with excellent accuracy in capturing differ-
ent loading effects, crosstalk, simultaneous switching noise (SSN),
etc..

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids—simulation

General Terms
Algorithms

Keywords
nonlinear macromodeling, I/O buffer macromodeling

1. INTRODUCTION
The ever-increasing speed and complexity of digital designs is

often accompanied by difficult design and verification challenges.
Ensuring signal integrity (which refers to a broad set of problems,
such as crosstalk noise, electromigration, power/ground noise due
to simultaneous switching outputs, etc.) is essential for meeting
two fundamental requirements in digital design, correct timing and
adequate signal quality. The traditional binary idealization of digi-
tal logic operation has long ceased to be adequate, as transistor fea-
ture sizes have shrunk and device operation has become increas-
ingly non-ideal. This is especially true for deep-submicron tech-
nologies, in which digital logic signals are almost indistinguish-
able, at first sight, from continuous analog-like waveforms. Fast
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and reliable methodologies for assessing signal integrity are thus a
key step in ensuring the quality of signals in both on- and off-chip
high-speed data communications.

Simulating the interaction of I/O buffers and interconnect lines is
an important signal integrity verification task. Because of the large
size of today’s digital systems, direct SPICE-level analog simu-
lation has become essentially infeasible due to its computational
complexity. One way of reducing this complexity has been to use
macromodels of I/O buffers, i.e., to replace underlying digital I/O
buffers with functionally similar but computationally much simpler
models.

There have been several techniques proposed for generating I/O
buffer macromodels over the last decade. The most popular such
method appears to be the Input/Output Buffer Information Speci-
fication (IBIS) [1]. The core of IBIS consists of lookup tables of
current vs. voltage at the output port, together with timing infor-
mation. One reason why such table models are popular amongst IC
vendors is that I/O buffer model is a black box that does not reveal
transistor-level details of the internal circuitry. As a result, virtually
all IC vendors provide IBIS models of their products to customers,
and many EDA tools support the simulation of IBIS models.

Despite its commercial success, IBIS-like modelling has intrin-
sic limitations. Important non-ideal effects captured, such as over-
shoot, undershoot, pull-up/put-down characteristics, etc., have to
be determined a-priori, largely either by measurements or by sim-
ulations for creating the I-V datasheet. The simulation or measure-
ment strategies have been pre-determined by the IBIS specification
in order to generate the experimental data supported by EDA tools.
This makes IBIS model difficult to include any inherent nonlineari-
ties presented in transistor-level design with cutting-edge technolo-
gies. Neither can it capture accurate higher-order dynamics of the
driver as it mainly relies on the static I-V information, primarily
revealing the DC characteristics.

Recently, a newer class of black-box methods (e.g., [12, 19, 20])
was proposed with the goal of better capturing I/O driver dynamics.
In additional to the static I-V characteristics used in IBIS models,
this class of methods uses Radial Basis Functions (RBFs) or splines
in order to obtain “higher-order” accuracy in capturing the output
behavior of driver circuits. To create such a model, one needs to
stimulate the output port of the buffer carefully to expose its dy-
namics. The data obtained is then fitted with either RBFs or splines.
Finally, the generated macromodel is represented as an equivalent
sub-circuit, which is implemented in SPICE and simulated with
load interconnects. It has been shown (e.g., [12, 19, 20]) that these
methods are capable of representing the driver circuit well and cap-
turing the effects like crosstalk, SSO, etc.. However, the efficacy of
black-box methods relies heavily on the choice of model represen-
tations, data sets generation and interpretation.

In the past few years, there has been progress made on alterna-
tive for automating nonlinear macromodel generation (e.g., [3,4,14,
17, 21]). These so-called “white-box” methods start from detailed
SPICE-level circuit descriptions and extract macromodels automat-
ically via mathematical algorithms in a bottom-up fashion, with no
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manual knowledge of underlying internal circuit structure or op-
eration required. Compared with black-box counterparts, one of
the advantages of such methods is that nonlinearities and dynamics
from increasingly sophisticated device models can be naturally and
automatically abstracted into the macromodels. For this reason, it
has been argued that white-box methods can produce more accurate
macromodels compared to black-box one. The extracted macro-
models, essentially set of nonlinear differential equations of small
size, can be easily represented in high-level modelling language,
including MATLAB, Verilog-A, VHDL-AMS, etc., and thus sup-
ported by current EDA tools.

Furthermore, white-box methods retain or even enhance a very
desirable property of black-box methods, that the macromodel will
“anonymize” the original circuit. It is important to note that al-
though details of the circuit are required by the algorithm that gen-
erates the macromodel, the macromodel itself consists of abstract
differential equations, from which it is essentially impossible to
reverse-engineer any details of the original circuit. Hence, white-
box macromodelling is also a very effective means of protecting
intellectual property while retaining macromodel accuracy.

In this paper, we apply recently proposed white-box nonlinear
macromodelling methods based on piecewise representatiosn (i.e.,
TPWL [14], PWP [3]), to automatically extract I/O buffer macro-
models. One advantage of our approach that it produces a single
macromodel that can be used as a drop-in replacement for a variety
of different type of simulations. The essence of piecewise macro-
modelling is to explore relevant sections of internal state-space of
the circuit, splitting them up into piecewise regions, within which
a reduced-order polynomial model is used to approximate the orig-
inal nonlinearities, and stitching them together using a smoothing
function.

When extracting models of high-speed I/O buffers, it is particu-
larly important to capture the effects of different resistive, inductive
and transmission-line loading well, in addition to clipping/saturation
and nonlinear slewing. Because these effects are fundamentally
both nonlinear and dynamical, they constitute a special challenge
to macromodel well. We show in this paper that TPWL and PWP
are more than adequate for this task. By employing multiple train-
ing inputs during generation of the macromodel to improve state-
space coverage, and by using novel, smooth weight functions for
stitching together the piecewise regions, we obtain accurate results
for predicting logic level bounce (SSN) and crosstalk while obtain-
ing speedups of about an order of magnitude for two typical I/O
buffers. Indeed, because capturing weakly nonlinear phenomena
with high dynamic range is not usually critical for I/O buffer appli-
cations, we find that using only piecewise linear (PWL) macromod-
els, with weight function and training enhancements, is perfectly
adequate. Note that the weight functions and training procedures
we use distinguish our approach from the TPWL method [14] as
originally proposed.

The remainder of the paper is organized as follows. In Section 2,
we review existing black-box approaches for I/O buffer macromod-
elling as well as some background for piecewise macromodelling,
discussed in Section 3. We then apply piecewise macromodelling
to two I/O buffer examples to generate macromodels, and compare
SSN/crosstalk simulation speeds and accuracies with full SPICE-
level circuits, in Section 4.

2. PREVIOUS WORK AND BACKGROUND

2.1 Black-box Macromodelling for I/O Buffers
Black-box methods refer to a broad set of modelling approaches,

such as artificial neural networks (ANN) (e.g., [23]), radial ba-
sis functions (RBF) (e.g., [12, 19]), lookup tables (e.g., [22]), etc..
They treat the system being modelled as a black box and reverse-
engineer input-output behavior using data sampled from simulation
or measurement. Precise details of internal structure are not re-
quired; however, making good assumptions of functionality is im-
portant.

Vi

Vo

Io

Vdd

Gnd

Black−box

Figure 1: Black-box model of digital buffer

Fig. 1 shows a 2-port black-box model of an output buffer, whose
dynamics can be estimated by the data set of I-V characteristics
through the output port, i.e., {Voi , Ioi}, i = 1, 2, . . . , N . Using
these as “training data”, a black-box model can be created by find-
ing a proper function representation f , such that

Ioi = f(Voi), i = 1, 2, . . . , N.

The model Io = f(Vo) is then applied to generic practical data
either within or outside the training set.

Many functional representations have been proposed for mod-
elling dynamic systems in black-box form. For example, when dis-
crete time-sampled data is avaialble, a multiple-input single-output
parametric model that has been widely used to model system dy-
namics in automatic control can be written as

y(k) = F (x(k),Θ),

where x(k) = [y(k − 1), . . . , y(k − r), u(k), . . . , u(k − r)]T is
a regressor vector that consists of the past r samples of input se-
quences u(k) and output sequences y(k). F : R

2r+1 → R is a
nonlinear function, Θ consists of all model parameters that will be
determined by “curve-fitting” using those training data, r is the dy-
namic order of the model, representing the “memory” feature of the
system.

There are many ways of choosing F . As illustrated in [20], one
way is to use Gaussian radial basis functions (RBFs),

F (x(k),Θ) =

pX

j=1

αjΦ(||x(k) − cj ||, βj),

where Φ is a scalar generator function, i.e., Φ(ξ, β) = e
− ξ2

β2 gener-
ating all the basis functions with different β and ξ. βj , ξj and cj are
modelling parameters and are encapsulated in Θ. Sigmoidal (SIG)
functions for I/O buffer macromodelling have been investigated
in [19]. To determine the parameters Θ, various “curve-fitting”
technologies, such as least-square, nonlinear regression, etc., have
been employed. By carefully choosing sampling data to best reveal
dynamics of the buffer, the generated black-box macromodel can
produce very good results for signal integrity analysis, with up to
40× speedups [19, 20].

However, with driver circuits becoming more and more com-
plex in modern digital systems, it is questionable if modelling in-
ternal dynamics only by fitting the input-output data will remain
an effective and sustainable approach. Since internal circuit de-
tails are generally available for circuits (as SPICE netlists which
are extensively used during design), a promising option is to apply
CAD tools for push-button generation of nonlinear macromodels
from their SPICE-level descriptions. In this paper, we explore the
application of the recently developed TPWL [14] and PWP tech-
niques [3] for extracting nonlinear macromodels of I/O buffers au-
tomatically.
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2.2 Background
TPWL [14] and PWP [3] are for macromodelling general non-

linear circuits and systems that can be described by differential al-
gebraic equations (DAEs) as

q̇(x(t)) = f(x(t)) + b(t). (1)

All variables (except time t) are vector-valued. x(t) ∈ R
n are the n

unknown variables (including node voltages and branch currents in
circuits); q denotes the charge/flux terms and f the resistive terms;
b(t) is the vector of excitations to the circuit. Without loss of gen-
erality, (1) can be expressed as (e.g., [16])

Eẋ = f(x) + Bu(t), y = Cx, (2)

where E ∈ R
n×n. m-inputs u(t) ∈ R

m and p-outputs y(t) ∈ R
p

are connected to internal states by matrices B ∈ R
n×m and C ∈

R
p×n respectively.
The most commonly used technique in model-order reduction

(MOR) (including TPWL/PWP) is Krylov-subspace projection, most
simply explained for linear time-invariant (LTI) systems. First lin-
earize the nonlinear system (2) at some point, such that,

Eẋ = Ax(t) + Bu(t), y(t) = Cx(t), (3)

where the matrices A ∈ R
n×n is the Jacobian matrix. The transfer

function of (3) and its Taylor series expansion at s = 0 are given
by

H(s) = C(sE − A)−1B, (4)

H(s) = −C[A−1B+s(A−1E)A−1B+s2(A−1E)2A−1B+. . . ].

The coefficients of s, such as CA−1B, C(A−1E)A−1B, etc., are
usually called moments.

Krylov-subspace techniques provide a projection matrix V ∈
R

n×q (q � n), whose columns span a Krylov subspace defined as

Kq = span{A−1B, (A−1E)A−1B, . . . , (A−1E)q−1A−1B}. (5)

After projecting the original state-space x ∈ R
n into this subspace

via x = V z ( e.g., [6–9]), the time-domain state-space representa-
tion of (3) will be reduced to

Ê
dz

dt
= Âz(t) + B̂u(t), y = Ĉz(t),

where the reduced matrices are Ê = V T EV ∈ R
q×q, Â =

V T AV ∈ R
q×q , B̂ = V T B ∈ R

q×m, and Ĉ = CV ∈ R
p×q.

z(t) ∈ R
q are the states of reduced system. The reduced transfer

function is

Ĥ(s) = Ĉ(sÊ − Â)−1B̂. (6)

The projection bases V can be calculated via, e.g., the Lanzcos or
Arnoldi methods( [5, 6]). It has been proved ( e.g., [6, 7]) that the
first q moments of (6) match the first q moments of (4), implying a
good approximation to the original LTI system.

This Krylov-subspace technique can be extended to weakly non-
linear system, for which the original system of (2) has small-signal
polynomial expansion around some operating point,

Eẋ = A1x + A2x ⊗ x + A3x ⊗ x ⊗ x + · · · + Bu(t),

where Ai is the ith order derivative and the symbol ⊗ stands for
Kronecker tensor product. Similarly as LTI system, a Krylov-subspace
projection basis V can also be calculated. The key difference from
LTI system, however, is that the projection basis V should consist
of not only the linear information, but more important the higher-
order derivative information in order to preserve effective nonlin-
earities in the reduced model. The detail algorithms of finding such
a basis are referred to, e.g., [11, 13, 15].

3. NONLINEAR MACROMODELLING
For general nonlinear systems, with strong nonlinearities, a tra-

jectory piecewise linear (TPWL) approach was first proposed in
[14] and then extended to PWP [3]. The basic approach is to par-
tition the internal state-space into piecewise regions, each approx-
imated by a linear or polynomial model of smaller size. Each re-
gion is reduced in size, and the reduced piecewise models are then
stitched together into one macromodel using a smoothing function.
The TPWL/PWP formulations and important implementation de-
tails are recapitulated in this section.

3.1 Piecewise Polynomial Representations
With certain input u(t), the solution x(t) to general nonlinear

system of (2) can be viewed as a trajectory in R
n. We choose s ex-

pansion points {x1, x2, . . . , xs} (xi = x(ti)) along this trajectory,
for each of which a small signal polynomial expansion is given by

Eẋ = f(xi) + A
(1)
i x(1) + A

(2)
i x(2) + Bu(t), y = Cx.

Here x(1) = x− xi, x(2) = (x− xi)⊗ (x− xi) is the Kronecker
tensor product, A

(1)
i and A

(2)
i are first and second derivatives (For

simplicity, we only expand systems up to quadratic term. Extension
to higher order terms is straightforward).

Next, we generate projection bases Vi for each polynomial model
with polynomial MOR techniques1. Similarly as TPWL [14], a uni-
form projection base V is constructed via singular value decompo-
sition (SVD) on the collections of all bases. The final size of V is
properly chosen by examining the singular values such that V will
contain the common features among all project bases. If V ∈ R

n×q

(q < n), each polynomial will be reduced to size q, i.e.,

Êż = f̂(xi) + Â
(1)
i z(1) + Â

(2)
i z(2) + B̂u(t),

where zi = V T xi, z(1) = z − zi, z(2) = (z − zi) ⊗ (z − zi),
f̂(xi) = V T f(xi). The reduced matrices Ê = V T EV , B̂ =

V T B, Â
(1)
i = V A

(1)
i V andÂ

(2)
i = V T A

(2)
i V ⊗ V .

The final model is obtained by a weighted combination of these
polynomial models, such that

Êż =

mX

i=1

wi(z)(f̂(xi) + Â
(1)
i z(1) + Â

(2)
i z(2) + B̂iu(t)),

y = C[

mX

i=1

wi(z)(xi + V (z − zi)],

where wi(z) is a scalar weight function that is elaborated in Section
3.2.3.

3.2 Implementation Details

3.2.1 Merge regions from multiple trainings
Intuitively, one training input and the associated solution (trajec-

tory) can only cover a limited range of the state-space. The key
to generating widely-applicable models is to increase state-space
coverage by merging piecewise regions from multiple training tra-
jectories. As illustrated in Fig. 2, once the system trajectory falls
within the covered range, good approximations can be expected
from the macromodel. Once the state is out of the model’s range of
validity and large errors occur, new regions should be inserted into
the piecewise model. Ideally, one should incrementally refine the
macromodel whenever new regions are necessary, to ensure accu-
racy. In this paper, training trajectories are obtained through several
transient simulations of the output buffer, with different loads.

1Any weakly polynomial MOR technique can be used to generate the pro-
jection basis, e.g., [11, 13, 15]. If only expanded to linear model, one can
use normal Krylov-subspace as in (5).
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Figure 2: Merging expansion regions with multiple training
trajectories (solid line: training trajectories; dash line: trajec-
tory in practical simulations)

3.2.2 Constructing uniform projection basis
MOR for each region is carried out through the projection x =

Viz, which projects x ∈ R
n from original space into the reduced

space z ∈ R
qi . z is the local coordinate of x corresponding to

subspace Vi. Different reduced polynomial models thus have dif-
ferent local coordinate systems. To stitch them together, one ap-
proach is to find one common subspace (coordinate system), possi-
bly larger but encapsulating all the underlying (smaller) subspaces.
A straightforward solution is to collect dominant information using
SVD, i.e., V = svd([V1, V2, . . . , Vs]) and keep only q (q < n)
vectors according to first q leading singular values. The key obser-
vation here is that the singular value will suddenly drop to a very
small quantity at certain position, implying the existence of such a
common subspace.

3.2.3 Weight Function
A scalar weight function [3, 14] is used to smooth transitions

when crossing region boundaries. The value of the weight function
wi(z) should be close to 1 when the state vector z approaches the
center point zi, and should attenuate to zero rapidly as z leaves zi.

The weight function is critically important for transient simula-
tion with large signal inputs. Intuitively, the dynamics within each
region are governed by the polynomial model inside; for transitions
near the boundaries, they rely on the weight function to choose the
proper region and smooth the trajectory out. If the weight func-
tion is not well defined, or if its derivative is not continuous,
large-signal transient simulation typically suffers serious con-
vergence and stability problems.

Although there is considerable flexibility in the choice in func-
tions for this purpose, it is not trivial to devise good weight func-
tions that are smooth and differentiable. After much experimenta-
tion, we have developed the following weight function (for PWP),
which has worked satisfactorily for a variety of applications:

wi(z) = [
dmin(z)

di(z)
e
− di(z)−dmin(z)

Dmin ]p, (7)

where di(z) = ||z−zi||22, dmin(z) = min(di(z)) for i = 1, . . . , s
and Dmin is the minimum distance among those center points {zi}.
Note that dmin(z) is differentiable, in spite of the fact that the
min(·) function itself is not. The parameter p (typically p = 1 ∼
2) is used to make transition near the boundary smoother or sharper.
The weight function is finally normalized to satisfy

Ps
i=1 wi(z) =

1.

4. EXPERIMENTAL RESULTS
In this section, we apply the macromodelling procedures de-

scribed in Section 3 to generate macromodels for two output buffer
structures commonly used in high-speed digital design.

The first example, as shown in Fig. 3, is a tapered current-mode
logic (CML) buffer chain [18] (Vdd = 1.8V ). The resistor in the
last stage is set to match 50Ω transmission line. Inductive peaking
is employed in the first and the third stage to increase the band-

Vin

Vout

Vbias Vbias Vbias Vbias

Rout=50

Figure 3: Tapered current-model logic (CML) buffer

width. The sizing of each stage and parameters are optimized to
minimize the buffer delay [10]. The circuit size of this example is
28.

Vin− Vin+

Vin−Vin+

Vout

Vref

Ra RbRc

Cc

Figure 4: Low-voltage differential signaling (LVDS) buffer
with common-mode feedback loop

The second example is a low-voltage differential signaling (LVDS)
output buffer (Vdd = 3.3V ) with common-mode feedback loop [2]
as shown in Fig. 4. The common-mode voltage of inputs is en-
forced by Vref to be around 1.25V . It is designed to drive 50Ω
with about 0.5V voltage swing. The size of the circuit is 18.

4.1 Macromodel Generation
For digital applications, we are primarily interested in the switch-

ing activities of the buffers with large signal input, which are domi-
nated by the coverage of piecewise regions and the smoothing func-
tion. For such cases, weak nonlinearities captured by the polynomi-
als inside each region are not as important as in other applications
such as op-amp and mixer macromodelling. Through experimen-
tation, we have found that using linear-only models within each re-
gion is adequate for meeting accuracy requirements2. Importantly,
the weight function (7), together with merging multiple training
trajectories as dsecribed in Section 3.2, are both very important for
developing macromodels that work well in large signal transient
analysis.

Fig. 5 illustrates the block diagram for macromodel generation.
The buffer is modelled with 5 inputs and two outputs: two differen-
tial inputs track different input patterns; two loading currents tackle
loading variations; power grid noise is captured via port Vs. Two
differential outputs are connected to the load.

Several transient simulations of the full buffer circuit with input
pattern “010” and different loads ( e.g., 50Ω resistor and 1pF ca-
pacitor) are used to generate the training trajectories, along which
the piecewise regions are selected and merged. All circuit simula-
tions and verifications are based on the MATLAB/Linux platform
using modified Schichman-hodges model.
2Being able to leave out polynomial terms improves the macromodel’s ef-
ficiency significantly.
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Io1

Io2

Vin

Vs

Load

Figure 5: Macromodel generation and input/output ports

The total generation time is about 610s for the CML buffer and
∼400s for the LVDS example. Over 90% of this time is spent on
full system simulations. The final PWL macromodel for the first
CML buffer consists of 32 regions with reduced size of 15 (origi-
nally 28). The macromodel for the LVDS example has 21 regions,
each of which the size has been reduced from 18 to 11. Finally,
they are stitched together smoothly using the weight function (7).

4.2 Different Loading Effects
We verify capturing different loading effects using the macro-

model from the first example (CML buffer). Three transmission
lines (modelled with lumped RLC network) are connected to the
buffer in the test. The voltage waveforms across the load at far-end
of the transmission line against full circuit simulation are shown in
Fig. 6. The three cases are:

(a) lossless transmission line, Zc = 75Ω, Td = 0.4ns, Zload =
Zc, input pattern “0100101”;

(b) lossy transmission line, Zc = 100Ω, Td = 0.5ns, Zdc = 2Ω,
Zload = Zc, input pattern “0101100”;

(c) lossy transmission line, Zc = 75Ω, Td = 0.5ns, Zdc = 2Ω,
Zload = 1pF , input pattern “0110010”.

It is seen that the macromodel is capable of capturing different
loading effects and its accuracy in matching the full circuit simu-
lation is more than adequate. The relative error is less than 5% on
average.

The typical runtime of transient simulation, e.g., case (c) is about
885.82s (full system) vs 112.3s (macromodel), representing about
8× speedup.

4.3 Crosstalk
We further investigate the CML buffer macromodel for crosstalk

simulation. As illustrated in Fig. 7, two coupled lossy transmission
lines (Zc = 75Ω, Td = 0.5ns, Zdc = 2Ω) are driven by two
buffers: one is active with input pattern “0101100” and the other
remains quiet.

The voltages waveform on the load impedance at far-end of both
lines are shown in Fig. 8. It is seen that the macromodel reproduces
the dynamic behaviors of the buffer and capture the crosstalk noise
quite well.

For this test, about 8.8× speedup resulted from using macro-
model (138.1s) against full system simulation (1215.9s). The rela-
tive error is 6.7% on average.

4.4 Simultaneous Switching Noise (SSN)
The macromodel of the second example (LVDS buffer in Fig.

4) is used in this test. As shown in Fig. 9, M identical drivers
are loaded with lossy transmission line (Zc = 100, Td = 0.5ns,
Zdc = 2Ω). An ideal power supply Vdd was connected to the power
supply port Vs of drivers through Ls and Rs. In the simulation,
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Figure 6: Voltage waveform across the load. Solid line: full
circuit simulation; dash line: macromodel simulation.

Zc

Zc

Figure 7: Circuit for crosstalk simulation

M = 7, Ls = 0.1nH and Rs = 1mΩ. All drivers have the same
input stream “0100101”.

The simulation result of macromodel against full circuit for cap-
turing the noise in node Vs and supply current Idd are shown in Fig.
10.

It is seen that the macromodel accurately captures the sensitive
SSN noise in both voltage and current waveforms. For this test,
about 7.6× speedup was obtained, with 612.7s for full simulation
vs 80.2s for the macromodel. The degraded speedup is partly be-
cause of the originally small and relatively simple LVDS circuit. In
general, more significant speedups are obtained for large examples
using complex device models.

5. CONCLUSIONS
In this paper, we have applied automated white-box piecewise-

macromodelling methods to I/O buffers. Our approach automati-
cally extracts the nonlinear macromodel in a methodological fash-
ion from SPICE-level descriptions and anonymizes the original cir-
cuits for IP protection. We have shown that generated macromodels
can be used as drop-in replacements in signal-integrity simulations
to capture different loading effects, SSN and crosstalk noise, etc..
Our initial results support the expectation that, with further research
and development, such automated macromodelling techniques will
become the method of choice for generating high-fidelity macro-
models of high-speed I/O buffers.
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Figure 8: Macromodel in crosstalk simulation. Solid line: full
circuit; dash line: macromodel.
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