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Abstract— We present an efficient method for automatically extracting
unified amplitude/phase macromodels of arbitrary oscillators from their
SPICE-level circuit descriptions. Such comprehensive oscillator macro-
models are necessary for accuracy when speeding up simulation of higher-
level circuits/systems, such as PLLs, in which oscillators are embedded.
Standard MOR techniques for linear time invariant (LTI) and varying
(LTV) systems are not applicable to oscillators on account of their
fundamentally nonlinear phase behavior. By employing a cancellation
technique to deflate out the phase component, we restore the validity
and efficacy of Krylov-subspace-based LTV MOR techniques for macro-
modelling oscillator amplitude responses. The nonlinear phase response
is re-incorporated into the macromodel after the amplitude components
have been reduced. The resulting unified macromodels predict oscillator
waveforms, in the presence of any kind of input or interference, at far
lower computational cost than full SPICE-level simulation, and with far
greater accuracy compared to existing macromodels. We demonstrate the
proposed techniques on LC and ring oscillators, obtaining speedups of
30-120× with no appreciable loss of accuracy, even for small circuits.

I. INTRODUCTION

Oscillators are important building blocks in electronic and optical
systems. For example, they are often used for frequency-translation
of information signals in communication systems. Voltage-controlled
oscillators (VCOs) are key components of phase-locked loops (PLLs),
which are widely used in both digital and analog circuits for clock
generation and recovery, frequency synthesis, etc. Despite their
widespread use, the simulation of oscillators and oscillator-based
systems still poses significant challenges.

Traditional circuit simulators, such as SPICE [1], are far from
ideally suited for simulating oscillators. One key problem is that
transient simulation accumulates numerical phase errors without
limit; furthermore, it is also difficult to extract phase information
from time-domain voltage/current waveforms accurately. To improve
phase accuracy, many timesteps need to be taken in each oscillation
cycle, with transient simulations of high-Q oscillators requiring many
thousands of cycles, hence suffering from great inefficiency.

Since phase responses are of major concern for oscillators, various
specialized and approximate techniques (e.g., [2]–[7]) have been de-
veloped for predicting phase information directly without relying on
transient simulation of the full circuit. Simulation in the phase domain
can result in great speedups. However, phase macromodels do not
capture amplitude variations at the output of the oscillator, which can
be important in many situations. For example, in pico-radio systems,
“radio nodes” must be ultra-low power, leading to novel, very simple
PLL systems where VCO outputs are in essence directly fed to analog
mixers, with no intervening amplitude stabilization or clipping. VCO
amplitude variations in such systems change gains of PLL loops
dynamically, thereby affecting important phenomena such as jitter,
lock/capture behavior, etc. Similar design philosophies are emerging
for a variety of low power systems in wireless communication and
mobile systems.

In [8], a technique was presented to macromodel both phase and
amplitude in oscillators under perturbation. The phase deviation was
calculated via a nonlinear phase equation [9], while the amplitude
macromodel was extracted by full Floquet decomposition [10] of the

linearized, time-varying oscillator. The method applies to any kind
of oscillator, including LC, ring, etc. However, it has a drawback:
Floquet decomposition becomes very computationally expensive, and
can also suffer from numerical errors, as system sizes increase.
An oscillator macromodelling technique that scales gracefully with
circuit size is of great practical interest, given that on-chip RF
oscillators today can have many thousands of nodes.

In this paper, we present a novel method to circumvent this issue.
Instead of performing full Floquet decomposition on the linearized
oscillator equations, we apply the time-varying Padé (TVP) method
[11], to reduce the oscillator system to a smaller LPTV system which
captures the important amplitude-variation components of the original
oscillator accurately. The transfer function of the LPTV oscillator
system is expanded into matrix forms using time- or frequency-
domain methods (such as FDTD or harmonic balance), and then
reduced using Krylov-subspace methods [12]–[14]. A major issue
faced for oscillators, that we solve in this paper, is that the oscillator’s
LPTV system incorporates both phase and amplitude information,
leading to inaccurate amplitude macromodels if the phase component
is not separated out correctly. Moreover, because oscillators are
fundamentally phase-unstable [9] and sustained small perturbations
can change the phase of the oscillator unboundedly, additional issues
are faced if the phase component is not dealt with specially.

Instead of using full Floquet decomposition as in [8], we use a
novel alternative technique in this paper, based on canceling out
components of the input that excite phase responses, that enables
application of Krylov-subspace methods to oscillators. The perturba-
tion input to the oscillator is decomposed into two parts with one
contributing to phase and the other to amplitude. We change the
input vector of the LPTV system to remove the input corresponding
to phase and apply Krylov-subspace methods to reduce this modified
system. The resulting reduced system contains no phase information
since the pole corresponding to phase has a very small residual, thus
having been effectively eliminated by the Krylov reduction process.

Once the reduced amplitude macromodel, without any phase infor-
mation, has been obtained, we re-incorporate the phase component
by coupling the amplitude macromodel with the nonlinear, scalar
phase macromodel presented in [9]. The resulting unified oscillator
macromodel is able to predict both phase and amplitude variations
accurately at far lower computational cost than that of full SPICE-
level simulation. Compared to the method described in [8], the key
difference is that the method in [8] requires full decomposition of the
whole LPTV system, while our method relies on Krylov-subspace
methods, with far lower computational cost. Hence, our method
scales well to large oscillator circuits. The generated macromodels
can be easily encapsulated into other circuit simulation tools (e.g.,
MATLAB/Simulink, Verilog-A, etc.) to predict the comprehensive
behavior of oscillators in a variety of system-level situations.

We verify our macromodelling technique on ring and LC oscil-
lators. Comparing simulation results between our macromodels and
SPICE-level full circuit simulation, we show that our macromodels
are able to reproduce the waveforms of oscillators under various
perturbations accurately, while obtaining impressive speedups. Even
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with the relatively small oscillators we have used for testing purposes,
we obtain speedups in the range of 1-2 orders of magnitude; we
expect much greater speedups for larger circuits with complex device
models, which we are currently in the process of incorporating into
our simulation infrastructure.

The remainder of the paper is organized as follows. In Section II,
we show that linear perturbation analysis is not valid for oscilla-
tors. In Section III, we review nonlinear perturbation analysis for
oscillators and the nonlinear oscillator macromodel we employ in
this work. In Section IV, we summarize the time-varying Padé
technique for reducing LPTV systems. In Section V, we describe our
phase-component deflation technique for macromodelling amplitude
variations of oscillators. In Section VI, we present simulation results
on ring and LC oscillators.

II. LINEAR PERTURBATION ANALYSIS IS NOT SUITABLE FOR

OSCILLATORS

The traditional method to analyze perturbed nonlinear system is
to linearize the nonlinear equations on its unperturbed orbit. In this
section, we will show that this method is not suitable for oscillators.

A general oscillator under perturbations can be described by

ẋ+ f (x) = Bb(t), (1)

where b(t) is perturbation signal applied to the free running oscillator.
Since perturbation signal has small amplitude, we can linearize (1)
on its unperturbed steady-state orbit and get a linearized periodic
time-varying system

ż(t)+G(t)z(t) ≈ Bb(t), (2)

where G(t) = ∂ f (x)
∂x |xs(t) is the linearized system on oscillator’s

steady-state orbit xs(t).
According to Floquet theory [10], the state transition matrix of the

homogeneous part of (2) can be given by

Φ(t,τ) = U(t)eD(t−τ)V T (τ) (3)

where U(t) = [u1(t),u2(t), ...,un(t)] and V (t) = [v1(t),v2(t), ...,vn(t)]
are T -periodic nonsingular matrix, satisfying biorthogonality condi-
tions vT

i (t)u j(t) = δi j , and D = diag[µ1, ...,µn], where µi are Floquet
exponents. The particular solution of (2) under perturbation b(t) is
given by

z(t) =
n

∑
i=1

ui(t)
∫ t

0
eµi(t−τ)vT

i (τ)Bb(τ)dτ. (4)

For an oscillator system, one of the Floquet exponents must be
0 [9]. Without loss of generality, we assume µ1 = 0, and eµ1(t−τ)

term vanishes. Thus, we can always choose a perturbation b(t) to
satisfy vT

1 (t)Bb(t) has nonzero average value, then z(t) will grow
unboundedly on t even though b(t) have very small amplitude. This
contradicts the assumption that z(t) is small variation, thus the linear
perturbation analysis is inconsistent.

III. PREVIOUS WOEK: NONLINEAR OSCILLATOR MACROMODEL

In [9], authors show that the Floquet exponent µ1 = 0 in (4)
is corresponding to the oscillator’s phase deviation, which means
the oscillator’s phase deviation grows unboundedly even though the
perturbation signal is very small. Due to oscillator’s neutral phase
stability, linearizing the oscillator on its steady state is meaningless
since a small perturbation will change the phase, or the steady-state
orbit of the oscillator dramatically.

An idea to overcome this limitation is to linearize the oscillator
circuits over its perturbed time-shifted orbit. Based on this idea, in [8],
a novel approach is presented to construct the oscillator macromodels.

The macromodel produced is a combination of a scalar nonlinear
differential equation [9] that solves the phase deviation and a reduced
linear time-varying system for predicting amplitude variation, which
is computationally simpler than the original oscillator system. Here,
we summarize this method.

A. Nonlinear Oscillator Phase Macromodel

According to [9], the solution of the oscillator under perturbation
can be expressed as

x(t) = xs(t +α(t))+ y(t), (5)

where x(t) is the orbit of the oscillator under perturbation, xs(t) is
the unperturbed steady-state orbit of the oscillator, α(t) is the phase
deviation, and y(t) is the amplitude variation. If we can calculate the
phase deviation α(t) and amplitude variation y(t), we can rebuild the
waveforms of the oscillator under perturbations using (5).

The phase deviation α(t) is governed by the nonlinear differential
equation [9]

α̇(t) = vT
1 (t +α(t)) ·Bb(t), (6)

where v1(t) is the perturbation projection vector (PPV) that cor-
responds to oscillator’s phase sensitivity to perturbations, and b(t)
is the perturbation applied to the oscillator. The PPV has periodic
waveforms that have the same period as the oscillator. Various
methods [9], [15]–[17], both in time domain and frequency domain,
have been presented for calculating the PPV from the oscillator circuit
equations. When the PPV is available, the phase deviation α(t)
can be efficiently calculated by solving this simple one-dimension
differential equation.

B. Amplitude Macromodel

In [8], a method is presented to to construct the amplitude
macromodel of the oscillator. the oscillator is first linearized on its
perturbed time-shifted orbit

ȯ(t) ≈ −∂ f
∂x

|xs(t+α(t))o(t)+Bb(t)

= A(xs(t +α(t)))o(t)+Bb(t), (7)

where xs(t) is oscillator’s steady-state orbit, o(t) is small variations
due to perturbation b(t) and α(t) is phase deviation. Since A(xs(t +
α(t))) is not periodic, we introduce a new variable t̂ = t +α(t) and
define ô(t̂) = o(t) and b̂(t̂) = b(t). After dropping a quadratic term,
we can obtain a linear periodic time-varying system

˙̂o(t̂) = A(xs(t̂))ô(t̂)+Bb̂(t̂). (8)

Applying Floquet decomposition to this LPTV system, the solution
of this system can be expressed as

ô(t̂) =
n

∑
i=1

ui(t̂)
∫ t̂

0
exp(µi(t̂ − τ))vT

i (τ)Bb̂(τ)dτ. (9)

where u1 = 0 is corresponding to oscillator’s phase deviation, we need
to drop it. The resulting system can be reduced by dropping some
less important Floquet exponents. The limitation of this method is
that Floquet decomposition is very slow and numerically unstable
when the system size is large.

IV. REDUCED-ORDER MODELING FOR LPTV SYSTEM

In [11], the time-varying Padé (TVP) method is presented to reduce
the LPTV system.

A nonlinear system can be expressed as a differential-algebraic
equation (DAE)

∂q(x(t))
∂ t

+ f (x(t)) = bL(t)+Bb(t)



3

y(t) = dT x(t), (10)

where bL(t) is a large signal, which determines the system’s steady-
state orbit, and Bb(t) is small perturbations applied to the system. B
and d are input/output vectors. For small perturbation analysis, we
linearize this system over the orbit generated by the large signal.
The time-varying Padé (TVP) method can be applied to reduce this
linearized time-varying system. Here, we summarize this method.

The transfer function of the linearized system can be written as

H(t1,s) = dT (
D

dt1
[]+ sC(t1)+G(t1))−1[B], (11)

where D
dt1

[] is a differential operator [11]. Assume C(t1) and G(t1)
to be periodic with angular frequency w0, and define W (t1,s) to be
the operator-inverse in (11), we have

W (t1,s) = (
D

dt1
[]+ sC(t1)+G(t1))−1[B] (12)

⇒ (
D

dt1
[]+ sC(t1)+G(t1))W (t1,s) = B. (13)

Assume W (t1,s) is also a periodic function, we can express (13) in
frequency domain

[sCFD + JFD]�WFD = �BFD, (14)

where
JFD = (GFD +ΩCFD), (15)

CFD =

⎛
⎜⎜⎜⎜⎜⎜⎝

...
...

...
. . .C0 C−1 C−2 . . .
. . .C1 C0 C−1 . . .
. . .C2 C1 C0 . . .

...
...

...

⎞
⎟⎟⎟⎟⎟⎟⎠

(16)

GFD =

⎛
⎜⎜⎜⎜⎜⎜⎝

...
...

...
. . .G0 G−1 G−2 . . .
. . .G1 C0 G−1 . . .
. . .G2 G1 G0 . . .

...
...

...

⎞
⎟⎟⎟⎟⎟⎟⎠

(17)

Ω = jω0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
−2I

−I
0I

I
iI

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(18)

�BFD = [...,0,0,BT ,0,0, ...]T . (19)

Then the transfer function in frequency domain can be written as

�HFD(s) = DT [sCFD + JFD]−1�BFD, (20)

where

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
d

d
d

d
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (21)

We can use any Krylov-subspace method to reduce (20) and obtain

a smaller LPTV system.

�Hq(s) = LT
q [Iq×q + sTq]−1Rq, (22)

and the reduced system equation is

Tq ˙̃x(t)+ x̃(t) = Rqu(t), (23)

where x̃(t) is a vector of size q, which is much smaller than that of
the original system.

V. REDUCING OSCILLATOR SYSTEM USING TVP METHOD

Reduce-order modeling of oscillators is slightly different than that
of other systems, such as mixers and converters. Oscillator systems
are neutral stable, traditional TVP methods may not be able to
produce stable reduced system. In this section, we present our method
for modeling amplitude variations of oscillators.

A. Traditional TVP Method Is Not Suitable For Oscillators

TVP methods [11] are very useful for reducing LPTV systems,
such as mixers and convertors, etc. However, the method is not
suitable for oscillators, as oscillator systems are neutral stable.
We have shown in Section II that the Floquet decomposition of
oscillator system has a Floquet exponent of 0, which contributes
to phase response. If we expand the oscillator transfer function to
frequency domain using the method described in Section IV, the
resulting frequency domain transfer function (20) has many poles
on the imaginary axis, with interval j2πω0. Figure 1 depicts the
pole distribution of an LC oscillator. In this figure, the oscillator
has poles on ± jnω0, some poles even have positive real part due
to numerical integration error. Performing MOR methods on such a
system will produce unstable reduced system, especially when the
expansion point is close to the imaginary axis. Moreover, since the
phase and amplitude information are mixed together in the oscillator
LPTV system, the reduced system is not able to correctly represent
the amplitude variation of the oscillator, even though we can obtain
a stable reduced system using the TVP method.
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Fig. 1. Pole distribution of an LC oscillator.

B. Oscillation Pole Cancellation Method

The instability of the reduced system is due to oscillation poles
in (20), or the Floquet exponent µ1 = 0 in the LPTV system (2). In
[8], Floquet decomposition is used to eliminate the Floquet exponent
µ1 = 0; however, this method is expensive and numerically unstable
for large systems. In this work, we present a novel method to cancel
the effect of µ1 without performing the Floquet decomposition.
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According to [8], we can obtain amplitude macromodel of the
oscillator by linearizing the oscillator over its perturbed time-shifted
orbit xs(t̂), where t̂ = t +α(t) and α(t) is the phase deviation due to
perturbation. The resulting LPTV system is

˙̂o(t̂) = A(xs(t̂))ô(t̂)+Bb̂(t̂). (24)

The solution of above system can be expressed as

ô(t̂) =
n

∑
i=1

ui(t̂)
∫ t̂

0
exp(µi(t̂ − τ))vT

i (τ)Bb̂(τ)dτ, (25)

where µi are Floquet exponents, µ1 has a value of 0 [9], ui(t) and
vi(t) are T -periodic vectors, satisfying biorthogonality conditions
vT

i (t)u j(t) = δi j . In [8], the µ1 term is dropped after the Floquet
decomposition since it contributes to phase deviation.

To avoid the Floquet decomposition, we cannot use this method to
eliminate the µ1 term; instead, we eliminate the input that contributes
to phase deviation. From (25), we know that the input for the µ1
term is vT

1 (τ)Bb(τ). Since ui(t) and vi(t) are biorthogonal, we can
eliminate this input using the projection method. We define a new
input vector

B̃ = B− v1(τ)Bu1(τ). (26)

Using this new input vector, the input to the µ1 term is

vT
1 (τ)B̃b(τ) = vT

1 (τ)Bb(τ)− v1(τ)v1(τ)Bu1(τ)b(τ)

= vT
1 (τ)Bb(τ)− v1(τ)Bv1(τ)u1(τ)b(τ)

= vT
1 (τ)Bb(τ)− vT

1 (τ)Bb(τ) = 0,

(27)

and inputs for other µis (i > 1) are

vT
i (τ)B̃b(τ) = vT

i (τ)Bb(τ)− v1(τ)vi(τ)Bu1(τ)b(τ)

= vT
i (τ)Bb(τ)− vi(τ)Bvi(τ)u1(τ)b(τ)

= vT
i (τ)Bb(τ)−0 = vT

i (τ)Bb(τ).

(28)

Hence, the new input vector B̃ only eliminates the effect of the
Floquet exponent µ1 = 0, but preserves inputs of all other Floquet
exponents in the system. We can replace the original input vector B
with B̃ without changing the amplitude response of the LPTV system.
(24) can be rewritten as

˙̂o(t̂) = A(xs(t̂))ô(t̂)+ B̃b̂(t̂). (29)

(29) is stable, because we have minimized the residuals of oscilla-
tion poles in (20), even though we do not really eliminate them. We
can apply the TVP method described in [11] to reduce this modified
system and obtain a stable reduced system for amplitude variations.

C. Detailed Procedure Of Oscillator MOR

In this subsection, we summarize the procedures for constructing
and using the oscillator macromodel.

1) Constructing Oscillator Macromodel: Following procedure will
construct the oscillator macromodel.

1) Obtain oscillator steady-state xs(t) using time domain or fre-
quency domain methods.

2) Calculate u1(t) = ẋs(t).
3) Calculate the PPV v1(t) using numerical methods [9], [15]–

[17].
4) Construct new input vector B̃ = B− v1(t)T Bu1(t), where B̃ is

a T -periodic vector.
5) Perform the TVP method on the new LPTV system

ȯ(t) = A(xs(t))o(t)+ B̃b(t) (30)

and obtain the reduced system

Tq ˙̃o(t) = õ(t)+Rqb(t), (31)

where õ(t) has size of q, which has size smaller than that of
the original system.

2) Using Oscillator Macromodel: To reproduce oscillator wave-
forms under perturbations using our macromodel, we need to inte-
grate both the phase and amplitude equations. The phase equation (6)
is solved on time t; however, the amplitude equation (29) is integrated
on the shifted time t̂ = t +α(t). Below is the pseudocode to rebuild
the oscillator’ waveform using our macromodel.

1 t=0; α(0)=0; i=0
2 t=t+∆t; i=i+1
3 Calculate α(i) by solving (6) on t
4 t̂ = t+α(i)
5 Calculate amplitude variation o(t)=ô(t̂) by solving (31) on t̂
6 Rebuild oscillator’s waveforms using (5)
7 goto 2

VI. NUMERICAL RESULTS

In this section, we evaluate the technique presented above using
ring and LC oscillators. All simulations were performed using
MATLAB on an Intel-architecture machine, running Linux. We
constructed oscillator macromodels using the method described in
Section V, simulated oscillator waveforms using the constructed
macromodels, and compared the results with SPICE-like simulations
of the full oscillator circuits in the same MATLAB environment.
Experiment results show that our macromodels are able to capture the
amplitude variations of oscillators accurately. The rebuilt waveforms
using our macromodel match the results from full SPICE-level
simulation perfectly, with about 30–120 times speedups.

A. 3-stage Single-Ended Ring Oscillator

Our first example is a 3-stage single-ended ring oscillator, as shown
in Figure 2. This oscillator has a system size of 8 and an oscillation
frequency of f0 = 1GHz.

Vdd

1
2 3 4 5 6

Perturbation

Fig. 2. A 3-stage single-ended ring oscillator.

We first calculate the steady-state of the oscillator using the
harmonic balance method, and extract the PPV of the oscillator using
the Monodromy method [9], [15]. We then linearize the oscillator on
its steady-state orbit and reduce the resulting LPTV system using
the method we presented in Section V. Since we are interested in
perturbations whose frequency is close to the oscillator’s oscillation
frequency, we choose the Arnoldi expansion point s0 = 2π f0, where
f0 is the oscillator’s free-running frequency. The original nonlinear
system has the size of 8, using our method, we can reduce the system
size to 3. The resulting small LPTV system can be simulated much
faster than the original nonlinear system.
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To verify that our macromodel can capture the oscillator ampli-
tude variations correctly, we apply a periodic perturbation current
b(t) = 0.0001sin(ω1t) to the node 2 of the oscillator, as shown in
Figure 2. We apply different perturbation frequencies ω1, rebuild
the oscillator’s output voltage on node 2 using our macromodel and
compare with SPICE-level full simulation. The simulation results are
shown in Figure 3 and Figure 4. Our macromodel is able to match
the full simulation perfectly, with great speedups. The SPICE-level
full simulation takes about 6 minutes for a simulation time of 100
cycles; however, it takes only 4 seconds to simulate the same number
of cycles using our macromodel. This gives us approximately 120
times speedup on this small oscillator circuit. For larger oscillator
circuits with more nonlinear components and complex device model,
we expect more significant speedups.
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(a) Full simulation
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(b) Macromodel

Fig. 3. Output waveform of the 3 stage ring oscillator under perturbation
b(t) = 0.0001sin(1.04ω0t).

B. 4GHz Colpitts LC Oscillator

Our second test circuit is a 4GHz Colpitts LC oscillator. The circuit
and parameters of this oscillator are shown in Figure 5. The oscillator
has a system size of 6 and a free-running frequency of f0 = 4GHz.

We apply similar method as we describe in the ring oscillator case
to calculate the PPV and construct the amplitude macromodel. We
evaluate our macromodel with a current perturbation injected into
the node 3 of the oscillator, as shown in Figure 5. The perturbation
current has an amplitude of 0.1mA. We simulate the oscillator’s
output voltage on the node 3 under different perturbation frequencies
using our macromodel and compare with SPICE-level full simulation.
The simulation results are shown in Figure 6 and Figure 7. Our
macromodel is able to match the full simulation with acceptable
accuracy. In this case, we obtain about 30 times speedup. This
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(a) Full simulation
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(b) Macromodel

Fig. 4. Output waveform of the 3 stage ring oscillator under perturbation
b(t) = 0.0001sin(1.06ω0t).

Rp=50

Cp=1p

Rb=22k

0.4p L1=2.1n

Cb=1.5p
Re=100 C2=2.3p

C1=1p

Cm=0.6p

1

2

3

4

5

Rl=200

noise

Fig. 5. A 4GHz Colpitts LC oscillator.

speedup is not as good as the ring oscillator case, because this LC
oscillator has only one nonlinear component, hence, its full SPICE-
level simulation is very fast.

VII. CONCLUSIONS

We have presented a novel technique to extract simple amplitude
macromodels from SPICE-level circuit descriptions of any oscillator
circuit. Combining it with the oscillator phase macromodel presented
in [9], we can rebuild the output waveforms of any perturbed oscil-
lator. We have tested our macromodel using LC and ring oscillators
and provided detailed comparisons against full SPICE-level circuit
simulation. Numerical results show our macromodels are able to
predict oscillator amplitude and phase variations well in the presence
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(b) Macromodel

Fig. 6. Output waveform of the Colpitts LC oscillator under perturbation
b(t) = 0.0001sin(1.02ω0t).

of perturbations, with great speedups over SPICE-level simulation.
Currently, we are working on validating our technique on larger
circuits, for which we expect speedups of 3-4 orders of magnitude.
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