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ABSTRACT

Linear periodically time-varying (LPTV) abstractions are useful
for a variety of communication and computer subsystems. In this
paper, we present a novel operator-based model-order reduction
(MOR) algorithm for reducing large LPTV systems to smaller ones,
a capability useful for system-level performance analysis. Our pro-
cedure is based on generalizing existing matrix-based Krylov-sub-
space algorithms to arbitrary function-space operators. Practical
benefits of our approach include significantly enhanced algorithm
and code modularity, compared to previous LPTV-MOR approaches
based on a-priori discretization. We demonstrate the use of the pro-
posed technique on several circuit examples.

Categories and Subject Descriptors: B.7.2 [Integrated Circuits]:
Design Aids-simulation

General Terms: Algorithms

Keywords: LPTV systems, model-order reduction, operator, mod-
ularity

1. INTRODUCTION

In communication systems, many subsystems can be usefully
modeled as Linear Periodically Time-Varying (LPTV) systems. Ex-
amples include up/down-conversion circuits in modulators and de-
modulators [15], certain phase detectors in PLLs [1], sampled-data
filters [3], free-running oscillators [5], efc.. Recently, LPTV ab-
stractions have also been shown to be useful for the digital noise
estimation problem [16].

Macromodels of LPTV subsystems have, so far, been typically
constructed manually in practice. However, manual abstraction
needs to be aided by extensive nonlinear simulation; parameters
of interest, such as poles, may not be easy to obtain; and man-
ual abstraction may miss important nonidealities, especially those
relating to interactions between sub-systems. In short, manual ab-
straction can be computationally expensive, time-consuming and
of varying fidelity.

Therefore, it is very desirable to be able to abstract macromod-
els directly and automatically from full SPICE-level circuits with-
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out manual intervention. Automation of the macromodeling pro-
cess has many advantages: it does not require additional modeling
expertise from designers, it can provide parameters of interest di-
rectly, tradeoffs between accuracy and speed can be made easily,
etc..

Techniques for automatically generating macromodels have al-
ready met with considerable success for linear time-invariant (LTT)
systems. These are often called model-order reduction (MOR) al-
gorithms, and a variety of methods, such as PRIMA [12] and PVL
[8], are well established. MOR methods are based on projecting the
LTI system into subspaces of lower dimension, often using Krylov-
subspace-based methods. Such reduced models match the input-
output transfer functions of the original system to a prescribed, ac-
ceptable accuracy.

For LTI systems, the input-output transfer function can be ex-
pressed entirely in terms of matrix operations. As we will outline
in Section 3, most existing Krylov-subspace-based algorithms rely
on operations on matrices (we will call these matrix-based MOR
algorithms). In contrast to LTI systems, the input-output transfer
functions of LPTV systems cannot be expressed in terms of simple
matrix operations alone. Instead, they require manipulations with
differential operators involving time-varying matrices, as we will
show in Section 2.

It has been shown, however, that LTI MOR techniques can be
leveraged for the problem of reducing LPTV systems to smaller
ones. By discretizing the periodic time-variation of the system
using a finite basis (either time or frequency domain), [14, 11]
showed that LPTV systems could be recast as artificial LTI systems
in which extra “outputs”, corresponding to coefficients of the time-
varying basis, appear. The artificial LTI systems, after reduction via
LTI MOR techniques, were recast as smaller LPTV systems, thus
completing the LPTV reduction procedure. These prior techniques
use matrix-based MOR methods for the actual reduction; they rely
on a fixed, a-priori discretization of the time-varying differential
operators to convert the LPTV system into an LTI one.

This approach, compared to the operator-based MOR alterna-
tives we explore in this paper, imposes several restrictions on the
model-reduction process. The separation of the LPTV system’s
parametric time scale and its input time scale is not preserved through
the reduction process. Operator discretization is intimately en-
meshed with the model-reduction process, which affects code struc-
turing and modularity, and limits the flexibility using different dis-
cretization bases during the reduction process.

The concept of operator-based MOR is not new; for example, it
has been applied in the context of transmission lines [13, 7]. The
key step is to modify the internals of Krylov-subspace methods to
use general function-space operators, rather than simply matrices.



Thus, discretization of the operators before Krylov-subspace reduc-
tion can be avoided.

In this work, we present the use and application of operator-
based MOR techniques for LPTV system reduction. One of the
main advantages of using operator-based MOR, rather than a-priori
discretization of the LPTV problem, is that the separation of the
LPTV system’s parametric time variation and its input (signal) time
scale is preserved through the reduction process. Retaining this
separation through the internals of Krylov-subspace model-order
reduction confers a key advantage: the discretization basis can be
changed dynamically during the model-order reduction process.
Not only does this have advantages for MOR accuracy, but it en-
ables significantly greater code modularity, as well as algorithm
flexibility, than possible with a-priori discretization. For exam-
ple, by using operator-based MOR, the number of time-points or
harmonics used for periodic time-varying discretization can be dy-
namically changed at each Krylov reduction step; indeed, one can
switch between time- and frequency-domain discretizations, if so
desired, without any code changes necessary at the “upper level”
(i.e., the operator-LPTV-MOR routine) of the procedure. Such flex-
ibility is difficult or impossible to achieve in practical implementa-
tions of a-priori discretized LPTV MOR algorithms [14, 11]. This
flexibility enables unified LPTV macromodeling of system blocks
with different discretization bases, with implications for hierarchi-
cal LPTV macromodeling, especially important for digital interfer-
ence macromodeling [16].

The remainder of the paper is structured as follows. We re-
view the derivation of transfer functions of LPTV systems using
multiple time variables and multirate partial differential equations
(MPDEs) in Section 2. In Section 3, a brief outline of Krylov-
subspace methods for matrices is provided. In Section 4, we extend
the algorithm for matrix-based MOR to construct an operator-based
MOR procedure. We apply the operator-based MOR approach to
reduce LPTV systems. Finally, in Section 5, three examples, in-
cluding a simple up-converter and a double-balanced mixer, are re-
duced using operator-LPTV-MOR and results presented.

2. LPTV SYSTEMS

Consider a LPTV system driven by a large periodic signal f(t)
and a small input signal u(¢). The output of the system is z,(¢). For
simplicity, we consider only one input and one output here, i.e.,
u(r) and z,(¢) are scalars. The system is described by the following
differential-algebraic equations (DAEs):

dg(y(r)) +F50)) = 1(t) +bu(t),

Zy(t) :d_Ty(t%

where ¥(¢) is the state vector containing node voltages and branch
currents; ¢(¥) and f(¥) contain charge/flux and resistive terms, re-

dr )

spectively; b and d are vectors linking the input and output to the
internal nodes of the circuit. By using the MPDE formalism and
linearization methods introduced in [14], and assigning f(t) to time
scale 7 and u(¢) to time scale #,, we obtain:

a[C(tl()gfl(tl 7t2)] a[C(tI;)_;(tl 7t2)] + G(l‘] ))—c»([l 7t2) _ Bu(l‘z),

2
2t 1) =d" %(11,12),

where X(t1,t), z(t1,12) are bivariate forms of the small-signal ver-
sions of ¥(¢) and z,(r), respectively, linearized around ¥ = y*(¢y),
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where u(ty) = 0. C(t;) and G(#) are defined as:
_dg(y(t1,1))

Ct)= Gy 3
= a5 T ©
df (3(,12))
= "5 = . 4
Gl dy(11,12) b5 ) @
Applying Laplace transforms to (2) with respect to t,, we obtain
I[C(r)X (11,52)] 7

8t1 +S2C(t1))?(t1,$2)+G(t1))?(ll,S2)ZbU(Sz),

Z(t1,50) =d" X (11,52).
()

Using (5), we can obtain an expression for the input-output rela-
tionship between U (s2) and Z(t1,s7):

H(ty,52) = d7 [d%u +5C(1) +G(n)] B,

Observe that (6) expresses the transfer function of a LPTV system
in operator form, where % [-] is a differential operator, defined as

dty dt ’
(6) can be re-expressed in a form formally similar to the follow-

ing form for LTI systems, useful for model reduction using Krylov
methods , as explored further in Section 3:

Q)

(M

H(s)=d" (I+sL)"'7. 8)

For LTI systems, / and L are matrices, i.e., linear operators on vec-
tor spaces of dimension n. To re-express (6) in similar form, we
define the operators

3l = (2 [1+6(n)),

dt )
£, [1=3."[Cn) ],
and the vector
Hn) =3, (1)[B)- (10)

[T}

Subscripts *;,” indicate that the operators subsume operations with
respect to time scale 7. Using these, the transfer function (6) can
be written as

H(t1,52) =d" (3, [+] +5:C(11)) "'
=d"(1+5:3;, ' [C(t1)4) '3,
= dT (I +5,8, [4) 7).

-

] (11)

This is the operator form of the LPTV system transfer function,
using which the proposed operator-LPTV-MOR algorithm will be
developed in Section 4.

3. KRYLOV-SUBSPACE-BASED MOR

Compared to alternative model-order reduction techniques such
as truncated/balanced realizations, Krylov-subspace methods re-
quire much less computation and memory. For this reason, they
are practical for large systems, i.e., of size exceeding 10*. The main
reason why Krylov-subspace methods are more efficient is that they
avoid matrix-matrix multiplications and singular-value decomposi-
tions (SVDs) (which have quadratic and cubic computational com-
plexity), relying instead solely on matrix-vector multiplications. In
this section, we will review matrix-based Krylov-subspace algo-



rithms using the Arnoldi process for LTI systems, preparatory to
extending them to the operator case in Section 4.
The transfer function of a LTI system can be written as

H(s)=d' (I+sL)"'7. (12)

Using the matrix L and the “starting vector” 7, a Krylov subspace
K is defined as the space spanned by the vectors L'7, i.e.,

K = span{#, L7, L*?, L%, --- \L"F,--- }. (13)

It is well known that the space K can be expressed in terms of an
alternative basis, i.e.,

KZSPan{§O7§1>§2>§37"'@nfh'"} (]4)

where g, (k=0,1,---) is obtained via a modified Gram-Schmidt
procedure known as the Arnoldi process, summarized below in
(15):

do=" 670—” Al

4 = Lgo— < Lgo.do > Go G = Al

G = Lgm—1— < Lgm—1,40 > Go — ---
—< L‘?m—laqm—l > ‘_I‘m—l

Using the gi’s, (k=1,---
matrix V,,, can be defined as

,m) obtained in (15), the projection

Vm=1 g9 - qm-1 |- (16)

In the Arnoldi process (15), the correlation coefficients are de-
fined as
r =Gl g =<Lg—1,4; >, a7

and using the correlation coefficients r;;’s (i =0...m— 1, j = 1...m)
in (17), the upper Hessenberg matrix H,, is defined as

101 om
1 "tm
Hy, = . ) . (18)
"Tm—1,m—1 VTm—1m

The Arnoldi process described in (15) can be re-expressed by using
the matrices in (16) and (18) as:

LV, = VinHyy + rmmqmgz;u (19)

where &, is a m x 1 column vector with only the last term as one
and all the others as zero. By multiplying Vn{ from left to both sides
of (19), we obtain

VTLVm = m> (20)

m

because the second term in (19) multiplied by VI from left is zero.
With m < n, by putting the above transformation into the transfer
function of the original LTI system (12), we obtain

A(s) =d" V(I +sH,) "' VI7

2
= rooJTVm(I+SH,n)_151

which is the transfer function of the reduced model and & isam x 1
column vector with only the first term as one and all the others as
Zero.

Implicitly in the Arnoldi process, the first m moments of the orig-
inal system (12) which is defined as

my = d' Lr, (22)

where, k = 0...m — 1, match the first m moments of the reduced
model (21) which is given as

(rooVm d)T H@ (23)

where, k =0..m — 1.
The reduced system can be constructed by using the projection
matrix V,, and H,, as

HyZ(1) +2(t) = 21u(t)
y(t) = rood” VuZ(t)

where Z(7) is am x 1 vector.

In addition, there are many interpolation techniques [2] follow-
ing the projection step.

Based on the techniques introduced in [14], LPTV system trans-
fer function (6) can be expressed as an artificial LTI system in the
following form

Hpp(s2) = Dip(I+s2Lrp)~ ' Rpp, (25)

where the size of the system is expanded N times by using N har-
monics. The artificial LTI system can be reduced by using the
above introduced Arnoldi process. This approach has been suc-
cessful in obtaining the input-output relationship with acceptable
accuracy. However, the discretization is enmeshed in the model-
order reduction procedure, which adds limitations in the modularity
and coding flexibility of the model-order reduction procedure.

(24)

4. OPERATOR-MORFORLPTVSYSTEMS

In this section, we generalize the MOR procedure of the pre-
vious section to apply to operators. Let £ be a linear operator
(e.g., as show in (9), £, []) with domain and range consisting of n-
dimensional vectors of T-periodic functions. Note that the domain
and range are infinite-dimensional. Define an operator-Arnoldi pro-
cess to be:

Go(t)

do(n1) =7(n1)  Goln) = IEAG

g1 (1) = £, [Go(t1)]— < £4,[Go(t1)],Go(t1) > Go(11)

_ ‘71(11)
D= g @

G(11) = L4, [Gn—1(t1)]— < £4,[Gm—1(11)],G0(11) > Go (1)
—.—< En [qul(tl)]vzjmfl(tl) > qul(tl)'

It remains to define the inner-products and norms used above.
Noting that we are operating on function spaces, we use standard
L? inner-products and norms, similar to [13] and [7].

zAGH] \/ / g (11)q),(n)dn (27

1 T
< Syl dn) >= 7 [ a0 Gl @)




From equation (9)-(11), we obtain £, [y (¢;)] and 7(¢;) as follows:

‘_ﬁcﬂ = £y, [Gr(11)]

=3, [Ct)ge(n)), (29)
(d% +G(n))dk1 =Cn)a(n),
and
(- +Gl)F(n) = B. G

dt

Since here we are dealing with periodic cases in which C(#1), G(#;)
are all periodic, we can use harmonic balance (HB) [14], finite dif-
ference time domain (FDTD) [14] or shooting methods, to solve
(29) and (30). This leads to the following structure for the opera-
tor LPTV MOR procedure:

Algorithm: Operator-LPTV-MOR
1. Letg (t;) =7#(t1), and k = 0.
2. Gi(t1) =G (t1)/]|g (t1))||- The norm is defined in (27).

3. Solve £, [g(t1)] = §'(t1). Note that details of the so-
lution technique can change between iterations of this
step.

4. Subtract from g (¢t;) with < ' (t1),Gi(t1) > Gi(t;) from
i = 0---k with inner-product calculated as in (28).

5. k++. Repeat[2]-[4], loop till k = m (a reduced size that
meets accuracy criteria).

The reduced system obtained from the above algorithm is

W(r,52) = [d%[*} +52C(t1) + G(11)] 7 b(1)]U (52)

b(n) =V, (11)b Gb
Z(t1,52) = d Vi (t))W (t1,50) =d" (11)W (11,52)
where
C(t1) = V] (11)C(t1)Vim(11), (32)
G(t) = V5 (1)) G(t1)Vin(t1), (33)
and
D ., dC(t1)Va(11)]
ditl[']ivm(tl)T' (34)

Therefore, the transfer function of the reduced system becomes

-

A(ty,s7) =dTVm(f1)[d%[*} +52C(t1) + G(11)] 'V, (11)B]. (35)

In terms of the operators and vectors

(36)

the transfer function of the reduced system is
H(t1,52) =d" (1) (G [¥] +526(01)) ' b(1r)
=d" (1) (I +53, ' [C@)+) "5, b)) G
= dv(ll)(i+S2£3tl [*])_lf'(l‘l).

(37) is in the same form as the transfer function of the original
system as shown in (11).

We emphasize that the main utility of this operator-based ap-
proach is that the choice of solution method of the linear system
at each step of the model-order reduction procedure can be made
completely dynamic. In other words, the original system does not
need to be discretized a-priori using a given frequency- or time-
domain technique. Indeed, different discretization and solution
methods, can be used to gain efficiency or accuracy advantage as
MOR proceeds. An equally important advantage is that the op-
erator view of LPTV reduction significantly enhances code re-use
and modularity. For example, we use a single implementation of
Arnoldi for reducing both LTI and LPTV systems, simply by pass-
ing it appropriate function handles for norms, inner-products and
linear system solution.

S. EXAMPLES

Three examples are presented in this section. The first example
is a hand-calculable example to illustrate and verify the operator-
based MOR approach. The second example is a simple upconverter
(of size 5) and the third example is a double-balanced mixer of size
52. For the last two examples, the proposed algorithm is used to
reduce the size of the original system (e.g. 52 — 14) and the fre-
quency responses of the generated macromodel are shown to match
the frequency responses of the original system in different ranges
of interest.

5.1 A hand-calculable analytical example

A hand-calculable analytical example is first provided to illus-
trate the operator-based Arnoldi process. Define the vector r(¢) and
the linear operator A(7)[-] to be, for example:

=[50 ] won=[ 2]

To make this example simple and hand-calculable, A(¢)[] is se-
lected to be an LTI operator (i.e., a matrix) and each term in r(z) is
a sin or cos function. The interpretation of the model-order reduc-
tion procedure will be different compared to the case when A(7)][]
is in an operator form.

Using the norm and inner-product defined in (27) and (28), and
following the operator-based Arnoldi process defined in (26), we
obtain

sin(t) 24/ Z%cos(t) 0 2,/2
Vm(t): ) Hm 3 \({; .

cos(r) \/gsin(t) B \/;

with structure similar to (16) and (18) . H,, and Vj,(¢) are needed
for constructing the reduced system H (s). In this case, m=2, so the
system size is the same as the original system. We compare the
original and “reduced” systems to see if they match each other.

H(s)=d" (I+5A(1) "' r(t)

sin(t) — 2scos(t)

_ —2s%)! ]
—d"(1-25%) cos(t) — ssin(r)



I:I(s) = rOOdTVm(t)(IJrsHm)_lel

sin(t) — 2scos(r)

_ T S2 —1 .
=d (1-257) cos(t) — ssin(t)

From the above, the analytical solution from operator-Arnoldi can
be seen to be identical to the original system.

5.2 A Simple Upconverter Example

A simple upconverter (from [14]) is shown in Figure 1. It has
four stages: a low-pass filter (LPF), an ideal mixer and two band-
pass filters (BPF). In the LPF, R1 = 160Q2, C1 = 10nF’; in the first
BPF, R2 = 1.6k, C2 = 10nF, L2 = 25.33nH; in the second BPF,
R3 =500Q, C3 = 10nF, L3 = 25.33nF. The LPF’s pole is at
100kHz and the two BPFs have center frequency at 10MHz. The
first BPF has a bandwidth (BW) of about 10kHz, while the second
BPF has a BW of about 30kHz. The LO frequency of the ideal
mixer is 10MHz. The size of the system is n = 5.

R1 R2 R3

input output

cos(wOrt)

Figure 1: Upconverter

Using HB for discretizing the LPTV system (11), we consider
the harmonic transfer functions Hi(s) and H_{(s) [14] as outputs
of the system. The analytical expression for Hj (s) is known to be
[14]

(s+jwo)Lr (s+jwo)Ls
Hy(s) = 0.5 1+ (s+/jw0)’La Gy 1+ (s4jwo)? L3 C3
P T IRSCIR gy Bt g (st
1+(s+jw)?LaCy - 1+(s+jwo)?L3Cs

Figure 2 shows a comparison of the analytical expression vs fre-
quency sweeps generated from the proposed operator-based LPTV
macromodel. Similarly the comparison of the H_(s) is given in
Figure 3. The CPU runtime for the operator-based Arnoldi is about
94ms.

1

magnitude(H (s)) in log10 scale

— full system

+ reduced system
% T 2 3 4 5 6 7 8 o
frquency (Hz) in log10 scale

Figure 2: Upconverter H (s): full versus reduced system

5.3 Double balanced mixer

Our second example is a double balanced mixer of size 52. The
mixer topology, shown in Figure 4, is adapted from [10]. The mixer
is followed by an operational amplifier (op-amp) block taken from
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1

magnitude(H_ (s)) in log10 scale

18l — full system +
+ _reduced system

o 1 2 3 4 5 6 7 8 9

frequency (Hz) in log10 scale

Figure 3: Upconverter H_{(s): full versus reduced system

[6] and depicted in Figure 5. The mixer, used for down-conversion,
features a local oscillator (LO) frequency of 100MHz, followed by
a low-pass filter with a pole at IMHz.

Cin l Cf
|
|
e

RS R

£

Vref+ Vref+ |

Vref- Cin ——

Vvco+

Vveo—

?

Figure 4: DBmixer Topology

Vout+

Vout-

Figure 5: Op-amp Topology

The LPTV system to be reduced is obtained by linearization
around the periodic steady state of the circuit at the LO frequency,
computed using harmonic balance with a total of harmonics N =
25. Using operator-Arnoldi, a size 14 macromodel was generated
in runtime 859 seconds. The H_j(s) component of the output is
of greatest interest as it captures the downconversion component.
Figure 6 shows a plot of H_;(s) vs frequency (the input RF fre-
quency is greater than the LO frequency). The horizontal coordi-
nate is fgrr — fro (using a log scale), with frr ranging from the



LO frequency up to 200MHz. The full system is depicted as a solid
line, while the reduced system of size 14 is denoted with ”+” mark-
ers. Figure 7 shows frequency plots of H_{(s) when the range of
the input RF frequency is smaller than the LO frequency. The hor-
izontal coordinate in this case is fro — frr, With frr ranging from
1Hz to the LO frequency. From the two plots, we observe that the
frequency response of this harmonic of the macromodel matches
the original system’s well; the relative error is 5.32 x 1078,

magmtude(H_‘(s)) in log10 scale

°ff — full system: size 52

+ reduced system: size 14
o 1 2 3 4 5 6 7 8
RF frequency - LO frequency (Hz) in log10 scale

Figure 6: DBmixer H_ (s): reduced versus full system, RF fre-
quency is from LO frequency (100MHz) to 200MHz

magmtude(H_‘(s)) in log10 scale

Ol — Full system: size 52

+ Reduced system: sie 14
o 1 2 3 4 5 6 7 8
LO frequency -RF frequency (Hz) in log10 scale

Figure 7: DBmixer H_ (s): reduced versus full system, RF fre-
quency is from LO frequency (100MHz) to 1Hz

Figure 8 shows frequency plots of H_;(s) over the range frr
from 1Hz to 10GHz. Observe that the responses are fully matched
over the entire frequency range. If smaller bandwidths are of inter-
est, macromodels of smaller size often suffice.

6. CONCLUSION

In this paper, we have presented an operator-based MOR algo-
rithm useful for reducing LPTV systems. The key advantage of
the method is that it enables superior code modularity and imple-
mentation flexibility, compared to prior LPTV MOR approaches
such as [14]. Examples presented show that the proposed algorithm
can capture frequency-response characteristics with good accuracy
while reducing system size significantly.
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