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Abstract— Standard small-signal analysis methods for circuits break
down for oscillators because small input perturbations result in arbi-
trarily large output changes, thus invalidating fundamental assumptions
for small-signal analysis. In this paper, we propose a novel oscillator-
AC (OAC) approach remedying this situation, thus restoring validity
and rigour to small-signal analysis of oscillators. Our approach centers
around a novel, general equation formulation for circuits that we term the
GeMPDE. A key feature of our approach is to solve for bivariate frequency
variables with the help of novel augmenting phase condition equations.
Our GeMPDE-based small-signal analysis provides both amplitude and
frequency characteristics in a unified manner and is applicable to any
kind of oscillator described by differential equations. We obtain speedups
of 1–2 orders of magnitude over the transient simulation approach com-
monly used today by designers for oscillator perturbation analysis. We
also demonstrate and explain how our linearization approach captures
the inherently nonlinear phenomenon of injection locking in oscillators.

I. INTRODUCTION

Oscillators are building blocks in electronic, mechanical, optical
and many other types of engineering systems. Examples of oscillators
include voltage-controlled oscillators (VCOs), digital clocks, phase-
locked loops, motors, engines, lasers, etc.. Analysis of the effects
of small perturbations on oscillators is an important practical and
theoretical problem. Small perturbations can, for example, lead to
thickening of the oscillator’s frequency spectrum (an effect known as
phase noise), or to uncertainties in the locations of switching edges
(known as timing jitter) in clocked systems. Effects of such non-
idealities include degradation of throughput and bit-error rate (BER)
in communication systems, and the need for lower clock speeds in
computer systems.

In recent years, the sources of perturbations to oscillator-based
systems have grown in variety. In addition to intrinsic device
noise perturbations, interference “noise” from imperfect power sup-
ply/ground lines and chip substrates have become of substantial
concern to designers. Correct and speedy analysis of oscillators under
small perturbations has therefore become of great importance in
practice. Frequency sweeps akin to standard small-signal analysis
are of particular value to designers interested in obtaining metrics of
oscillator sensitivity to interference frequency.

Unfortunately, standard small-signal analysis, such as that used
for AC and noise analysis in SPICE [1], [2], is not applicable to
oscillators. The reason is that oscillators are different from most
other electronic circuits, in that small perturbations to them lead to
large changes in phase and timing properties [3]. As a result, the
underlying assumption of linearization in small-signal analysis, that
output changes always remain small, breaks down for oscillators. The
numerical manifestation of this fundamental property of oscillators
is ill-conditioning and singularity of small-signal analysis matrices.

In the absence of the “usual” small-signal analysis capability of
SPICE, designers are currently forced to resort to full transient
analysis for oscillator simulations. However, as is well known, tran-
sient analysis has peculiar disadvantages for oscillators. The tradeoff
between accuracy of results and step-size is much worse for oscil-
lators than for non-oscillatory circuits like amplifiers and mixers. In
particular, small numerical errors in phase accumulate without limit,
resulting in unacceptable accuracy, unless extremely small timesteps
(∼400-1000 timesteps per cycle, typically, for a simulation length of
∼100 cycles) are taken. This makes transient simulation very much
slower than a potential AC analysis, especially when a frequency
sweeps are desired: for transient, an entire nonlinear simulation is
required for each frequency (followed by postprocessing), while the

single complex-matrix solution of AC analysis provides the same
information more accurately. Therefore, it is very desirable to restore
validity and rigour to small-signal analysis for oscillators.

AC analysis [1], [2] (i.e., linearized small-signal frequency domain
analysis) has long been used to efficiently analyze sinusoidal (or
periodic) steady-state responses of linear time invariant (LTI) circuits.
AC analyses are a staple for analog designers, who apply it to
circuits such as amplifiers, first linearizing the nonlinear circuits about
a DC operating point. The concept of AC analysis has also been
profitably extended to nonlinear circuits operating in large-signal
periodic steady-state, such as mixers and switched-capacitor filters
(e.g., [4]–[7]). This linear periodic time-varying (LPTV) AC analysis
can capture important aspects of periodically-driven circuits, such
as frequency translation and sampling. Neither LTI nor LPTV AC
analysis is applicable to oscillators; if applied blindly, breakdown due
to ill-conditioning or outright singularity of the AC matrices results.

Recently, a class of techniques based on the concept of multi-time
partial differential equations (MPDEs) have been proposed and used
to efficiently simulate systems with widely separated time scales,
i.e., with fast/slow characteristics. In the MPDE formulation, signal
components with different rates of variation are represented by their
“own” artificial time variables [8], [9]. An extension (the Warped
MPDE or WaMPDE) of MPDE methods has also been proposed [10]
that is able to better analyze amplitude and frequency modulation
in oscillators. In the WaMPDE, some time scales are dynamically
rescaled (warped time) to make the undulation of FM signal uniform.
The concept of time warping introduced in the WaMPDE has been
further generalized [10] to obtain a family of equation formulations
collectively termed the Generalized MPDE, or GeMPDE. A key
characteristic of the GeMPDE is that it features “local frequency”
variables which are themselves functions of multiple time scales.
These local frequencies are linked to multi-time “phase variables”
through nonlinear, implicit ODEs.

In this paper, we propose a novel and unified approach for small
signal or “AC” analysis of oscillators by exploiting a special case of
the GeMPDE. In this particular GeMPDE formulation, the frequency
is treated as an extra explicit variable with two time scales — an
internal “warped” scale and an external “unwarped” time scale. A
set of extra equations, which we term phase conditions, are proposed
and added to the system to make the numbers of equations and
unknowns the same, thus making it possible to obtain a unique
solution. One of the effects of using this bi-variate frequency variable
is to separate changes in amplitude and frequency, both of which
always remain small if the external perturbation is small. Therefore,
linear small signal analysis of this special GeMPDE becomes valid.
The numerical manifestation of this fact is a well-posed Jacobian
matrix that remains comfortably nonsingular at all frequencies, as we
prove.

By restoring validity to small signal analysis of oscillators with
the GeMPDE formulation, our method achieves large speedups over
transient solution, just as traditional AC analysis does for non-
oscillatory systems. While our linearized oscillator analysis relies
on multi-time computations for all the “hard work”, “normal” time-
domain waveforms are easily recovered through simple and fast
postprocessing. The postprocessing step involves solution of a scalar
nonlinear ODE that relates multi-time frequency and single-time
phase variables. Our method provides both frequency and amplitude
variations in a unified manner from the small-signal transfer function
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calculated, and is applicable to any kind of oscillator.
We demonstrate our OAC method on a variety of LC and ring

oscillators in this paper. OAC analysis results show perfect agreement
with SPICE-like full transient simulation, as expected, but provide
speedups of 1-2 orders of magnitude. Furthermore, results show
that OAC can predict injection locking [11], [12] accurately. OAC
captures this nonlinear phenomenon via the scalar postprocessing
nonlinear ODE solution that bridges multi-time and single-time
solutions.

The remainder of the paper is organized as follows. In Section II,
we review the rank-deficiency problem in the frequency-domain
conversion matrix of oscillators for the DAE/MPDE and WaMPDE
formulations. In Section III, we propose a well-posed GeMPDE
formulation and novel augmenting phase conditions. We also prove
the nonsingularity of GeMPDE’s linearization and present the OAC
technique in this section. In Section IV, we apply OAC to a number
oscillator circuits of different kinds, demonstrating improvements in
computation time over transient, as well as its ability to predict
injection locking.

II. RANK-DEFICIENCY IN PREVIOUS OSCILLATOR

LINEARIZATION APPROACHES

Standard small-signal analysis is not applicable to oscillators
because of their fundamental property of neutral phase stability,
resulting in singularity of small-signal matrices. In this section, we
first demonstrate the rank-deficiency problem in the DAE/MPDE
frequency-domain conversion matrix of oscillators. We then demon-
strate how the WaMPDE formulation [10] succeeds in correcting the
problem at DC but fails to do so at all other harmonics1.

A. Preliminaries

Oscillator circuits under perturbation can be described by the DAE
system

dq(x)

dt
+ f(x) = Au(t), (1)

where u(t) is a small perturbation signal, x(t) is a vector of
circuit unknowns (node voltages and branch currents), and A is an
incidence matrix that captures the connection of the perturbation to
the circuit. It has been shown in [3] that small perturbations applied
to orbitally-stable oscillators can lead to dramatic changes in output,
thus invalidating the fundamental assumption of small-signal analysis,
i.e., that output changes always remain small.

To more conveniently perform small-signal analysis of the oscil-
lator, we first recall the MPDE [8], [9] forms of (1), which separate
the input and system time scales. This leads to a form of the linear
time varying (LTV) transfer function useful for small-signal analysis,
as we show shortly. The MPDE form of (1) is»

∂

∂t1
+

∂

∂t2

–
q(x̂(t1, t2)) + f(x̂(t1, t2)) = Au(t1). (2)

x̂(t1, t2) is the bivariate form of x(t) in (1).
We will also need the Warped MPDE (WaMPDE) formulation

[10], an extension of the MPDE that originally proposed to address
efficiency problems the MPDE faces when encountering strong fre-
quency modulation (FM) in oscillators. Following [10], the WaMPDE
corresponding to (1) is»

∂

∂t1
+ ω(t1)

∂

∂t2

–
q(x̂) + f(x̂) = Au(t1), (3)

where ω(t1) is a changing local frequency variable. t2 is a dynam-
ically rescaled (warped) time scale which makes the undulation of
frequency modulation uniform. Using the WaMPDE form separates
changes in amplitude and frequency and, as will become clear later,
helps alleviate the rank-deficiency problem in the frequency-domain
small-signal analysis matrix of oscillators to some extent.

1Due to space limitations, we are compelled to omit proofs.

B. Singularity of MPDE conversion matrix at frequencies s =
ijω0, ∀i

We assume that x∗(t2) is the unperturbed steady-state oscillatory
solution of (2), i.e., the solution when u(t1) = 0. Linearizing the
MPDE (2) around x∗(t2), we obtain

»
∂

∂t1
+

∂

∂t2

–
(C(t2)∆x̂) + G(t2)∆x̂ = Au(t1). (4)

Here, C(t2) = (∂q(x̂)/∂x̂)|x∗ and G(t2) = (∂f(x̂)/∂x̂)|x∗ .
Performing a Laplace transform with respect to t1, we further obtain

»
s +

∂

∂t2

–
(C(t2)∆x̂) + G(t2)∆x̂ = AU(s). (5)

We expand the t2 dependence in a Fourier series, and using the

Toeplitz matrix (T) and vector (
FD

V) terminology from [13], we obtain
a convenient matrix representation for the time-varying small-signal
transfer function of the oscillator [14], [15]:

»
FD

Ω(s)TC(t2) + TG(t2)

–

| {z }
HB
J(s)

FD

V∆X(s) =
FD

VAU(s), (6)

where
FD

Ω(s) =
FD

Ω + sI .
HB

J(s) is often called the frequency-domain
conversion matrix [14], [15].

Lemma 2.1:
HB

J(s) loses rank by 1 ∀s = ijω0, where ω0 is the
frequency of a free-running oscillator.

This implies that
HB

J(s) is singular at DC and at every harmonics. Note

that at DC (i.e., s=0),
HB

J(0) is actually the steady-state Jacobian of
HB.

C. WaMPDE restores full rank to conversion matrix at DC

In the WaMPDE formulation, x̂ captures the amplitude of circuit
unknowns and ω(t1) (the “local frequency”) captures frequency
changes explicitly and separately from the amplitude components. We
assume that (3) has a unperturbed steady state solution (x∗(t2), ω0).
Linearization of (3) around (x∗, ω0) yields

»
∂

∂t1
+ ω0

∂

∂t2

–
(C(t2)∆x̂) + G(t2)∆x̂

+∆ω(t1)
∂

∂t2
q(x∗) = Au(t1).

(7)

Following the same procedure as in Section II-B, we obtain a
frequency-domain discretized system:

»„
FD

Ω(s)TC(t2) + TG(t2)

«
,

FD

Vq̇∗(t2)

–

| {z }
HB
JA(s)

 
FD

V∆X(s)
∆ω(s)

!

=
FD

VAU(s)

(8)

HB

JA(s) is the augmented Harmonic Balance Jacobian with offset s

(or augmented conversion matrix). Compared with (6),
HB

JA(s) is

augmented with the right column
FD

Vq̇∗(t).

Lemma 2.2: Augmenting
HB

J(s) by a column
FD

Vq̇∗(t) (
HB

JA(s) ) re-
stores full rank in the case s = 0 but not when s = jiω0, for i �= 0.

Note that this augmented
HB

J(s) at DC is actually the steady-state
Jacobian of oscillator HB, augmented with a phase condition. Since
it is not singular, standard oscillator HB succeeds.
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III. SMALL SIGNAL LINEARIZATION OF THE GEMPDE

For valid small-signal analysis, it is essential that the Jacobian
matrix be full rank at all frequencies, not simply at s = 0. In
this section, we propose a special Generalized MPDE (GeMPDE)
formulation and prove that it solves the rank deficiency problem of
the Jacobian matrix completely, via the use of new phase conditions.
We first obtain a new small-signal transfer function under this
formulation, and then show how both phase/frequency and amplitude
characteristics of oscillators can be easily recovered from multi-time
solutions.

A. The GeMPDE formulation

The GeMPDE, outlined in [10], is: :h
Ω̂(t1, · · · , td) ·

h
∂

∂t1
, · · · , ∂

∂td

ii
q(x̂(t1, · · · , td))

+f(x̂(t1, · · · , td)) = b̂(t1, · · · , td)
(9)

where d is the number of artificial time scales, the “phase” functions
Φ̂(t1, · · · , td) and the “local frequency” functions Ω̂(τ1, · · · , τd) are
defined as:

Φ̂(t1, · · · , td) =

0
B@

τ1

...
τd

1
CA =

0
B@

φ̂1(t1, · · · , td)
...

φ̂1(t1, · · · , td)

1
CA , (10)

Ω̂(τ1, · · · , τd) =

0
B@

ω̂1(τ1, · · · , τd)
...

ω̂1(τ1, · · · , τd)

1
CA . (11)

Φ̂ and Ω̂ is related by a nonlinear, implicit ODE„
∂

∂t1
+ · · ·+ ∂

∂td

«
Φ̂(t1, · · · , td) = Ω̂

“
Φ̂(t1, · · · , td)

”
. (12)

This relation is the generalization of the fact that phase is the integral
of local frequency.

Theorem 3.1: If (Ω̂, x̂) is a solution of (9), then the one-time
waveform defined by x(t) = x̂(Φ̂(t, · · · , t)) solves the underlying
DAE system, if b(t) = b̂(Φ̂(t, · · · , t)).

Proof: See [10].

B. Small signal linearization of the GeMPDE

To facilitate small-signal analysis, we use a special case of the
GeMPDE. In this particular GeMPDE formulation, the frequency ω
is treated as an extra explicit variable with two time scales, an internal
warped scale (t1) and an external unwarped time scale (t2). The
special bivariate GeMPDE form of (1) is:»

∂

∂t1
+ ω̂(t1, t2)

∂

∂t2

–
q(x̂) + f(x̂) = b(t) = Au(t1). (13)

Lemma 3.1: If (ω̂, x̂) is a solution of (13), then the one-time
waveform defined by x(t) = x̂(t, φ̂(t, t)) solves the underlying DAE
system if b(t) = b̂(t, φ̂(t, t)), where φ̂ and ω̂ is related by:

∂φ̂(t, t)

∂t
=

∂φ̂(τ1 = t, τ2 = t)

∂τ1
+

∂φ̂(τ1 = t, τ2 = t)

∂τ2

= ω̂(t, φ̂(t, t)).

(14)

Defining φ(t) = φ̂(t, t), we can rewrite the phase-frequency
relation (14) as

dφ(t)

dt
= ω̂(t, φ(t)). (15)

This equation relates the multi-time frequency and the single-time
phase variable. The single-time phase is then used to obtain a single-
time solution from MPDE solutions using Lemma 3.1.

We now linearize this special case of the GeMPDE. We first
note that the unperturbed steady state solution of the WaMPDE (3)
(x∗(t2), ω0) also solves the GeMPDE (13). We can then linearize
(13) around (x∗(t2), ω0) to obtain the linearized GeMPDE»

∂

∂t1
+ (ω0 + ∆ω(t1, t2))

∂

∂t2

–
q(x∗ + ∆x̂)

+f(x∗ + ∆x̂) = Au(t1),

(16)

i.e., »
∂

∂t1
+ ω0

∂

∂t2

–
(C(t2)∆x̂) + G(t2)∆x̂

+∆ω(t1, t2)
∂

∂t2
q(x∗) = Au(t1).

(17)

Following the same procedure as in Section II-B, we continue to
obtain the frequency-domain discretized system

»„
FD

Ω(s)TC(t2) + TG(t2)

«
, Tq̇∗(t2)

–

| {z }
HB
JGe(s)

 
FD

V∆X(s)
FD

V∆ω(s)

!

=
FD

VAU(s).

(18)

Comparing with (8), we note that now the Jacobian is augmented
by several more columns (N columns of Tq̇∗(t2), where N is the
number of terms in truncated Fourier series). In this case, the size of

HB

JGe(s) is nN×(n+1)N , where n is the number of circuit unknowns.

Lemma 3.2: The augmented matrix
HB

JGe(s) (augmenting
HB

J(s) by
columns of Tq̇∗(t2)) is full rank at all frequencies.

This implies that
HB

JGe(s) is non-singular at all frequencies. It further

implies that if the perturbation signal is small, then both
FD

V∆X(s)
FD

V∆ω(s) remain small. Therefore, linear small signal analysis of this
special GeMPDE becomes valid.

C. New phase conditions

Since we have augmented
HB

J(s) by N columns above, we have N
more unknowns than equations. We then need N more equations in
order to obtain a unique solution. We will term these equations phase
conditions. While there is considerable apparent freedom in choosing
phase conditions, they will need to satisfy a number of conditions in
order to be useful from the standpoint of small-signal analysis. In

particular, the phase condition rows that augment
HB

JGe(s)

1) must be of full rank themselves,
2) in addition to making the entire augmented Jacobian matrix full

rank.
We now present the following phase condition equations which

satisfy these characteristics:

ω(t1, t2)
∂

∂t2
x̂l =

∂xls(t2)

∂t2
, (19)

where l is a fixed integer. x̂l denotes the lth element of x̂, while xls

is the lth element of the steady state solution xs(t2).
It is obvious that the unperturbed steady state (x∗

l (t2), ω0) satisfies
(19). By linearizing around (x∗

l , ω0) and expanding the t2 dependence
in Fourier series, we obtain:

h
FD

ΩTeT
l

, Tẋ∗
l
(t2)

i
| {z }

P

 
FD

V∆X(s)
FD

V∆ω(s)

!
= 0. (20)

Lemma 3.3: The phase condition submatrix P is full rank at all
frequencies.
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This implies that the phase condition rows that augment
HB

JGe(s) is
full rank.

Putting the phase conditions and GeMPDE together, we obtain2
64
„

FD

Ω(s)TC(t2) + TG(t2)

«
, Tq̇∗(t2)

FD

ΩTeT
l

, Tẋ∗
l
(t2)

3
75
 

FD

V∆X(s)
FD

V∆ω(s)

!

=

 
FD

VA

z

!
U(s),

(21)

where z = [0, ..., 0]T . The corresponding small-signal transfer
function is:

FD

VH(s) =

 
FD

V∆X(s)
FD

V∆ω(s)

!
/U(s)

=

2
64
„

FD

Ω(s)TC(t2) + TG(t2)

«
, Tq̇∗(t2)

FD

ΩTeT
l

, Tẋ∗
l
(t2)

3
75

−1 
FD

VA

z

!
.

(22)

(22) is always nonsingular, for all frequencies.

D. Obtaining phase and amplitude characteristics

Once the transfer function is obtained (22), we can obtain
FD

V∆X(s),
FD

V∆ω(s) under perturbations of different frequencies. Mul-
titime time-domain waveforms of ∆x and ∆ω at a given frequency
can be obtained by performing inverse discrete Fourier transform.
The phase characteristic can be recovered by the phase-frequency
relation (15). To obtain the phase variation from ∆ω, we linearize
(15) around (φ0, ω0). Using φ0 = ω0t, we have

d∆φ(t)

dt
= ∆̂ω(t, ω0t + ∆φ(t)). (23)

The one-time form of amplitude variation ∆x(t) can be recovered
using Lemma 3.1:

∆x(t) = ∆̂x(t, φ(t)), (24)

where φ(t) = ω0t + ∆φ(t). The overall solution of the oscillator is
given by

x(t) = x∗(φ(t)) + ∆̂x(t, φ(t)), (25)

where x∗ is the steady state oscillatory solution.
In summary, the flow of the autonomous AC analysis process is

outlined below:
flow of the autonomous AC analysis process

1) Solve for the steady state solution (x∗, w0) using HB or
shooting.

2) Calculate the transfer function numerically using (22).
3) Obtain multitime waveforms of ∆x and ∆ω at a given

frequency.
4) Solve (23) numerically for phase variation.
5) Solve (24) numerically for amplitude variation.
6) Finally, generate the one-time solution using (25).

IV. APPLICATIONS AND VALIDATION

In this section, we apply the GeMPDE-based small signal analysis
to LC and ring oscillators. Comparisons with direct SPICE-like
transient simulations confirm that our method captures oscillator
phase/frequency and amplitude variations correctly. Speedups of or-
ders of magnitude are obtained over SPICE-like transient simulation.
We also verify OAC’s capability of predicting injection locking in
oscillators. All simulation were performed using MATLAB on an
2.4GHz, Athlon XP-based PC running Linux.

A. 1GHz negative-resistance LC oscillator

A simple 1GHz LC oscillator with a negative resistor is shown in
Figure 1. At steady state, the amplitude of the inductor current is
1.2mA.

The circuit is perturbed by a cur-
rent source in parallel with the in-
ductor. Figure 2 shows frequency
sweeps akin to standard AC anal-
ysis for both the capacitor voltage
and the local frequency. Figure 3(a)
shows the phase variation recovered
from the bivariate form of frequency

−

b(t)

i=
f(

v)

Fig. 1: A simple 1GHz LC oscil-
lator with a negative resistor

(using (23)) under a perturbation of 4×10−5sin(1.03w0t). The one-
time forms of amplitude variation of the capacitor voltage are shown
in Figure 3(b). The capacitor voltage waveform is obtained using (25)
and compared with full transient simulation in Figure 4. As can be
seen, the results from our method match full simulation perfectly. A
speedup of 15 times is obtained in this example.
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Fig. 2. Harmonic transfer functions: the frequency sweeps from DC to
1.2 × 109Hz
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Fig. 3. Phase and amplitude variations of the capacitor voltage when
the perturbation current is 4 × 10−5sin(1.03w0t). The figure shows the
simulation result for 100 cycles.
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Fig. 4. Comparison of results from small signal analysis and full transient
simulation (the perturbation current is 4 × 10−5sin(1.03w0t)).

We also test OAC for predicting injection locking. We use the
perturbation frequency of 1.03ω0; in this case, we expect the phase
to change linearly with a slope of 0.03 (in our implementation , the
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slope is scaled by 1/ω0, so the slope is ∆ω0/ω0). The perturbations
are increased in strength to ensure that the oscillator is in lock. The
phase variation from the small signal analysis is shown in Figure
5. Transient simulation results are also provided to verify that the
oscillator is in lock. As can be seen in Figure 5, the phase variations
from our method change as expected.
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Fig. 5. Oscillator in lock: the perturbation current is 8×10−5sin(1.03w0t).
The figure shows simulation result for 100 cycles.

B. 3 Stage ring oscillator

A 3 stage oscillator with identical stages is shown in Figure 6. The
oscillator has a natural frequency of 1.53×105Hz. The amplitude of
the steady-state load current is about 1.2mA.

Fig. 6. A 3 stage oscillator with identical stages
Figure 7 shows AC analysis frequency sweeps for both the ca-

pacitor voltage and the local frequency of the oscillator under a
perturbation current, connected in parallel with the load capacitor at
node 1. Figure 8 shows the phase and amplitude variations at node 1.
The waveform at node 1 is compared with full transient simulation
in Figure 9. Again, we see perfect agreement between results from
our method and transient simulation, with a speedup of 20× in this
case.
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Fig. 7. Harmonic transfer functions: the frequency sweeps from DC to
2 × 105Hz

Figure 10 shows simulation results when the oscillator is in
lock. We see that the phase changes linearly, as expected. Transient
simulation results verify that the oscillator is indeed in lock.

C. 4GHz colpitts LC oscillator

A Colpitts LC oscillator is shown in Figure 11. The circuit has a
free-running frequency of approximately 4GHz.

We perturb the oscillator with a small sinusoidal voltage source in
series with L1. Figure 12 show frequency sweeps for both the current
through L1 and the local frequency. Figures 13 shows the phase and
amplitude variations of the current through L1. The waveform of
the current through L1 is compared with full transient simulation
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Fig. 8. Phase and amplitude variations of the capacitor voltage when the
perturbation current is 5× 10−5sin(1.04w0t). The figure shows simulation
result for 100 cycles.
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Fig. 9. Comparison of the result from small signal analysis and full transient
simulation (the perturbation current is 5 × 10−5sin(1.04w0t)).
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Fig. 10. Oscillator in lock: the perturbation current is 5 ×
10−5sin(1.02w0t).The figure shows simulation result for 100 cycles.
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in Figure 14. As can be seen, results from our method match full
simulations perfectly. A speedup of 100 times is obtained in this
example.
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Fig. 12. Harmonic transfer functions: the frequency sweeps from DC to
5 × 109Hz
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Fig. 13. Phase and amplitude variations of the current through L1 when the
perturbation current is 2× 10−3sin(1.02w0t). The figure shows simulation
result for 100 cycles.
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Fig. 14. Comparison of the result from small signal analysis and full transient
simulation (the perturbation current is 2 × 10−3sin(1.02w0t)).

Figure 15 shows simulation results when the oscillator is in lock.
Again, our method predicts injection locking correctly, as verified by
transient simulation.

V. CONCLUSIONS AND FUTURE DIRECTIONS

We have presented a theory and computational algorithms for
rigorously valid small-signal analysis of oscillators. Our technique is
capable of capturing amplitude and frequency variations of oscillators
under perturbations accurately, with large speedups over the full
transient simulations that were the only prior alternative. Our OAC
method is also able to predict injection locking in oscillators. We
are currently extending our OAC to noise analysis, i.e., analysis of
oscillatory systems perturbed by random inputs. Stochastic analysis
using the GeMPDE promises to be a powerful new tool that will
significantly enhance theoretical and computational understanding of
interesting and complex physical systems.
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