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Abstract— We present a novel method for finding periodic steady states
of general classes of oscillators robustly. The new method, which we
term the multi-harmonic probe (MHP) technique, generalizes the well-
known technique of augmenting harmonic balance (HB) for oscillators
using an external probe. By using non-sinusoidal periodic probes, MHP
enhances the applicability of the standard probe method (which uses
purely sinusoidal probes) to broader classes of oscillators. We thus obtain
a general and robust method for the periodic steady state of any kind of
oscillator. Results on LC and ring oscillator circuits are presented that
testify to the efficacy of our approach.

I. INTRODUCTION

Oscillators are circuits which generate periodic, time-varying
waveforms from only DC inputs. They are essential components
in many electronic circuits; finding application, for example, as
local oscillators for up/down-conversion in communication systems,
clocks that provide timing signals in digital circuits, within PLLs,
and in clock/data recovery circuits. Despite being very widely used,
finding the periodic steady state of oscillators still tends to be a big
challenge for circuit simulators. Applying time domain techniques to
compute the oscillator steady states can be difficult because of long
simulation times (especially for high-Q oscillators) and the stringent
error tolerances usually necessary [1], [2].

The well-known frequency-domain technique harmonic balance
(HB) [1], [3], [4] can be applied to compute the periodic steady
state (PSS) of an oscillator, by considering the unknown frequency
of oscillation to be an additional variable [1]. By restricting the
phase of one harmonic of any circuit waveform, a square system of
equations is obtained, which can be solved in principle for a unique
solution. However, nonlinear solution of these equations is usually
very challenging. That the DC solution is also a (trivial) steady state
solution contributes to the challenge, as does the fact even relatively
small deviations in the frequency during the HB Newton-Raphson
tend to drive the circuit waveform estimates away from the solution,
and vice-versa. A very good initial guess of the solution is usually
required for oscillator steady-state methods to succeed.

In recent years, several methods have been developed to overcome
the problem of computing the PSS of an oscillator. Techniques have
been proposed to improve the convergence of harmonic balance when
applied to oscillator circuits [5], [6]; in particular, the fruitful concept
of probes has been proposed and applied [7]. A probe is a sinusoidal
voltage source that acts as an external stimulus to the oscillator,
usually at an estimated frequency close to the oscillator’s natural
frequency. Attaching a probe to an oscillator is intended to convert
the circuit from an autonomous one (where the frequency is unknown)
to a driven one (with frequency equal to that of the probe). (Although
not explicitly mentioned in the prior literature on probe methods, the
concept relies fundamentally on the phenomenon of injection locking
[8].) Without the frequency as an unknown, the (locked) oscillator
tends to converge much more easily to its driven steady state.

Since the intent is to eventually find the oscillator’s natural
frequency, the probe’s frequency and amplitude are varied in a
systematic manner to reach values where, in principle, the probe
voltage source feeds no current at all into the oscillator. In other
words, the probe waveform should exactly match that of the unprobed
oscillator at the node the probe is connected to, with the result that
it can be disconnected without affecting the solution of the circuit.
Changing the probe’s amplitude and frequency is achieved using a
small set of extra (“upper level”) equations that contain these two
variables as unknowns. The equations set the amplitude and phase of
the probe source’s current to zero, i.e., enforcing disconnection of the

probe at solution. A small “upper-level Newton-Raphson” system is
run in the upper-level equations; each iteration of this system involves
evaluating the probe current, which is achieved by solving the driven
oscillator’s HB equations (the “lower-level Newton”). The probe
technique thus decomposes the problem into two separate nonlinear
problems, solved hierarchically.

Although probe methods have succeeding in improving oscillator
steady-state convergence, convergence of the upper Newton has itself
posed problems. Further, removal of the probe, even after success of
the upper-level Newton, can lead to non-convergence of the un-probed
oscillator initialized by the probe method’s solution. Prior attempts to
alleviate these problems include the application of continuation and
homotopy methods [9]–[11] to the upper level Newton [12], [13].

In this paper, we identify an important mechanism why existing
sinusoidal probe methods do not completely realize the full potential
of the probe concept, and propose a simple remedy. The fallacy
of existing probe methods is in assuming that a purely sinusoidal
probe is capable of exactly matching the voltage waveform at the
point of attachment to the oscillator. Given that amplitude stability
of oscillators is critically dependent on nonlinear elements, oscillator
waveforms in general contain not only first harmonic components,
but also DC and higher harmonic components. For the probe voltage
source to truly replicate the oscillator’s waveform at its point of
connection, it needs to track and find these other components also.
In our simple extension of the probe method (termed the Multi-
Harmonic Probe method, or MHP), we use a probe with using N
harmonic components, where N is the number of harmonics that the
lower-level oscillator HB equations consider. The upper-level probe
equations now increase in size to N extra equations and unknowns.

Advantages of MHP over the standard probe techniques include
improved convergence properties, an exact guarantee (within numer-
ical representation limitations) that MHP’s solution does represent
the solution of the unprobed oscillator. The general applicability of
MHP to any oscillator, especially ones with significant harmonic
content like ring and relaxation oscillators, is another significant
benefit from an implementation and deployment viewpoint, since a
single technique can now be used for robust oscillator steady-state
solution rather than specialized techniques (e.g., for ring oscillators
[14]).

The remainder of the paper is organized as follows. In section II,
we review the standard probe method and discuss its limitations.
In section III, we present the MHP technique, which generalizes
existing sinusoidal probe techniques to arbitrary periodic probes. The
Jacobian needed to solve the upper-level non-linear MHP equations
is presented in the Appendix. In section IV, the MHP technique is
applied to two LC oscillators and a ring oscillator.

II. REVIEW OF THE STANDARD PROBE TECHNIQUE

The standard circuit probe technique was apparently first proposed
by Ngoya et al [7] and then extended by Gourary [12]. The probe,
which acts as an external stimulus to the oscillator circuit, relies
on the phenomenon of injection locking, converting the autonomous
circuit into a non-autonomous circuit whose frequency equals the
injection frequency of the stimulus (probe) [8], [15]. It should be
noted that the range of frequencies of the probe is limited to ensure
that the oscillator indeed does become injection locked. This plays a
crucial rôle especially for high-Q crystal oscillators, where this range
can be very limited.

The probe method essentially casts the problem as two conceptu-
ally independent sets of equations (“levels”). In the upper level, the
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set of nonlinear equations to be solved is

�(Iprobe(Vprobe, ω) = 0, (1)

�(Iprobe(Vprobe, ω) = 0, (2)

where Iprobe and Vprobe represent the value of the fundamental
harmonics of the probe current and voltage respectively. To select one
from the infinite continuum of arbitrarily phase-shifted solutions, the
phase of Vprobe can be fixed to a particular value. The probe current is
calculated at the “lower level”, where the probe voltage and frequency
are fixed, using the standard harmonic balance technique.

Prior probe techniques have employed purely sinusoidal probes
[12]–[14]. However, the fundamental requirement, that the probe
becomes electrically isolated after (1) and (2) are satisfied, is not
generally true for purely sinusoidal probes. Because the probed node
of an oscillator may not feature purely sinusoidal waveforms, DC
and higher harmonic probe current components can persist even if
(1) and (2) are satisfied, hence the probe is not truly isolated.

III. THE MULTI-HARMONIC PROBE TECHNIQUE

To remedy this situation, we propose the use of probes that feature
not only a fundamental harmonic component, but also all other
harmonic components. In our multi-harmonic probe (MHP) method,
a non-sinusoidal periodic probe is employed. Consideration of all
harmonics ensures that when the appropriate upper-level equations
are solved, the probe is truly isolated from the oscillator, with the
solution equalling the original oscillator’s unprobed solution.

We now sketch the derivation of the MHP equations. The circuit
equations of an oscillator (without any probe) can be represented in
DAE form as

d

dt
q(x(t)) + f(x(t)) + b = 0, (3)

where x(t) is the vector of unknowns (of size n) to be solved for,
n being the number of circuit waveforms (branch currents and node
voltages). b is a vector of constant voltage/current sources.

When a voltage probe is added to the circuit, the above DAE is
augmented by its equations to become

d

dt
qa(y(t)) + fa(y(t)) +

»
b
0

–
− en+1vprobe(t) = 0, (4)

where

y(t) =

»
x(t)

iprobe(t)

–
, (5)

fa(t) =

»
f(t)
0

–
+

2
64

−iprobe(t)
...

x1(t) + Rpriprobe(t)

3
75 , (6)

qa(t) =

»
q(t)
0

–
, (7)

and Rpr is (optionally) a small resistor connected between the MHP
and the oscillator. The purpose of the resistor is to limit current
excursions during intermediate Newton steps at the upper and lower
levels. y(t), fa(t) and qa(t) are all vectors of length (n+1).

Using (5), we can obtain the MHP current from the unknowns of
the oscillator-MHP circuit as

iprobe(t; V, ω) = eT
n+1y(t; V, ω), (8)

where V, ω represent the Fourier coefficients and the frequency of a
periodic vprobe(t).

Analogous to the standard probe approach [12], MHP essentially
casts the problem into two conceptually independent sets of equations
(“levels”). At the lower level, standard (non-oscillatory) harmonic
balance is used to to obtain the Fourier coefficients of the MHP
current, given a fixed MHP voltage and frequency from the upper
level. The Fourier coefficients and frequency of the MHP are updated
by applying Newton-Raphson to the upper level equations, which
equate all harmonics of the probe current to zero. It should be noted

that for each Newton iteration at the upper level, a Newton solution
of the lower-level equations is completed. Once the upper level
converges, thus isolating the oscillator from the MHP, the periodic
steady state of the oscillator is obtained. In the following subsections,
we state the equations to be solved at the lower and upper levels.
(Detailed derivations are largely omitted, in the interest of brevity.)

A. Lower Level MHP Equations
The frequency domain representation of (4) can be expressed as

Ha(Y ; {Vi}−M
i=M , ω) = ωΩbasicQa(Y )+Fa(Y )+S

»
b
0

–
−TV = 0, (9)

where Y is a vector of Fourier coefficients of the unknowns in
the oscillator-MHP circuit, S and T are sparse matrices of size
(n+1)N× (n+1) and (n+1)N × N respectively, where the nonzero
entries are

S(1 + (i− 1)N, i) = 1 ∀ 1 ≤ i ≤ n + 1 (10)

and
T (nN + i, i) = 1 ∀ 1 ≤ i ≤ N. (11)

We term the vector of Fourier coefficients of iprobe(t) as I, which
is obtained using (8) as

I = PY. (12)

P is a sparse matrix of size N× (n+1)N , whose nonzero entries are

P (i, nN + i) = 1 ∀ 1 ≤ i ≤ N. (13)

Using the system of nonlinear equations in (9), the following steps
are used to obtain the Fourier coefficients I:

1) Insert the given values of V and ω in (9).
2) Obtain the value of Y by solving the set of nonlinear equations

(9) using the Newton-Raphson method.
3) Extract the Fourier coefficients of iprobe(t) from Y using (12).
The above represent a mapping L, which generates output I when

provided with inputs V, ω. We express this as

I = L(V, ω). (14)

Although it is, in general, difficult or impossible obtain any simple
closed-form expression for L(·), note that evaluating L(·) simply
corresponds to steps 2) and 3) above.

B. Upper Level MHP Equations
At the upper level of the MHP method, we solve for

I = L(V, ω) = 0, (15)

which is a set of N nonlinear equations in (N+1) variables, consisting
of V which is a vector of size N ; and ω, which is a scalar. We choose
one particular solution of (15) by restricting the phase of one of the
harmonics of V. Without loss of generality, we fix the phase of the
first harmonic of V using

φ = aV1 − bV−1 = 0, (16)

where a and b are constants which are calculated from the initial
guesses for V1 and V−1 and are complex conjugates to each other.
The above set of nonlinear equations in (N+1) variables can now be
uniquely solved for V and ω. (Please refer to the Appendix for the
computation of the Jacobian matrix needed to solve (15) and (16).)

IV. NUMERICAL RESULTS

In this section, we apply the MHP technique above to several
oscillator examples: a Colpitts oscillator, a 3-stage ring oscillator
and a crystal-based Pierce oscillator. For comparison purposes, the
standard (single-harmonic) probe technique is also used to compute
the PSS of these oscillators. As another baseline for comparison,
transient analysis is performed on these oscillators. To further validate
the MHP technique, we employ oscillator HB directly by providing
known good initial guesses obtained from transient analysis. We show
that the results match that of MHP exactly, demonstrating its validity
and accuracy.
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A. Colpitts Oscillator

The circuit of the Colpitts oscillator is shown in Fig. 1. The element
values are: L=13.5nH, RL=300Ω, R1=1.753KΩ, R2=2Ω, C1=100fF,
C2=2pF, C3=7.4pF, Vdd=6V and Vee=-6V. The value of β of the
BJT is 99. The MHP was connected to the collector of the BJT
via a small resistor of value Rpr=10Ω as shown in Fig. 1. The
oscillator waveform at the collector of the BJT was obtained using
the inverse discrete Fourier transform and is shown in Fig. 2(a). The
frequency is determined to be 1.16062GHz. The oscillator waveform
at the collector of the BJT is shown in Fig. 2(b). The frequency
is determined to be 1.23602GHz. The differences between Fig. 2(a)
and Fig. 2(b) can be viewed by observing the absolute value of the
Fourier coefficients (DC value is not shown) as shown in Fig. 3(a)
and Fig. 3(b) respectively.

Vee

6v

6v

Vpr

L

R pr

R L
R 2

C 3

R 1

ddV

C 2

C 1

−

+

−

+

Fig. 1. Colpitts oscillator-MHP circuit.

The waveform at the collector of BJT in its steady state is plotted
for one time period in Fig. 2(c), using transient analysis. This
waveform exactly matches Fig. 2(a). The absolute values of the
Fourier coefficients of this waveform are shown in Fig. 3(c), which
exactly matches Fig. 3(a). The frequency was roughly estimated to
be around 1.16GHz. We performed oscillator HB (as stated in section
II) with good initial guess obtained from transient analysis. It should
be noted that the oscillator HB indeed converges as the initial guess
is very close to the solution. The frequency was determined to be
1.16062GHz which is exactly the same as calculated using MHP
technique.
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(c) Transient.
Fig. 2. Time domain waveforms at the collector of BJT in the Colpitts
oscillator in steady state.
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(c) Transient.
Fig. 3. Magnitude of Fourier coefficients at the collector of BJT in the
Colpitts oscillator in steady state.

B. 3 Stage Ring Oscillator

The circuit of a 3-stage ring oscillator is shown in Fig. 4. The
element values are: R1=1KΩ, C1=2pF. was used. The MHP was
connected to the output (node A) via a small resistor of value
Rpr=10Ω as shown in Fig. 4. The oscillator waveform at node A is
shown in Fig. 5(a). The frequency is determined to be 153.50MHz.

When a purely sinusoidal probe is connected to node A instead, the
oscillator waveform at the output is shown in Fig. 5(b). The frequency
is determined to be 149.103MHz. The differences in Fig. 5(a) and
Fig. 5(b) can be seen by observing the absolute value of the Fourier
coefficients of these two wave forms as shown in Fig. 6(a) and Fig.
6(b) respectively.

R 1 R 1 R 1

C 1
C 1 C 1

Vpr

Rpr

A

Fig. 4. 3 stage ring oscillator-MHP circuit.

The waveform at the output (node A) is plotted for one time period
in Fig. 5(c), using transient analysis. This waveform exactly matches
Fig. 5(a). The absolute value of Fourier coefficients of this waveform
obtained by performing the discrete Fourier transform shown in Fig.
6(c) exactly matches Fig. 6(a). The frequency was roughly estimated
to be around 153.50MHz. We performed oscillator HB with good
initial guess provided from transient analysis. The frequency was
solved by HB to be 153.50MHz, the same as calculated using the
MHP technique.
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Fig. 5. Time domain waveforms at the output of the 3 stage ring oscillator
in steady state.
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(c) Transient.
Fig. 6. Magnitude of Fourier coefficients at the output of the 3 stage ring
oscillator in steady state.

C. Pierce Oscillator
A Pierce oscillator circuit is shown in Fig. 7. The element

values are: Ls=147nH, Cs=49.4fF, Cp=1.5pF, C1=400fF, C2=400fF,
Rs=0.8, R1=100KΩ, R2=2.5KΩ. The value of β of the BJT is 99.

Rs

Cp

Vpr

R
Q E

CsLs

pr

C 1

C 2

R 1 R 2

−

+

Fig. 7. Pierce oscillator-MHP circuit.

MHP was connected to the collector of the Pierce oscillator via a
small resistor of value Rpr = 10Ω as shown in Fig. 7. The oscillator
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waveform at the collector of the BJT is shown in Fig. 8(a). The
magnitude of the Fourier coefficients of Fig. 8(a) is shown in 9(a).
The frequency is determined to be 1.89491GHz. The crystal’s Q
factor is approximately ωLs

Rs
= 350.

A purely sinusoidal probe was also connected similarly and the
upper level initialized with the solution obtained from the MHP
technique. However, the purely sinusoidal probe simulation did not
converge.

The oscillator waveform at the collector of BJT is plotted for
one time period in Fig. 8(b), via transient analysis for over 10,000
cycles, with a time-step of 0.5e-9. This waveform matches that of Fig.
8(a). The absolute value of the Fourier coefficients of this waveform,
shown in Fig. 9(b), matches Fig. 9(a). Oscillator HB, performed
using a good initial guess obtained from transient analysis, also
confirmed the MHP method’s solution. The oscillator waveform, and
the magnitude of its Fourier coefficients (shown in Fig. 8(c) and Fig.
9(c)) match Fig. 8(a) and Fig. 9(a), respectively. The frequency of
oscillation was determined to be 1.89491GHz, the same as calculated
using the MHP technique.
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(c) Oscillator HB.
Fig. 8. Time domain waveforms at the collector of BJT in the Pierce oscillator
in steady state.
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(b) Transient.
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(c) Oscillator HB.
Fig. 9. Magnitude of Fourier coefficients at the collector of BJT in the Pierce
oscillator in steady state.

V. CONCLUSION

A multi-harmonic extension to the standard single-harmonic probe
technique for computing oscillator steady states has been presented.
The new method uses non-sinusoidal periodic probes, enhancing the
accuracy, convergence properties, and general applicability of probe
methods. The method has been tested using LC, ring and crystal
oscillator examples.
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APPENDIX

A. MHP upper level Jacobian
We term the Jacobian needed to solve (15) and (16) as Jupper ,

where

Jupper =

»
∂I

∂V
, ∂I

∂ω
∂φ
∂V

, ∂φ
∂ω

–
. (17)

From (17) it is clear that to compute Jupper we need to evaluate
∂I

∂V
, ∂I

∂ω
, ∂φ

∂V
and ∂φ

∂ω
.

1) Evaluation of ∂I

∂V

a) Differentiating (9) w.r.t to V, we have

ωΩbasic
∂Qa(Y )

∂Y

∂Y

∂V
+

∂Fa

∂Y

∂Y

∂V
− T = 0. (18)

b) Differentiating (9) w.r.t to Y, we have

Jlow = ωΩbasic
∂Qa(Y )

∂Y
+

∂Fa(Y )

∂Y
, (19)

where Jlow is the Jacobian needed to solve the the set of
nonlinear equations in (9).

c) Substituting (19) in (18) and rewriting explicitly in terms
of ∂Y

∂V
, we have

∂Y

∂V
= Jlow

−1T. (20)

d) Differentiating (12) w.r.t to V and substituting (20) ,we
obtain

∂I

∂V
= PJlow

−1T. (21)

2) Evaluation of ∂I

∂ω

a) Substituting (19) in the equation obtained by differentiat-
ing (9) w.r.t to ω and rewriting explicitly in terms of ∂Y

∂ω
,

we have
∂Y

∂ω
= −Jlow

−1ΩbasicQa(Y ). (22)

b) Differentiating (12) w.r.t to ω and substituting (22), we
obtain

∂I

∂ω
= −PJlow

−1ΩbasicQa(Y ). (23)

3) Evaluation of ∂φ
∂V

and ∂φ
∂ω

a) Differentiating (16) w.r.t to V, we have

∂φ

∂V
= [0 a 0 . . . 0 −b] , (24)

where ∂φ
∂V

is a row vector of size N .
b) Differentiating (16) w.r.t to ω, we have

∂φ

∂ω
= [0] . (25)
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