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Abstract
In this paper, we present a simple analytical equation for cap-
turing phase errors in 3-stage ring oscillators. The model, based
on a simple but useful idealization of the ring oscillator, is prov-
ably exact for small noise perturbations. Despite its simplicity
and purely analytical form, our model correctly captures the
time-dependent sensitivity of oscillator phase to external per-
turbations. It is thus well suited for estimating both qualitative
and quantitative features of ring oscillator phase response to in-
ternal noises, as well as to power, ground and substrate interfer-
ence. The nonlinear nature of the model makes it suitable for
predicting injection locking as well. Comparisons of the new
model with existing phase models are provided, and its appli-
cation for correct prediction of supply-noise induced jitter in
PLLs, as well as for capturing injection locking, demonstrated.
Requiring knowledge only of the amplitude and frequency of
the oscillator, the model is ideally suited for early design explo-
ration at the system and circuit levels. An interesting feature of
the analytical equation is its strong connection with the number
1.618034 (the Golden Mean), celebrated since ancient times for
its significance in a variety of mathematical, aesthetic and sci-
entific disciplines.

1 Introduction
Correct modelling of the phase response of free-running os-

cillators is of great importance in the design of communication
and computer systems. Phase errors caused by device or inter-
ference noise result in timing jitter and phase noise; these have
a large impact on overall system functionality metrics, such as
bit-error rate (BER) in communication systems and clock skew
in synchronized digital systems. As a result, it is important to
model phase errors as realistically as possible, from the very
beginning, during architecture, system and circuit level design.

Indeed, the crucial rôle of early design exploration in mak-
ing overall architectural decisions that best trade off perfor-
mance vs cost metrics is well recognized by system design-
ers. At the early design stage, only the sketchiest details of
each block comprising the system are usually available – typi-
cally, only the broad nature or topology of a circuit block will
be known. For example, during the early design process, the
qualitative phase response properties of ring oscillators might
be compared against those of LC oscillators, but the only infor-
mation available about the oscillator block would be its center
frequency and its desired phase noise or jitter performance. Due
to the absence of concrete circuit realizations at the early design
stage, using simple generic models of blocks that, however, cap-
ture important qualitative properties correctly, is of the utmost
importance.

In this paper, we present a simple analytical equation that
captures the phase response of idealized 3-stage ring oscillators

(shown in Figure 1) accurately. The simplicity of the model
stems from its explicit dependence on only two design parame-
ters: the amplitude (power) of the output waveforms and the os-
cillator’s desired frequency. The equation is a single scalar non-
linear differential equation for the phase error and is amenable
to further simplification and abstraction. Despite its simplicity,
the model is powerful enough to capture timing jitter and phase
noise due to small device and interference noises accurately.
The simple analytical model can also predict injection locking.
Existing oscillator phase models for early design (e.g., [9, 12]),
which apply a simplistic VCO-like technique of linearly inte-
grating noise/perturbation inputs in time to produce phase er-
rors, do not capture these effects correctly (or at all, e.g., for
injection locking).

Our approach is based on a theory for nonlinear perturba-
tion analysis developed in [2, 4], which developed a numeri-
cal procedure for finding a periodic phase-sensitivity function,
termed the perturbation projection vector or PPV, of any oscil-
lator. In this work, we apply the same rigorous theory, but in
a completely analytical manner, employing no approximations
(other than idealizing the ring oscillator system at the outset). In
other words, we start by finding an exact analytical form for the
steady-state of the ring oscillator, then obtain its time-varying
linearization analytically, and continue to perform Floquet anal-
ysis [5] of the system, culminating in expressions for the mon-
odromy matrix [2,4,5] and the PPV, analytically. The nonlinear
phase macromodel is a simple scalar differential equation that
employs this PPV.

Having a simple analytical expression for the PPV (as op-
posed to a numerical procedure for computing it) has the addi-
tional advantage of providing direct design insight into noise
and perturbation properties of ring oscillators. The PPV di-
rectly captures the time-dependent sensitivity of the oscillator’s
phase response to any perturbations; hence plots of the PPV,
together with knowledge of its scaling properties with respect
to oscillation, frequency and amplitude, can guide both circuit
and system design decisions without the need for system-level
simulation.

Interesting features of our analytical development, at the
mathematical level, include Floquet analysis of an impulsive
system, a waveform-relaxation-like analytical solution tech-
nique, exact analytical eigendecompositions of integer matri-
ces, and a form for the PPV that shows its explicit amplitude-
and time-scaling dependence on the frequency/period. An addi-
tional curious aspect is that the number ϕ = 1+

√
5

2 � 1.618034,
well known as the Golden Mean or Divine Proportion [10, 11],
emerges to be central to our exact analytical phase model.

We provide comparisons of the nonlinear equation proposed
here with prior linear approaches, in particular the impulse sen-
sitivity function (ISF) based approach of [7]. Extending what
has already been shown numerically [2–4] and analytically for
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Figure 1: Idealized ring oscillator. The inverters are assumed
to switch between output levels of ±1, with abrupt switching at
input level 0. All resistors/capacitors are assumed identical.

a simple oscillator in radial state space [1], we prove that for the
ring oscillator, linear phase equations lead to significant qualita-
tive and quantitative errors. In addition to providing a derivation
of the analytical nonlinear phase error equation in Section 2,
we provide demonstrations of its application to predicting PLL
supply noise induced jitter and injection locking in Section 3.

2 Ring oscillator: analytical perturba-
tion analysis and phase error equa-
tions

Figure 1 depicts an idealized 3-stage ring oscillator. All
resistors, capacitors and inverters are assumed identical; ide-
ally switching inverters, with output voltages of ±1 and input
switching threshold zero, are assumed. The assumptions of
symmetry and zero switching threshold are not essential, hav-
ing been made simply for convenience; the key assumption, on
which much of the following relies, is that of ideal switching of
the inverters. Deviations from non-ideality (especially delay-
related aspects) are captured by the R and C elements outside
the inverters.

The key to our novel phase macromodel is that we are able
to carry out, in a completely analytical fashion, Floquet anal-
ysis [2, 5, 6] of the ring oscillator. Floquet analysis consists
solving the linear periodically time-varying (LPTV) system of
equations that results from linearizing the nonlinear ring oscil-
lator about its oscillatory steady state. It is important to note,
though, that while LPTV calculations are at the core of our
procedure, the result of this analysis (a quantity known as the
Perturbation Projection Vector, or PPV [2, 4]) is used to form
a nonlinear macromodel1. This nonlinearity is key to the ac-
curacy of the analytical equation – for example, for capturing
complex dynamical phenomena such as injection locking.

In this section, we obtain the new phase equation via the
following steps of Floquet analysis, which we perform analyti-
cally:

1. First (Section 2.1), we obtain the differential equations
(1) of the ring oscillator of Figure 1.

2. Next (Section 2.2), we find an exact analytical oscillatory
solution of (1), in terms of the electrical parameters of
the circuit. The solution comprises analytical expressions
for the time-period T of the oscillator and for the voltage
waveforms at the capacitor nodes of Figure 1.

3. Next (Section 2.3), we find the (adjoint) linear period-
ically time-varying (LPTV) differential equations (13)
that capture perturbations to the oscillator around its

1Indeed, extending LPTV Floquet analysis to capture nonlinear phase be-
haviour in oscillators is the key qualitative advance of [4] over the prior pio-
neering work of [8] and related approaches such as [7].

nominal oscillatory steady-state. (13) contains impulsive
terms due to the abrupt switching of the inverters.

4. Next (Section 2.4), we solve (13) analytically, to obtain a
general solution for any initial condition.

5. Using this general solution, we next calculate (Sec-
tion 2.5) the 3× 3 monodromy matrix [5, 6] of the os-
cillator. We find that the entries of the monodromy
matrix consist of only the integers 1,4,9 and 12. Next,
we show that, surprisingly, an exact eigen-analysis of the
monodromy matrix is possible completely analytically,
resulting in expressions for all eigenvalues and eigen-
vectors. Furthermore, we find that all these quantities
are related very simply to a single scalar number, ϕ =
1+

√
5

2 � 1.618034. Curiously, this quantity is the cele-
brated Golden Mean or Divine Proportion (e.g., [10,11]),
a number well known since the days of the ancient Greeks
for its significance in fields as diverse as pure mathemat-
ics, geometry, science, music and architecture. From the
eigenvectors obtained, we choose the eigenvector corre-
sponding to the oscillatory eigenvalue (i.e., Floquet expo-
nent 0).

6. Finally (Section 2.6), we use the general solution of the
LPTV equation (13), using the oscillatory eigensolution
obtained above, to find the PPV [4] analytically. The ana-
lytical expression is found to be a piecewise-exponential
waveform with discontinuities. With the PPV available
analytically, it is embedded within a simple, scalar differ-
ential equation [2] to obtain the exact analytical nonlinear
phase error macromodel.

2.1 Differential equations for the ring oscillator
From Figure 1, the equations of the ring oscillator may be

easily derived from first principles to be

v̇1 =
f (v3)− v1

τ
, v̇2 =

f (v1)− v2

τ
, v̇3 =

f (v2)− v3

τ
, (1)

where f (v) is the ideal inverter characteristic:

f (v) =
{−1, if v > 0,

+1, otherwise. (2)

Define τ = RC.

2.2 Periodic steady state
Assuming x(t) = v1(t) is T -periodic, we realize from

positive-negative symmetry that

x(t) = −(1 + E0)e−
t
τ + 1, 0 ≤ t ≤ T

2
(3)

with x(0) = −E0. Requiring from symmetry that x( T
2 ) = E0,

we obtain

E0 = −(1 + E0)e−
T
2τ + 1

⇒E0(1 + e−
T
2τ ) = 1− e−

T
2τ

⇒E0 = tanh(
T
4τ

).

(4)
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From delay symmetry, we have v2(t) = x(t − 2T
3 ) and v3(t) =

x(t − T
3 ). Hence we have

0 = −(1 + E0)e−
T
6τ + 1 ⇒ (1 + E0) = e

T
6τ

⇒ 1 + tanh(
T
4τ

) = e
T
6τ ;

(5)

we have

2 = e
T
6τ (1 + e−

T
2τ ) ⇒ 2− e

T
6τ − e−

2T
6τ = 0

⇒ 2−ϕ−ϕ−2 = 0, ϕ = e
T
6τ

⇒ ϕ3 −2ϕ2 + 1 = (ϕ−1)(ϕ2 −ϕ−1) = 0.

(6)

Solving, we have ϕ = 1+
√

5
2 � 1.6180339889, the Golden Mean

[10]. T = 6ln(ϕ)τ = 2.88727τ; close to the 3τ that would re-
sult from a perfect delay model. Moreover, E0 = tanh( T

4τ) =
tanh( 6 ln(ϕ)

4 ).
Expanding E0 further in terms of ϕ, we obtain

E0 = tanh(
6ln(ϕ)

4
) =

1− e−3 ln(ϕ)

1 + e−3 ln(ϕ)

=
1−ϕ−3

1 + ϕ−3 =
ϕ3 −1
ϕ3 + 1

= ϕ−1 � 0.6180339889.

(7)

Summarizing the periodic steady state waveform of the os-
cillator, we have:

v1(t) = x(t) =

{
1− (1 + E0)e−

t
τ , 0 ≤ t ≤ T

2

−1 +(1 + E0)e−
t− T

2
τ , T

2 ≤ t ≤ T
,

v2(t) = x(t − 2T
3

), v3(t) = x(t − T
3

),

(8)

with E0 = ϕ− 1 and e
T
τ = ϕ6, where ϕ = 1+

√
5

2 is the Golden
Mean. Denote this periodic steady state by xs(t), i.e., xs(t) =
[v1(t),v2(t),v3(t)]T . The formula above is confirmed by simu-
lation, as shown in Figure 2.
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Figure 2: Ring oscillator steady-state waveforms (simulation).

We next obtain an expression for the derivative of xs(t),

which will be needed later:

v̇1(t) = ẋ(t) =

{1
τ (1 + E0)e−

t
τ , 0 ≤ t ≤ T

2

− 1
τ (1 + E0)e−

t− T
2

τ , T
2 ≤ t ≤ T

,

v̇2(t) = ẋ(t − 2T
3

), v̇3(t) = ẋ(t − T
3

).

(9)

In particular,

ẋs(0+) =
1 + E0

τ
[1,a−2,−a−1]T . (10)

2.3 The time-varying linearized system
Next, we need to linearize (1) about the periodic steady state

obtained above. Because the inverter characteristic f (x) has a
perfect negative step of amplitude 2 at x = 0, its derivative is

f ′(x) = −2δ(x).

From inspection of (1), the forward LPTV system is of the
form

ẏ(t)+ G(t)y(t) = 0, (11)
where G(t) is a size-3×3 T -periodic matrix of the form

G(t) =
1
τ

[
1 − f ′(v3(t))

− f ′(v1(t)) 1
− f ′(v2(t)) 1

]

=
1
τ

[
1 2δ(v3(t))

2δ(v1(t)) 1
2δ(v2(t)) 1

]
.

(12)

The adjoint system is

ẏ(t)−GT (t)y(t) = 0. (13)
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Figure 3: G2,1(t) (simulation)

Recall from the previous section that v1(t) = x(t); v2(t) =
x(t − 2

3 T ); and v3(t) = x(t − 4
3 T ) = x(t − 1

3 T ). Hence v1(t) has
a positive zero crossing at T

6 and a negative zero crossing at
2
3 T ; v2(t) has a positive zero crossing at 5

6 T and a negative zero
crossing at 1

3 T ; and v3(t) has a positive zero crossing at T
2 and

a negative zero crossing at 0. Hence we can re-write G(t) as

G(t) =
1
τ

[
1 G13(t)

G21(t) 1
G32(t) 1

]
, (14)
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with

G21(t) =
2

|x′(t∗)|
(

δ(t − T
6

)+δ(t − 2
3

T )
)

,

G32(t) =
2

|x′(t∗)|
(

δ(t − 5
6

T )+δ(t − 1
3

T )
)

,

G13(t) =
2

|x′(t∗)|
(

δ(t)+δ(t − T
2

)
)

.

(15)

(14) is valid over t ∈ [0,T ], with G(t) T -periodic. t∗ = T
6

is the point where x(t) crosses zero; the slope at this point is

x′(t∗) =
1
τ

, which follows directly from (1). Incorporating

x′(t∗) correctly in (14) is important for capturing the integrals
of the δ-function terms, which are key metrics to be preserved.
Figure 3 depicts the impulse-like G1,2(t) obtained from simula-
tion. Note that the spikes, synchronized with zero-crossings of
x(t) = v1(t), are all positive, as predicted by (14).

2.4 Solution of the adjoint LPTV system
Noting that

GT (t) =
1
τ

[
1 G21(t)

1 G32(t)
G13(t) 1

]
, (16)

we can expand the adjoint LPTV system ż−GT (t)z(t) = 0 into
individual components, and denoting S′ = 2

τ|x′(t∗)| = 2, we ob-
tain

ż1 =
z1(τ)

τ
+S′

(
δ(t − T

6
)z2(

T
6

)+δ(t − 2
3

T )z2(
2
3

T )
)

,

ż2 =
z2(τ)

τ
+S′

(
δ(t − 1

3
T )z3(

1
3

T )+δ(t − 5
6

T )z3(
5
6

T )
)

,

ż3 =
z3(τ)

τ
+S′

(
δ(t)z1(0)+δ(t − T

2
)z1(

T
2

)
)

.

(17)

The above equations can be solved analytically, using a
waveform-relaxation-like approach, because of the simplicity
of integrating δ functions. For given initial conditions z1(0),
z2(0) and z3(0), the solution is

z1(t) =
(

z1(0)+S′
(

e−
T
6τ z2(

T
6

)u(t− T
6

)+ e−
2T
3τ z2(

2T
3

)u(t− 2T
3

)
))

e
t
τ

z2(t) =
(

z2(0)+S′
(

e−
T
3τ z3(

T
3

)u(t− T
3

)+ e−
5T
6τ z3(

5T
6

)u(t− 5T
6

)
))

e
t
τ ,

z3(t) =
(

z3(0)+S′
(

z1(0)u(t)+ e−
T
2τ z1(

T
2

)u(t− T
2

)
))

e
t
τ

(18)

as can be verified by direct substitution.
Observe that the solution is not completely specified yet,

since the unknown quantities z1(T
2 ), z2(T

6 ), z2( 2T
3 ), z3(T

3 ) and
z3( 5T

6 ) appear on the right hand side of (18). We can, however,
solve for these in three passes through (18). In the first pass, we
obtain

z2(
T
6

) = z2(0)e
T
6τ ,

z3(
T
3

) =
(
z3(0)+ S′z1(0)

)
e

T
3τ ;

(19)

in the second pass, we obtain

z1(
T
2

) =
(
z1(0)+ S′z2(0)

)
e

T
2τ

z2(
2T
3

) =
(
z2(0)+ S′

(
z3(0)+ S′z1(0)

))
e

2T
3τ ;

(20)

and in the third pass, we obtain

z3(
5T
6

) =
(
z3(0)+ S′

(
2z1(0)+ S′z2(0)

))
e

5T
6τ . (21)

Substituting (19), (20) and (21) in (18), we obtain

z1(t) =
(

z1(0)+S′
(

z2(0)u(t − T
6

)+(z2(0)+

S′
[
z3(0)+S′z1(0)

])
u(t − 2T

3
)
))

e
t
τ ,

z2(t) =
(

z2(0)+S′
([

z3(0)+S′z1(0)
]

u(t − T
3

)

+
[
z3(0)+S′

(
2z1(0)+S′z2(0)

)]
u(t − 5T

6
)
))

e
t
τ ,

z3(t) =
(

z3(0)+S′
(

z1(0)u(t)+
[
z1(0)+S′z2(0)

]
u(t − T

2
)
))

e
t
τ ,

(22)

valid over t ∈ [0,T ).

2.5 Monodromy matrix of the adjoint LPTV
system

To obtain the adjoint monodromy matrix, we need to eval-
uate the above at t = T , for initial conditions e1, e2 and e3,
respectively. Doing so, we obtain

MA =


1 + S′3 2S′ S′2

3S′2 1 + S′3 2S′
2S′ S′2 1


e

T
τ . (23)

Recalling that S′ = 2
τ|x′(t∗)| = 2 and that e

T
τ = ϕ6 (where ϕ =

√
5+1
2 � 1.6180, 1

ϕ =
√

5−1
2 ), we have

MA =

[
9 4 4
12 9 4
4 4 1

]
︸ ︷︷ ︸

MAi

ϕ6. (24)

The characteristic polynomial of MAi above is

pA(λ) = λ3 −19λ2 + 19λ−1,

hence the eigenvalues of MAi are

λ1,Ai = ϕ−6, λ2,Ai = 1, λ3,Ai = ϕ6, (25)

resulting in eigenvalues for MA of {1,ϕ6,ϕ12}. (Note that ϕ6 =
9 + 4

√
5 and that ϕ−6 = 9−4

√
5). The eigendecomposition of

MAi is[
9 4 4
12 9 4
4 4 1

]
︸ ︷︷ ︸

MAi

[−ϕ−1 −1 ϕ
ϕ−2 1 ϕ2

1 1 1

]
︸ ︷︷ ︸

V

=

[−ϕ−1 −1 ϕ
ϕ−2 1 ϕ2

1 1 1

]
︸ ︷︷ ︸

V

[
ϕ−6

1
ϕ6

]
︸ ︷︷ ︸

ΛAi

. (26)

Therefore,

MAV = VΛA, with ΛA =


1

ϕ6

ϕ12


 . (27)

4

Proceedings of the 18th International Conference on VLSI Design held jointly with 4th International Conference on Embedded Systems Design (VLSID’05) 

1063-9667/05 $20.00 © 2005 IEEE 



2.6 Analytical PPV and nonlinear phase macro-
model

We are now in a position to obtain an analytical expression
for the perturbation projection vector (PPV) [2, 4] of the ring
oscillator. Note that the eigenvector v1(0), corresponding to the
periodic Floquet multiplier (eigenvalue 1), is the first column of
V , or

V1(0) = ϕ−1[−1,ϕ−1,ϕ]T . (28)

Applying v1(0) as the initial condition to (22), we obtain the
scaled PPV function:

V11(t) = ϕ−1
(
−1+2

(
ϕ−1u(t− T

6
)+

(
ϕ−1 +2ϕ−4

)
u(t− 2T

3
)
))

e
t
τ ,

V21(t) = ϕ−1
(

ϕ−1 +2
(

[ϕ−2]u(t− T
3

)+
[
ϕ+4ϕ−1 −4

]
u(t− 5T

6
)
))

e
t
τ ,

V31(t) = ϕ−1
(

ϕ+2
(
−u(t)+

[−1+2ϕ−1]u(t− T
2

)
))

e
t
τ .

(29)

To obtain a properly scaled PPV, we need to normalize (29)
against ẋs(t). It suffices to calculate KA =V T

1 (0+)ẋs(0+); how-
ever, care is necessary in this calculation, since, from (29),
V31(0) �= V31(0+). Using (10) and (29), we obtain (using
ϕ−2 −2 = −ϕ and E0 = ϕ3−1

ϕ3+1 )

KA = V T
1 (0+)ẋs(0+) = ϕ−1 1+E0

τ
[−1,ϕ−1 ,ϕ−2] · [1,ϕ−2 ,−ϕ−1 ]T

= ϕ−1 1+E0

τ
[−1,ϕ−1 ,−ϕ−2 ] · [1,ϕ−2 ,−ϕ−1 ]T

= ϕ−1 1+E0

τ
(−1+2ϕ−3) = ϕ−1 2ϕ3

τ(1+ϕ3)
(−1+2ϕ−3)

= ϕ−1 2
τ

(
2−ϕ3

1+ϕ3

)
.

(30)

We confirm correctness of KA by also computing it as

KA = V T
1 (0−)ẋs(0−) = ϕ−1 1+E0

τ
[−1,ϕ−1 ,ϕ] · [−ϕ−3 ,ϕ−2 ,−ϕ−1 ]T

= ϕ−1 1+E0

τ
(−1+2ϕ−3)

(31)

and noting that the result is identical to (30).
Applying the scaling constant, we obtain an analytical ex-

pression for the PPV of an ideal three-stage ring oscillator:

PPV(t) = τ
1+ϕ3

4−2ϕ3


 −1+2

[
ϕ−1u(t− T

6 )+
(
ϕ−1 +2ϕ−4

)
u(t − 2T

3 )
]

ϕ−1 +2
[
(ϕ−2)u(t − T

3 )+
(
ϕ+4ϕ−1 −4

)
u(t− 5T

6 )
]

ϕ+2
[−u(t)+

(−1+2ϕ−1
)

u(t− T
2 )

]

e

t
τ . (32)

Observe that the three components of the PPV in (32) are
simply shifts of a single waveform; hence (32) can be re-written
as:

PPV(t) =


PPV3(t − 2T

3 )
PPV3(t − T

3 )
PPV3(t)


 , (33)

where

PPV3(t) = τ
1+ϕ3

4−2ϕ3

(
ϕ+2

[
−u(t)+

(−1+2ϕ−1)u(t− T
2

)
])

e
t
τ

� τ
(

0.4472−0.5528u(t − T
2

)
)

e
t
τ .

(34)

With the analytical expression for the PPV (34) available,
the nonlinear phase macromodel of the ring oscillator can be
expressed as [2, 4]

α̇(t) = PPVT (t + α(t)) ·bp(t), (35)

where α(t) is the timing jitter caused by the vector perturba-
tion bp(t) to the oscillator. The components of bp(t) represent
current injections into the respective nodes of the circuit in Fig-
ure 1.

3 Application of the Analytical Phase
Model

3.1 Feature comparison against linear phase
macromodels
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Figure 4: Plots (from analytical expressions) of the steady state
waveform, its derivative, the PPV and the ISF [7, Equation 31]
of the ideal 3-stage ring oscillator.

Figure 4 plots the PPV (34) for a ring oscillator with τ = 0.1,
together with the ring oscillator’s steady-state waveform, its
derivative, and the impulse-sensitivity function (ISF) from [7,
Equation 31] for comparison. Several noteworthy facts about
the PPV are evident.

The first interesting feature that the PPV makes apparent is
that “jumps” in the PPV component of a given node (e.g., node
1, the solid lines) are not synchronized in any simple manner
with the steady-state waveform or its derivative. Indeed, the
PPV’s discontinuities, which occur at its maxima/minima, take
place when the oscillator’s response is smooth. This indicates
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that any intuition about the phase sensitivity of a ring oscillator
that is based on when nodes change rapidly is erroneous. In-
deed, the correct intuition, derived from the PPV waveform, is
that a node is most sensitive to noise and perturbations when
the prior node in the ring experiences rapid transitions.

Secondly, it should be noted that although the PPV has a
shape similar to the derivative of the steady state, the two are
not identical – both time-shifts and amplitudes are different. In
fact, from the expressions, it can be seen that the two wave-
forms scale in opposite directions with respect to the RC time
constant τ. Hence, intuition about ring oscillator sensitivity that
is based on the amplitude and shape of the tangent vector of the
oscillator’s state-space trajectory is erroneous.

Finally, Figure 4 also depicts the shape of the impulse sen-
sitivity function (ISF) of [7], a concept based on the normalized
tangent vector, that has received wide attention amongst the RF
and mixed-signal design community. As has already been es-
tablished [1–4], the theory behind the tangent-vector interpre-
tation of the ISF is incorrect, hence its use can lead to large
errors in jitter and phase noise prediction. This is underscored
by the dramatically different shape and magnitude of the ISF
compared to the PPV, which is the correct measure of the oscil-
lator’s time-dependent sensitivity to external perturbations.

While the PPV scales linearly with τ, the ISF, being normal-
ized to 1, does not scale similarly. Phase changes from using
the ISF can in fact be of the opposite direction from the cor-
rect one. For example, if a noise impulse is injected into node
1 at time about t = 1

5 T (i.e., 0.2 along the horizontal axis), the
ISF predicts a positive phase change, whereas in fact, the cor-
rect phase change is in the positive direction (and of a different
magnitude), as predicted by the PPV.

4 Conclusion
In this paper, we have presented a nonlinear, completely an-

alytical equation that correctly captures phase errors in 3-stage
ring oscillators. We anticipate that this model will be of signifi-
cant use in guiding ring oscillator design and providing insight
not only into random noise, but also for interference, injection
locking, etc.. We have demonstrated that the equation correctly
captures power-supply interference related jitter in PLLs, as
well as injection locking. Inaccuracies that can result from the
use of earlier models, including time-varying ones, have been
clarified. In addition to its intrinsic scientific value, the model,
easily encapsulated in MATLAB, is well suited for early design
exploration and simulations at the system level.
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[8] F. Kärtner. Analysis of white and f −α noise in oscillators.
International Journal of Circuit Theory and Applications,
18:485–519, 1990.

[9] M. Gardner. Phase-lock techniques. Wiley, New York,
1979.

[10] M. Livio. The Golden Ratio: The Story of PHI, the
World’s Most Astonishing Number. Broadway, 2003.

[11] M.L. Wright. The Golden Mean. Website:
http://www.vashti.net/mceinc/golden.htm.

[12] J. L. Stensby. Phase-locked loops: Theory and
applications. CRC Press, New York, 1997.

6

Proceedings of the 18th International Conference on VLSI Design held jointly with 4th International Conference on Embedded Systems Design (VLSID’05) 

1063-9667/05 $20.00 © 2005 IEEE 


