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Delivering Global DC Convergence
for Large Mixed-Signal Circuits via
Homotopy/Continuation Methods

Jaijeet Roychowdhury, Member, IEEE, and Robert Melville, Member, IEEE

Abstract—Homotopy/continuation methods are attractive for
finding dc operating points of circuits because they offer theo-
retical guarantees of global convergence. Existing homotopy
approaches for circuits are, however, often ineffective for large
mixed-signal applications. In this paper, we describe a robust
homotopy technique that is effective for solving large metal–
oxide–semiconductor (MOS)-based mixed-signal circuits. We
demonstrate how certain common circuit structures involving
turning-point nesting can lead to extreme inefficiency, or failure,
of conventional probability-one homotopy methods. We also find
that such situations can lead to numerical ill-conditioning and
homotopy paths that fold back upon themselves, leading to algo-
rithm failure. Our new homotopy model for MOS devices, dubbed
Arc-tangent Schichman-Hodges (ATANSH), features decoupled
continuation parameters that are instrumental in avoiding these
problems. ATANSH-based homotopy methods in production use
have led to the routine solution of large previously hard-to-solve
industrial circuits, several examples of which are presented.

Index Terms—Circuit simulation, continuation, dc convergence,
homotopy.

I. INTRODUCTION

F INDING DC operating points of nonlinear circuits is a
fundamental task in circuit simulation. The operating point

is essential not only as a first basic check of circuit operation,
but is also a prerequisite for further analyses. Small-signal ac
analysis, noise analysis, and transient analysis [14], [23] all
rely on a prior dc operating point having been calculated;
furthermore, the operating point is also useful for steady-state
and envelope analyses. As a result, the problem of finding dc
operating points has long attracted the attention of computer-
aided design (CAD) researchers and practitioners.

Mathematically speaking, finding a dc operating point in-
volves the numerical solution of a potentially large system of
nonlinear equations. The standard approach for this problem
is the venerable Newton–Raphson (NR) algorithm (e.g., [17]),
which has been the mainstay of virtually all circuit simulators
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available today. While NR has been, by any standard, extremely
successful as a general-purpose algorithm for the circuit dc
operating-point problem, it does not offer any guarantee of
success. Indeed, “dc-convergence failure” (i.e., failure of NR
to find an operating point) is a common problem faced by
circuit designers across a broad swath of circuit types and
functionalities. For certain classes of circuits, such as the large
metal-oxide-semiconductor (MOS) circuits involved in analog-
to-digital converters (ADCs) and digital signal-processor (DSP)
systems, the problem can become acute enough to constitute a
serious bottleneck in the overall process of designing mixed-
signal and analog chips. In current analog and mixed-signal
design methodologies, in fact, it is not uncommon for consid-
erable time and ingenuity to be spent in working around NR
failure. Typical workarounds include splitting larger circuits
into smaller subcircuits whose dc operating points are found
individually, and then combined; “tweaking” circuits (such as
by adding additional resistors); and a variety of “stepping”
methods (see Section II). Usually, the design of each circuit
involves many separate operating-point calculations, as the
circuit is modified and refined. In the event of persistent dc-
convergence problems, it is not uncommon for designers to
ignore regions of the design space, because of the time and
effort needed to obtain convergence manually [3]. For these
reasons, there has been considerable interest in dc algorithms
that work much more reliably than NR for “problem” circuits
in practice, even at the expense of greater computational time.

In this paper, we present novel adaptations and applications
of a class of techniques, namely homotopy (or continuation),
to solve the circuit dc operating-point problem far more ro-
bustly than NR. Because it can be proven to be globally
convergent (i.e., always successful in finding a solution),
homotopy has offered the hope of solving for circuit dc operat-
ing points reliably, and has been applied previously to this prob-
lem (see Section II). However, our experience has shown that
existing homotopy-based approaches often fail to converge
when applied to large MOS circuits, despite their theoretical
guarantees of convergence. Indeed, some existing homotopy
approaches appear to perform significantly worse than straight-
forward NR or stepping methods for large circuits. Some of
these issues have been noted previously (e.g., [2], [27], and
[29]), and have contributed to uncertainty about the useful-
ness of homotopy for circuit-simulation applications.

The approach followed in this paper is: 1) to first investigate
why straightforward applications of homotopy do not deliver,
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in practice, the guaranteed convergence promised by theory;
and then 2) to devise a homotopy-based method that does,
in fact, deliver global convergence robust enough for general-
purpose industrial applications. Towards these ends, we first
identify mechanisms responsible for the failure of “standard”
homotopies, and using the understanding thus gained, devise
new homotopy methods that circumvent failure. We show that
an important failure mechanism is triggered by circuits with
features of nested flip-flop-like structures, which can lead to
computation that grows exponentially with circuit size. This
mechanism exacerbates another failure mechanism, numeri-
cal ill-conditioning, which traditional homotopies suffer from
when applied to large MOS circuits. To alleviate these prob-
lems, we present a new MOS homotopy (named ATANSH) that
has proven robust in practice: It has been successful in find-
ing the dc operating points of virtually all “problem” circuits
it has encountered, and has been used in production within
AT&T/Lucent Microelectronics since 1995. Existing device
models, which represent considerable investment for in-house
simulators, can be incorporated into an ATANSH-homotopy-
based dc-convergence algorithm.

The remainder of the paper is organized as follows. Previous
work on finding dc operating points, including existing homo-
topy methods, is reviewed briefly in Section II. An overview
of the basic principles of arc-length continuation is provided
in Section III. In Section IV, empirical failure mechanisms
of existing homotopy techniques are examined, and a simple
nested flip-flop model developed, to explain the fundamental
mechanism behind these failures. In Section V, the ATANSH
homotopy, developed to circumvent these failures, is described.
Results on large and conventionally difficult-to-solve indus-
trial circuits are presented in Section VI.

II. PREVIOUS WORK

Possibly the best known and most commonly used method
for finding an operating point is the locally quadratically con-
vergent NR algorithm (e.g., [17]), which can have significant
convergence problems if the starting guess is not sufficiently
close. Modifications of NR that improve convergence, such
as damped NR [17], have not been generally successful in
making any significant practical difference for circuit problems.
In practice, ad hoc techniques, such as limiting the Newton
step [14], [23], are widely used to improve convergence, with
moderate success. It should be noted that the locally quadratic
convergence enjoyed by NR makes it valuable as a building
block for other algorithms, such as the pseudotransient and
stepping techniques, and also for the homotopy techniques of
this paper.

The so-called pseudotransient technique [24], [25], often
used when NR fails, consists of performing a transient analysis
while slowly ramping the circuit’s sources from zero to their
dc values. It relies on the dynamic elements of the circuit
to bring the solution smoothly from zero to a steady state at
the dc solution. The approach fails when the dc solution is
not absolutely transient stable (i.e., the differential-equation
solutions do not converge asymptotically to a time-invariant
solution, as in oscillators); even when a stable dc solution exists,

slowly damped transient responses can make the method very
inefficient. A similar approach, but one that does not rely on the
dynamics of the circuit, is stepping. Stepping methods change
a simple circuit with known solution to the one to be solved
for in small increments, while tracking the solution using NR’s
local convergence properties. These methods fail when they
encounter turning points or folds, i.e., points at which small
changes to the circuit result in discontinuous changes to the
solution, as in circuits with hysteresis.

In contrast to the above techniques, homotopy methods (e.g.,
[1] and [22]) can be proven to be globally convergent for broad
classes of problems. The application of homotopy to circuits
is not new. In [11] and [18], Melville and co-workers applied
natural- and artificial-parameter homotopy methods to small
bipolar circuits, and investigated conditions for their global
convergence. Multiparameter homotopy methods have been
investigated [4], but their global convergence properties remain
an open issue. Homotopy methods have also been applied for
discovering more than one (potentially all) operating points of
a nonlinear circuit [6], [8]. More recently, homotopy methods
have been applied by several researchers for solving steady-
state problems in circuits [2], [5], [7], [28]. Finally, initial
results of the present paper were reported in [19].

In spite of a valuable body of existing work, our experience
has been that achieving provable global convergence via ho-
motopy, especially on large practical circuits, is fraught with
surprising problems and failure mechanisms. It is these aspects
that we identify and rectify in this paper.

III. ARCLENGTH-CONTINUATION HOMOTOPY

METHODS: BACKGROUND

In this section, we review the basic concepts of homotopy and
continuation methods; more detailed expositions can be found
in, e.g., [1] and [29]. The principle of continuation is similar
to that of source or GMIN stepping (also known as monotonic
continuation), familiar to users of circuit simulators, such as
SPICE2G6 or SPICE3 [14], [23]. In stepping methods, the
circuit equations are first modified by means of a continuation
parameter. In source stepping, for example, the parameter is a
multiplier for the independent sources; in GMIN stepping, it is
a conductance GMIN from each node to ground. The parameter
is first set to a value at which the circuit becomes easy to
solve or its solution becomes known. The parameter is then
changed back slowly to a value at which the original circuit
is retrieved and simultaneously, the solution of the changing
circuit is followed. The underlying hypothesis is that small
changes in the parameter cause small changes to the circuit
and its solution, hence, the new solution is easy to obtain
using numerical techniques with local convergence properties
(e.g., the NR method). At first sight, it may appear natural
to expect this hypothesis to hold for circuits described by
equations that are smooth (i.e., continuous and differentiable).
However, this hypothesis is not valid for many such circuits,
especially those characterized by positive feedback leading to
multiple operating points. A simple example is the Schmitt
trigger circuit [16], where stepping can fail at critical values of
the continuation parameter because the state of the circuit can
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Fig. 1. Schmitt trigger circuit: the Vout versus Vcc characteristic exhibits
hysteresis, leading to failure of simple stepping schemes.

change abruptly from low to high (and vice versa) for even the
slightest monotonic change in the parameter. The phenomenon
is illustrated in Fig. 1. As the supply voltage Vcc is stepped up-
ward from 0 V, the output of the circuit changes smoothly; until
Vcc ≈ 4.5 V, where there is a large discontinuity in the output
as Vcc is increased. Such points where monotonic increase or
decrease of the continuation parameter leads to abrupt jumps in
the solution are termed turning points or folds. Many practical
feedback systems composed of smoothly-behaved components
exhibit turning points that can cause stepping algorithms to fail.

Homotopy, which also features a continuation parameter
(typically denoted λ) is, in principle, similar to stepping meth-
ods, but with important differences that imbue it with much
more powerful solution properties. The continuation parameter
in homotopy may or may not have a simple physical interpre-
tation. It is in the treatment of turning points that homotopy
or continuation differs from stepping. By “detecting” these
points and changing the direction in which the continuation
parameter is being incremented, it maintains continuity in the
solution path and eventually reaches the desired solution of
the original circuit. For the Schmitt trigger characteristic of
Fig. 1, this corresponds to reducing Vcc after the turning point at
Vcc ≈ 4.5 V is reached, taking care to follow the central section
of the characteristic and not backtrack onto the initial section
already covered. Another turning point is reached at Vcc ≈ 3 V,
after which Vcc is increased again and the lower right section of
the characteristic followed.

Different continuation algorithms achieve the negotiation of
turning points by different means. Parameter switching [15], a
method closely related to stepping, redefines the continuation
parameter when it detects a problem by monotonically chang-
ing the original continuation parameter. It relies on the fact
that some member of the circuit’s solution vector (e.g., a node

voltage) will continue changing in the same direction after the
turning point as before, and starts stepping that member as the
new continuation parameter. Such switching is performed as
many times as required.

Arclength continuation, on the other hand, can negotiate
turning points automatically without their explicit detection. Its
power stems from the fact that it does not treat the continuation
parameter λ differently from the unknowns of the circuit being
solved for, but treats it as another unknown whose next value
on the curve it determines. For the Schmitt trigger circuit of
Fig. 1, the process corresponds to “walking” along the char-
acteristic without paying special heed to curvature and folds
or treating Vcc as special. This is achieved mathematically by
solving a special differential equation, that produces as out-
put a sequence of values of λ (in general, not monotonically
increasing), together with solutions of the circuit at these values
of λ. Furthermore, it can be proved without restrictive assump-
tions that at some point in this sequence, λ = 1 will be reached;
in other words, the solution at that point will be the desired
solution of the original circuit. The remainder of this section
contains an outline of the technique; for further mathematical
details, the reader is referred to [1].

Any nonlinear circuit’s equations can be put in the gen-
eral form

g(x) = 0. (1)

The first step in arclength continuation is to modify this system
to add the continuation parameter λ, which by convention is
allowed values in the interval [0,1]. The new system is denoted

f(x, λ) = 0 (2)

and is constructed so as to reduce to the original system at
λ = 1 by convention, i.e., f(x, 1) ≡ g(x). Furthermore, the
system f(x, 0) = 0 is constructed so as be easy to solve by
traditional methods.

The key innovation of arclength continuation is to transform
(2) into a special differential equation, called the defining
ordinary differential equation (ODE). Note that time does not
play any role in this differential equation. The initial-value
solution of the defining ODE constitutes a solution of (2).
The arclength-continuation algorithm then merely solves the
defining ODE as an initial-value problem, thereby generating
a sequence of points {(xi, λi)} that satisfy (2). If λk = 1 at
any point, then from the definition, (1) is solved by xk, i.e., the
original nonlinear problem is solved.

The sequence {(xi, λi)} is merely the discrete samples of
the continuation track, such as the one shown in Fig. 1, for
the Schmitt trigger. Several qualitatively distinct types of track
are possible, as shown in Fig. 2. The horizontal axis depicts
the progress of λ, which varies between 0 and 1. The vertical
axis represents the solution of the circuit at a given value of
λ. The continuation starts at λ = 0, where the solution of the
circuit is easily obtained. The algorithm continues to generate
the track until λ = 1 is reached, i.e., the dc operating has
been obtained.
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Fig. 2. Different types of track apparently possible in arclength continuation.
All, except the one that leads to eventual solution of g(x) = 0, are either
impossible or of probability 0.

It can be shown [1] that the top four kinds of tracks illustrated
in Fig. 2 cannot occur with arclength continuation. The topmost
track veers off towards a solution of infinity; this is impossible
for well-defined circuits because no-gain conditions on the
circuit’s models dictate that unbounded solutions cannot exist
[11]. The next track spirals towards a limit point; this can also
be shown to be impossible owing to special properties of the
defining ODE solved by arclength continuation. The third track
returns to λ = 0, but not to the same solution that it started
from; this is impossible because of an important additional
condition imposed on the start system f(x, 0) = 0, namely
that its solution is unique. The fourth track returns to the
original solution at λ = 0 but from a different direction, thereby
completing a loop; this can be shown to cause the start system
f(x, 0) = 0 to violate another assumption, that the start system
is structurally stable [9]. The fifth track from the top, depicted
in a bolder dashed line, corresponds to a situation in which
the defining ODE of the homotopy ceases to become well-
defined mathematically. This corresponds to a bifurcation of
the solution curve, as shown. Though technically possible,
this is a probability-0 (i.e., extremely unlikely) event, due to
Sard’s theorem [21]; it can be shown that random pertur-
bations can always replace such a situation with that depicted
by the lowermost track. Yet another possibility, not depicted
in the figure, exists—that the track wanders between λ = 0
and λ = 1 forever without crossing λ = 1. This can again be
shown to be impossible based on the properties of the defining
ODE. The lowermost track illustrates the normal, extremely
likely (or probability-1) case of tracks that reach λ = 1 without
bifurcations.

An important concept in arclength continuation is that of
the tangent vector, which has a simple interpretation: it is the
tangent to the track at any point. Two instances of the tangent
vector are shown on the lowermost track. The algorithm pro-
ceeds by first calculating the tangent vector, from which it then

Fig. 3. Simple homotopy embedding for MOSFETs, based on a λ-weighted
parallel combination of the MOSFET with a resistor.

Fig. 4. Continuation tracks corresponding to failures of straightforward
homotopies for an 1800-MOSFET circuit.

determines the next point on the curve by extrapolation. Turning
points correspond to the λ-component of the tangent vector
becoming 0; two turning points are shown on the lowermost
curve in the figure.

As mentioned, an important requirement for the start system
f(x, 0) = 0 is that it have a unique solution x0 that is easy
to solve for. For a given nonlinear problem g(x), a variety
of different constructions for f can meet this condition. One
construction that can be applied easily to any g is

f(x, λ) ≡ λg(x) + (1 − λ)(x− a) (3)

where a is any constant vector. If g(x) is a nodal-analysis
formulation of the circuit’s equations, the above equation has a
simple circuit interpretation: the current through each existing
device is multiplied by λ and new resistors and current sources
are added from each node to ground, of conductance 1 − λ
and current (1 − λ)ai, respectively. A variant is to consider
only nonlinear elements (e.g., MOS devices) when adding the
conductances, as depicted in Fig. 3. The currents through the
resistor are multiplied by 1 − λ, while the currents through
the MOSFET are multiplied by λ, as indicated by (3).
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IV. FAILURE OF HOMOTOPY METHODS

IN CIRCUIT APPLICATIONS

A. Empirically Observed Failure Mechanisms

Despite the provable convergence properties of arclength
continuation, straightforward homotopies, such as the one de-
picted in Fig. 3, were found not to work well in practice,
especially on large circuits. Fig. 4 depicts the tracks produced
by two different homotopies on a medium-sized circuit with
1800 MOS devices. The horizontal axis depicts the arc length
of the track and the vertical axis the value of λ. The simple
resistive homotopy of Fig. 3 produced the longer track with
many turning points, which never reached λ = 1 but continued
to meander indefinitely. The shorter track was produced by an
experimental homotopy called SSIM [20]. Though consider-
ably more robust than the resistive homotopy for small circuits,
SSIM also failed on a significant number of large circuits. In
this example, failure was manifested by the track’s returning
to 0, instead of going to 1. Similar observations have been
noted by others [10], possibly accounting for the absence of
homotopy-based techniques in commercial simulators.

The ATANSH homotopy, described later in Section V, re-
sulted from an effort to determine why the above homotopies
performed poorly in practice despite theoretical guarantees of
success. During the course of the investigation, two broad
mechanisms of failure were found: 1) ill-conditioned numerics
leading to failure of path following; and 2) homotopy paths
that continued forever (i.e., for impractically long) without
reaching λ = 1.

Numerical ill conditioning manifested itself in the linear
systems being solved by the continuation algorithm to find the
next point on the track. Condition numbers of 1012 or more
were common for large MOS circuits with conventional homo-
topies. Such poor conditioning led to a number of problems:
large inaccuracies in tangent-vector calculation, leading to poor
prediction of Newton starting points, further exacerbated by
inaccurate Newton updates, leading to Newton failure. This
forced the algorithm to try smaller steps along the track, leading
to increased ill conditioning, thus compounding the problem
further. Eventual failure resulted either from arclength steps be-
coming too small or by the track’s looping back upon itself and
returning to zero (as illustrated in Fig. 4). Track looping resulted
from such inaccurate tangent or Newton update calculation
that the algorithm converged on the path already traversed.
Examination of several tracks revealed that ill conditioning was
often associated with the track’s bending back and traversing
close to previous sections.

In another mode of failure (“the long-path phenomenon”),
however, the continuation would proceed with relatively ac-
ceptable matrix conditioning for very long arc lengths without
reaching λ = 1. The algorithm either would not terminate at
all or would eventually fail by the ill-conditioning mechanisms
described above. Again, examination of the track revealed
evidence that the track was tracing a spiral in n dimensions,
thereby leading to very slow progress in λ.

It was found empirically that the two failure modes were
correlated. Long paths were often the result of the track’s
looping or spiraling in n− d space, a problem exacerbated

Fig. 5. Two “nested” flip-flops with their inputs ganged together.

Fig. 6. Characteristics of two flip-flops with the hysteresis region of one
nested within that of the other.

as the problematic segments of the track become less well
separated.

B. Understanding the Failure of Homotopy Methods:
Exponentially Long Homotopy Tracks

In this section, we identify a fundamental cause for the long-
path phenomenon. We show that given a homotopy, the path
length of the solution track is exponential in the number of
nested sets of turning points.

Consider the circuit of Fig. 5, consisting of two Schmitt
trigger circuits with their inputs connected together at x. The
outputs of the triggers are at y1 and y2, respectively. The
input–output characteristics of the Schmitt triggers are shown
in Fig. 6. It is assumed that the two characteristics are not
identical, but that the horizontal interval between the two folds
of one is entirely contained within that of the other, as shown.
The circuit corresponding to the smaller interval (i.e., the thick
trace) is termed the inner flip-flop; the larger one (i.e., the thin
trace) the outer flip-flop; the structure is termed nested. The
nested structure can be generalized to more Schmitt triggers,
with each succeeding characteristic containing all the previous
ones; only two are considered here for simplicity.

For the purpose of exposition, a homotopy technique that
is much simpler than ATANSH is applied to the circuit. The
object of this homotopy is to sweep the input voltage x from
−10 V (corresponding to λ = 0) to 10 V (corresponding to
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Fig. 7. Stages in the progress of the source homotopy for the nested flip-flops.

λ = 1). This is similar to source stepping of the circuit’s input,
but using numerical continuation so that turning points (or
folds) are negotiated smoothly, i.e., without abrupt jumps. It
will be shown shortly that the very fact that jumps are not
allowed, a key factor in the global convergence of homotopy,

is also responsible for making the track exponentially long in
the number of nested flip-flops.

The sequence in Fig. 7 illustrates the progress of the source
homotopy. The progress of the solution track is represented by
the thin and thick traces, which mark the outputs of the outer
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Fig. 8. Trajectory followed by the source homotopy along the characteristic
of the “inner” flip-flop.

and inner flip-flops, respectively. Since the inputs to the two
flip-flops are connected, the x-intercept of the two markers must
be the same—this is emphasized in the figures by the vertical
line connecting the square and the diamond markers.

In subplot #1, the input x is close to −5 V (a point it has
reached by progressing from the start of the continuation at
x = −10 V) and the markers rest on the left edges of the two
characteristic curves, as shown. As the continuation progresses,
x increases and the outputs y1 and y2 change smoothly until
the markers reach the position shown in #2, where the diamond
marker reaches the upper fold of the inner flip-flop. It is not
possible for x to continue increasing without causing an abrupt
jump of the diamond marker to the lower segment of the
inner thick curve. Hence x is forced to decrease; the diamond
marker moves smoothly onto the central section of the blue
curve, but the square marker is forced to move back over part
of the characteristic that it has already covered. x continues
decreasing until the diamond marker reaches the lower fold
of the inner flip-flop, shown in #3; here x starts increasing
again and the diamond marker continues making progress on
its characteristic. The square marker starts moving to the right
again on the upper section of the outer flip-flop’s characteristic;
it is now retracing some parts of this curve for the third time.
x continues increasing until it reaches the position shown
in #4; by now the diamond marker has negotiated both folds of
its characteristic, but the square marker has only just arrived at
its first fold. Once again, x cannot continue increasing because
that would cause a jump, but this time for the square marker.
Hence x decreases, the square marker moves onto the central
section of its characteristic, and the diamond marker traverses
sections of its curve for the second time. Before the square
marker can reach its lower fold, however, the diamond marker
arrives at its lower fold, as shown in #5. The square marker
cannot continue moving towards its lower fold because the
diamond marker would have to jump; hence it backtracks
(x starts increasing) while the diamond marker traverses its
central section completely for the second time, but in the
reverse direction, until it arrives at its upper fold, shown in #6.
At this point, x starts decreasing, the diamond marker moves

Fig. 9. Trajectory followed by the source homotopy along the characteristic
of the “outer” flip-flop.

Fig. 10. Three-dimensional (3-D) view of the trajectory followed by the
source homotopy.

on to the upper section of its curve (still going the “wrong”
way), and the square marker starts heading closer to its lower
fold again, until it reaches it in #7. At this point, the diamond
marker is almost back where it started in #1, having made two
full traverses of its folds. The square marker has, however,
reached its curve’s lower segment. x now increases towards
+5 V, but has to decrease again when the diamond marker
reaches its top fold in #8; it continues decreasing until #9,
where it increases again, having done a third traverse of its
folds. Finally, both square and diamond markers reach the
lower segments of their respective curves, on which they
proceed without further setbacks till they reach their goal of
+10 V, progress towards which is shown in #10.

Figs. 8 and 9 depict the reversals and multiple passes of the
trajectories over the characteristics. It may appear from these
figures and the above arguments that the trajectories, while
continuous, are not smooth, because of the pointed corners
in these figures. The smoothness of the trajectory is easier to
visualize when it is plotted in its totality in three dimensions, as
in Fig. 10. The input x is plotted on one horizontal axis, while
the outputs are plotted on the other two axes. It is apparent now
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Fig. 11. Track of x versus arclength for the ganged nested flip-flop model.

that the pointed corners are an artifice of the projection of the
three-dimensional (3-D) curve onto two dimensions.

The equivalent of the λ versus arclength plots of Section VI is
shown in Fig. 11. The vertical axis represents x, the equivalent
of λ in the ATANSH homotopy; the horizontal axis depicts the
arclength s, which is simply the length traversed on the 3-D
curve (Fig. 10). The many turning points and the qualitative
similarity to the trajectory shown in Fig. 4 are apparent.

The above demonstrates that the inner characteristic needs
to be traversed thrice for a single traversal of the outer char-
acteristic. The argument is easily extended to k nested flip-
flops, for which the total number of traversals of the innermost
characteristic for a single traversal of the outermost is 3k−1.
Hence the number of turning points, as well as the total
arclength, is exponential in the number of flip-flops that are
nested. It is interesting to note that the exponential inefficiency
vanishes if one characteristic is not completely nested within
the other.

It is important to investigate what happens if the flip-flops
are identical (or if they are different but the x-intercepts of their
folds coincide). This case is likely if a subcircuit representing
a flip-flop is instantiated multiple times in the circuit. It can
be shown that such a situation will lead to the failure of the
arclength continuation algorithm because the Jacobian matrix
of the system will lose rank by more than one at the folds,
arriving at a bifurcation (the fifth track from the top in Fig. 2).
While the occurrence of several exactly identical flip-flops is
very natural because of the use of subcircuits (certainly not a
probability-0 event in hierarchical designs), it does result in
several different elements of the circuit being exactly iden-
tical, which, considering the continuum of possibilities, is a
probability-0 event from a mathematical standpoint. It is impor-
tant to note, therefore, that certain mathematically improbable
situations are, in fact, highly likely to arise in practice. It is
for this reason that randomization [1], [18] in probability-1
homotopy techniques is of considerable practical importance.
The use of randomization in arclength continuation addresses
the algorithm-failure problem by introducing random changes

to all elements so that they do not coincide, but in such a manner
as to ensure that the solution reached is not affected by the
random changes.

In the case of identical flip-flops, however, small random
changes can introduce nesting, thereby replacing outright fail-
ure of the algorithm with extreme inefficiency and ill-
conditioned numerics. In practice, this is possibly even worse,
because it takes longer to declare failure and wastes de-
sign time. Randomization in numerical continuation is usually
applied as small perturbations, perhaps because the term
“probability-1” is interpreted to imply that even the slightest
change corrects algorithm failure.

Although the example above uses a simple natural-parameter
homotopy, the same phenomenon also occurs in artificial-
parameter homotopies. Any single-parameter continuation on a
large circuit consisting of subcircuits with independent turning
points is potentially susceptible to the long-path phenomenon.

The identification of the mechanism leading to long paths
immediately suggests a means for circumventing it. Note that
the reason for the looping is that the inputs to the flip-flops are
constrained to be the same; more generally, a single continua-
tion parameter λ is common to all the subcircuits with turning
points. It is apparent in the flip-flop example above that if the
inputs were decoupled and the path of each flip-flop followed
independently, then the long-path problem is circumvented. It
is this key insight, decoupling the continuation parameters of
different turning-point mechanisms, that leads to the two-phase
ATANSH homotopy described in the following section.

V. ATANSH TWO-PHASE MOS HOMOTOPY

In this section, a robust and efficient homotopy that is ef-
fective for large MOS circuits is described. A key feature of
this MOS homotopy model is that it is constructed with two λ
parameters, λ1 and λ2. In Section V-A, the dependence of the
MOS model on these parameters is described; in Section V-B,
the use of a single-λ-based homotopy solver with a coupling
between λ1 and λ2 is presented.

A. Dependence on λ1 and λ2

The ATANSH MOS homotopy model is symmetric and
bulk referenced [13], [26], taking the electrical inputs Vgb =
Vg − Vb, Vsb = Vs − Vb, and Vdb = Vd − Vb. Vs, Vb, Vg, and
Vd represent the voltages at the source, bulk, gate, and drain
nodes, respectively. In addition, the model uses two homotopy
parameters λ1 and λ2 that take values in [0, 1]. λ1 influences
the drain–source driving-point characteristic, whereas λ2 con-
trols the transfer characteristic, i.e., the influence of the gate on
the drain current.

The form of the drain–source current Ids for the ATANSH
homotopy is

Ids =
β

2
[
V ′

gs(Vgb, Vdb, Vsb, λ2, λ1)
]2
h(Vdb − Vsb, λ1). (4)

Equation (4) is a single-piece model, qualitatively resem-
bling the Schichman–Hodges (SH) model in that it contains a
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Fig. 12. ATANSH: Model characteristics as a function of the decoupled continuation parameters λ1 and λ2.

quadratic term in Vgs multiplying a term determined by Vds.
β is functionally identical to the corresponding parameter in
the SH model; V ′

gs(Vgb, Vdb, Vsb, λ2, λ1) is a symmetric bulk-
referenced version of the gate–source voltage that is modulated
mainly by λ2. This latter term has maximum effect at λ2 = 1
and minimum effect at λ2 = 0. The effect of bulk referencing
is to switch V ′

gs smoothly between the gate–source and the
gate–drain voltages, depending on whether the drain is at a
higher or lower potential than the source. h(Vdb − Vsb, λ1)
is a λ1-modulated version of the driving-point characteristic;
the effect of λ1 is to modify the degree of nonlinearity in the
driving-point characteristic.

Specifically, for an n-type MOS device, V ′
gs in (4) is given by

V ′
gs(Vgb, Vdb, Vsb, λ2, λ1) =

lims

(
V ′

gb − mins (V ′
sb, V

′
db)
)

Vgs,nom

(5)

where V ′
gb = (1 − λ2)Vgb,nom + λ2Vgb, V ′

sb = Vsb(0.1(1 −
λ1) + λ1), and V ′

db = Vdb(0.1(1 − λ1) + λ1). Vgb,nom is a
constant representing a nominal value for Vgs with the transistor
on; for example, Vgb,nom = 3 is a reasonable value for most
current technologies. mins(a, b) is any smooth function that

approximates min(a, b), while lims(a) is a smoothed version
of the function

f(a) =
{
a, if a > 0
0, otherwise

.

Example instantiations of these functions are

mins(a, b) = a− lims(a− b)

with

lims(x) = x
1 + tanh(kx)

2
(6)

where k > 0 represents a smoothness parameter.
h(· · ·) in (4) is given by

h(Vdb − Vsb, λ1) =
2
π

tan−1 (Gnom(V ′
db − V ′

sb)) (7)

where Gnom is a constant representing, loosely, a nominal
value of the triode-region drain-source conductance of an MOS
device; for example, Gnom = 5.

An appreciation of how varying λ1 and λ2 affects the
characteristics of the ATANSH model can be gained from
Fig. 12. Each small 3-D plot represents the variation of the
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drain–source current (plotted on the vertical axis) as a function
of the gate–source and drain–source voltages (represented on
the horizontal axes) at fixed values of λ1 and λ2. λ1 and λ2

vary on the large vertical and horizontal axes. The bottom-left
corner depicts the (λ1, λ2) = (0, 0) case and the top right the
(1, 1) case. Moving vertically from bottom to top, λ1 increases
from 0 to 1; likewise, λ2 increases from 0 to 1 horizontally from
left to right.

At (λ1, λ2) = (1, 1) (the top right), the model characteristics
are similar to that of the SH model, exhibiting a quadratic de-
pendence on Vgs and linear and saturation regions as a function
of Vds. At (λ1, λ2) = (0, 0) (the bottom left), it can be seen that
there is no transfer characteristic (varying Vgs does not alter
Ids), and that the driving-point characteristic is much less sharp
than for the original MOSFET. The start system corresponds
to (λ1, λ2) = (0, 0), at which each MOS device becomes a
two-terminal almost-linear resistor; hence, the circuit becomes
easy to solve using the NR method, typically taking fewer
than ten iterations to solve. The effect of varying λ1 and λ2

is also apparent from the figure: λ1 sharpens the driving-point
characteristic without affecting the gain, whereas λ2 ramps the
gain without sharpening the driving-point characteristic.

B. Homotopy Using Two λ Parameters

Practical arc-length continuation algorithms [12] are based
on a single continuation parameter λ, leading to a system of n
equations in n+ 1 variables. Since ATANSH has two contin-
uation parameters, a system of n equations in n+ 2 variables
results. One approach to converting this into a one-parameter
homotopy is to add an extra equation to obtain a system of
n+ 1 equations in n+ 2 variables, to which a conventional
homotopy solver can be applied.

It is necessary for the extra equation to be specified such
that the solution of the original circuit is respected, and that
the conditions for arclength continuation continue to hold. Any
smooth curve relating only λ1 and λ2 and passing through
(λ1, λ2) = (0, 0) and (λ1, λ2) = (1, 1) satisfies the above con-
ditions. An infinite number of such curves is possible; one such
family, arbitrarily chosen for purposes of illustration, is shown
in Fig. 13. This family of curves, parameterized by the real
number m, is given by

φm(λ1, λ2) ≡λ1 − ψm(λ2) = 0

ψm(x) = γ(m) +
1
m2

(1 − x− γ(m))

γ(m) =
1
2

(
1 − m

|m|

√
1 +

4
m2

)
. (8)

As m→ 0, ψm(x) → x; as m increases from 0, ψm(x) is
shown by the upper curves in the figure; likewise, as m de-
creases, ψm(x) is shown by the lower curves. Of interest are
the limiting curves obtained as m→ ±∞, given by the left
and upper boundaries of Fig. 13, and by its lower and right
boundaries, respectively. Corresponding to these limit curves
are the first column and top row of Fig. 12, and the bottom row
and third column, respectively.

Fig. 13. The family of curves φm(λ1, λ2) = 0 given by Equation (8).

While these limit curves are not smooth (violating smooth-
ness requirements for arclength-continuation methods), they
do have the property of decoupling the homotopy into two
independent parts, one controlled by λ1 keeping λ2 fixed, the
other by λ2 keeping λ1 fixed. For the m→ ∞ limit curve, λ1

is ramped first, whereas for the m→ −∞ limit curve, λ2 is
ramped first. In this paper, the lower curve (m→ −∞) is used;
the horizontal and vertical segments of this path are referred to
as phase 1 and phase 2 of the homotopy, respectively. It is to be
noted that while using the m→ −∞ limit leads to a robust and
efficient dc-solution technique, the m→ ∞ curve causes fail-
ures due to inefficiency and numerical problems. An intuitive
understanding of this behavior is provided by Fig. 12, where it
can be seen that the latter path is “smoother” than the former,
which reaches a highly nonlinear characteristic at (λ1, λ2) =
(1, 0) before becoming smoother again at (λ1, λ2) = (1, 1).

For practical design, it is, of course, necessary to obtain
the operating point of the circuit using existing in-house MOS
models that have been characterized to model fabricated de-
vices very accurately [13]. The ATANSH model is not meant
to be a substitute for such models; indeed, it is inadequate for
modeling second-order effects on which circuit performance
is often predicated. The utility of ATANSH lies in that the
operating point obtained with it is very similar to that with more
accurate models—hence, this operating point can be used as a
starting guess to solve the circuit with standard models using,
for example, the NR method, relying on its local-convergence
properties. This approach works very well for most circuits. It
is possible, moreover, to use continuation for smoothly substi-
tuting the standard model for the ATANSH model as well. Each
MOSFET is replaced by a composite weighted combination of
ATANSH and the desired model, with the weights depending on
a third continuation parameter λ3. Using the continuation of λ3

(phase 3), the composite is changed smoothly from ATANSH
at λ3 = 0 to the desired model at λ3 = 1.

From a theoretical standpoint, it is preferable to perform
all three phases (ramping λ2, λ1, and λ3) as part of a single
smooth homotopy, since it restores smoothness conditions that
are violated by the approach outlined in the previous para-
graphs. This can be achieved by the straightforward extension
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TABLE I
ATANSH HOMOTOPY VERSUS CONVENTIONAL ALGORITHMS

of the construction of Fig. 13 to three continuation parameters.
Our experience, however, has been that, in practice, very few
circuits fail as a result of the sharp corners in the limit curves
of Fig. 13 and its three-dimensional extension; only one has,
in fact, been identified, out of a conservative estimate of a
few thousand conventionally hard-to-solve circuits on which
the three-phase technique has been effective. A reason for
preferring the three-phase technique over the single unified ho-
motopy is that implementation and coding become significantly
simpler due to the decoupling of the λ2, λ1, and λ3 homotopies.
Further, a saving in computation is also achieved during the
first and second phases because ATANSH is several times less
expensive to compute than accurate MOS models such as the
BSIM family.

VI. RESULTS

The ATANSH homotopy, described in the previous section,
was in production use within AT&T/Lucent Microelectronics
since 1995. It proved to be so reliable in finding dc operating
points of large circuits that methodology changes resulted
within some design groups [3]. It became possible to relegate
worst case testing of much larger blocks than previously prac-
tical to automated scripts operating without user intervention.
Tedious manual initialization, splitting circuits into smaller
parts and other ad-hoc techniques, often a last resort of frus-
trated designers who required an operating point to proceed
with other analyses, were virtually eliminated. This led to con-
siderable savings in design time; it was not unusual previously
for several days to be spent in obtaining operating points of
“tough” circuits.

The first and second columns of Table I list the names
and types of a sampling of circuits that exhibit problems
with conventional methods. The circuits range from active
filters (dlopata1, heideh), mixed analog-digital circuits involv-
ing sigma-delta ADCs, filters, phase mixers, control and di-
vision circuitry (test9, vf_test, rabb − xare, addas, dctl.t) to
digital blocks, and SRAMs (s1423, goh). All circuits except
s1423 were obtained from designers in AT&T/Lucent Micro-
electronics who were unable to find an operating point using
conventional methods; s1423 is an ISCAS benchmark circuit
which exhibited convergence difficulties with the most accurate
in-house MOS model.

Fig. 14. ATANSH homotopy track (λ versus arclength s) for the circuit
vf_test.

The third column lists the number of MOS devices in the
circuits, which range from small (127 MOSFETs) to relatively
large (8489 MOSFETs) in size. The fourth column lists the
central-processing-unit (CPU) time (on a Sun SPARCstation 2
with 96 MB of memory) required by the ATANSH homotopy
to obtain an operating point of the circuit. The fifth column
lists the CPU time for conventional techniques to announce
failure—this is helpful as a lower bound on the time wasted
by a designer trying to obtain a solution of the circuit.

It can be seen that in most cases, the ATANSH homotopy
took considerably less time to obtain the dc operating point of
the circuit than conventional methods took to give up. It should
be noted, however, that when the NR method does succeed, it
is a factor of two to three faster than the ATANSH homotopy
on average. It must be emphasized, though, that CPU time is
not the most important criterion for designers trying to obtain
an operating point (especially for extracted circuits), so long
as it remains within reasonable limits—far more important is
success, as opposed to failure. For big circuits, most designers
are happy to trade several extra hours of unattended clock time
in return for guaranteed convergence. The impact of homotopy
stems from its ability to deliver on this guarantee for large
“hard” circuits.

Figs. 14–16 provide a graphical representation of the
progress of the ATANSH homotopy for three of the above
circuits. The horizontal axis represents the arclength s of the
n+ 1-dimensional solution curve generated by the homotopy
solver. Roughly speaking, it is a measure of computation time
for a given circuit (note that similar values of s do not corre-
spond to similar computation times across different circuits).
On the vertical axis, the value of the continuation parameter
λ is plotted. This is a measure of the progress the algorithm
has made; success is indicated by the track’s reaching λ = 1.
Each figure has three plots, with “+,” “o,” and “x” markers.
The λ axis represents λ2, λ1, or λ3, depending on the color
of the plot. The “o” markers correspond to the first phase of
ATANSH, where (λ1, λ2) changes from (0,0) to (0,1); in other
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Fig. 15. ATANSH homotopy track (λ versus arclength s) for the circuit test9.

words, λ = λ2 is varied by the continuation algorithm, while λ1

is kept constant at 0. The second phase is depicted by the “x”
plot; λ = λ1 is varied, while λ2 is kept constant at 1. The “+”
plot depicts the final phase, the transition from the ATANSH
model to the desired accurate in-house MOS model controlled
by λ = λ3. The solution of the circuit with the accurate in-
house MOS model is found when the “+” track reaches 1 on
the λ axis.

The three tracks in Fig. 14 are for the vf_test circuit. Both
“o” and “x” tracks (phases 1 and 2) proceed monotonically and
with relatively few points from λ = 0 and λ = 1, indicating
that the circuit is not particularly challenging for the ATANSH
homotopy. The “+” track (phase 3) shows fast progress ini-
tially, indicating very little change from the solution obtained
with the ATANSH model; the progress slows as it approaches
λ3 = 1, indicating that the solution is changing at the last
stages of the substitution of ATANSH by the accurate in-house
model. This is typical of circuits in which some node voltages
depend strongly on the second-order details of the MOS model
being used—for example, near-floating nodes whose voltages
are primarily determined by the gds of MOS devices con-
nected to them.

More interesting behavior is observed in Fig. 15 for the
test9 circuit. The “o” track of the first phase is seen to
be nonmonotonic; it displays two pairs of turning points at
which λ2 changes from increasing to decreasing or vice versa.
Circuits that display such turning points often fail with con-
ventional methods. In contrast, the “x” and “+” tracks are
straightforward.

The tracks of the s1423 circuit are shown in Fig. 16. It can be
seen that the “o” track of the first phase also has a “small” pair
of turning points at λ2 of about 0.5.

It should be noted that the two-parameter ATANSH homo-
topy presented in this paper is eventually a heuristic, though
a remarkably effective one—it has been seen to be extremely
effective for a vast array of practical problems. While the
nested turning-point phenomenon may not be the only cause of
homotopy failure, our results indicate that it is the predominant

Fig. 16. ATANSH homotopy track (λ versus arclength s) for the ISCAS
benchmark circuit s1423.

mechanism, whether or not actual flip-flop structures are
involved. It is emphasized that with artificial-parameter ho-
motopies, nesting of turning points can occur without any
designer-obvious nesting of multistable circuits; abstract nest-
ing can occur between different devices without any need
for real flip-flop-like circuit structures. The key property of
ATANSH is that it decouples homotopy-induced changes of
individual transistors in large circuits from each other, thus mit-
igating the long-path phenomenon examined in Section IV-B.
Intuitively, signal transfer from transistor to transistor is first
reduced by setting λ1 = 0; this makes it easier to solve all parts
of the circuit independently first, by ramping λ2, before the cir-
cuit is “reconnected” by turning on driving-point characteristics
(important for, e.g., active loads) with λ1.

VII. CONCLUSION

A new homotopy-based technique for finding dc oper-
ating points of large-scale MOS circuits has been pre-
sented. A generic means by which traditional homotopies
often fail, characterized by interacting turning points and
exponentially long path lengths, has been identified. The failure
mechanism has been illustrated using nested bistable structures.
A key feature of the new metal–oxide–semiconductor (MOS)
homotopy ATANSH, its two-phase nature, is based on the
insight that decoupling the continuation parameter λ over the
circuit can circumvent the inefficiency.

ATANSH was in production use inside AT&T/Lucent
Microelectronics since 1995. It succeeded in finding operating
points for the overwhelming majority of “difficult” circuits [i.e.,
those that failed NR] that it encountered.
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