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Abstract—In this paper, we present a simple but rigorous nonlinear anal-
ysis for understanding and predicting steady-state operation and injection
locking in two-port nonlinear negative-resistance oscillators (such as the
Colpitts, Pierce, etc., topologies commonly used in RFICs). Key advances
of our approach include the use of vector-based nonlinear feedback anal-
ysis and treatment of amplitude and frequency components in a coupled
way. We develop rigorous and insightful graphical approaches for output
voltage estimation and injection lock range prediction. We validate our
analytical approach against transient and harmonic balance simulations.

I. INTRODUCTION

Oscillators are building blocks in analog, RF and mixed-signal sys-
tems. When perturbed by external signals, they often exhibit inter-
esting and practically useful behaviors such as injection locking [1].
Injection locking is a nonlinear phenomena in which an oscillator
changes its natural frequency to match the frequency of an externally
injected signal. This phenomenon has attracted increasing interest for
design purposes — for example, it has been used in PLL design to
achieve fast lock without sacrificing other performance metrics [4].
It has also been exploited in frequency dividers [14, 17], quadrature
oscillators [5], etc.. Therefore, understanding the phenomenon and
predicting it correctly is an important problem.

A common approach for predicting injection locking is to use
SPICE-level transient simulation. However, computationally, transient
simulation can be extremely inaccurate and inefficient for oscillators
(see, e.g., [8] for details). To alleviate transient simulation issues for
oscillators, fast simulation techniques (e.g., [3,7,10]) have been devel-
oped and used for injection locking/pulling prediction. These meth-
ods, which are based on linearization, can become inaccurate as injec-
tion strength grows. From a designer’s point of view, simulation tech-
niques, though very useful for design, tend to provide relatively little
insight into how oscillators work and why injection locking happens.
Intuitive analytical design techniques are therefore very desirable as
preliminary design aids. Over the past several decades, a variety of
such techniques have been proposed. Classical techniques such as the
well-known Adler [1] and Kurokawa methods [6], and recent follow-
ups such as [15], typically rely heavily on linearized analysis. Al-
though such approaches can provide useful insight and intuition into
aspects of the phenomenon, they do not directly address the crucial
rôle of circuit nonlinearities in injection locking. As is well known
[14, 17, 18], nonlinearities are crucial for stable oscillator operation as
well as for enabling injection locking phenomena in the first place.

Recent work [14, 17] analyzing injection locking relies on using
polynomial approximations of circuit nonlinearities for 1-port oscilla-
tors. Such nonlinear-centric analyses are much more accurate than
prior linear ones; however, the use of polynomial approximations
limits accuracy, while also leading to long and complex deriva-
tions/formulae, which detract from intuition and insight. To allevi-
ate these issues, a rigorous yet intuitive nonlinear feedback analysis
technique, using only simple circuit and mathematical concepts, was
proposed in [18] — this technique also provides graphical insights into
how nonlinearity plays a role in injection locking. However, the tech-
nique applies only to very simple nonlinear negative resistance oscil-
lators, i.e., where the negative resistance is a one-port (two-terminal)
element. This limits its practical applicability to only, e.g., tunnel-
diode oscillators, which are not in common use today, especially in
IC applications. Most integrated oscillators used today involve bipo-
lar transistors or MOS devices, which are 2-port (i.e., 3 or 4 terminal)
nonlinear elements.

In this paper, we generalize the technique of [18] to apply to arbi-
trary two-port nonlinear feedback oscillators. We use the new approach

to rigorously analyse the mechanisms behind stable oscillation and in-
jection locking in the Colpitts oscillator. A key innovation of our
technique is the use of vector nonlinear feedback analysis. Unlike pre-
vious analyses (e.g., [9,13,18]) which introduce simplifications such as
treating amplitude and frequency components separately, our approach
does not ignore coupling phenomena between amplitude and frequency
components; indeed, coupling effects are crucially responsible for fre-
quency deviations from idealized oscillation in reality. Our analysis
also leads to a new rigorous graphical injection locking prediction pro-
cedure which does not rely on approximations (such as polynomial
nonlinearities, or the assumption that the oscillator amplitude remains
roughly constant due to saturation effects [18] — such approximations
are not valid for Colpitts oscillators, as we show). We emphasize that
the vector nonlinear feedback analysis developed here is general and
can be applied to other two-port nonlinearity based LC oscillators, such
as Hartley, Pierce, etc...

The remainder of the paper is organized as follows. In Section II,
we develop our vector nonlinear feedback analysis procedure and use
it to predict unforced stable oscillations in a Colpitts oscillator. In
Section III, we extend this analysis to predict injection locking via a
simple but rigorous graphical technique. In Section IV, we present
results from applying our approach, compare them against previous
approaches, and validate them using simulation.

II. TWO-PORT NONLINEAR FEEDBACK ANALYSIS FOR
OSCILLATION AMPLITUDE AND FREQUENCY

Traditional analysis of oscillator operation is based on a linear feed-
back loop (e.g., [16]), despite that fact that stable oscillation depends
crucially on nonlinearity. This linear feedback analysis in the Laplace
domain leads to the relation:

Y (s) =
A(s)

1−A(s)β(s)
X(s) (1)

where X(s) and Y (s) are the input and output, respectively; A(s) is the
transfer function of an (open-loop) amplifier and β(s) is a feedback
factor. The so-called Barkhausen criterion (i.e., A(s)β(s) = 1) is then
used to estimate whether the circuit is able to oscillate. Although this
simple criterion provides insights and has long been used in oscillator
design, it also has its shortcomings [18]. It provides little information
(or even wrong insights) into important issues such as the amplitude
of oscillation, the effects of perturbations during oscillation (e.g., in-
jection locking), etc..

Our nonlinear feedback analysis starts from recasting an oscillator
as two parts: a nonlinear element and a feedback network. Figure 1(a)
shows a simple Colpitts oscillator with all parasitics ignored or lumped
within the LC tank (the oscillator’s parameters are chosen, in this case,
to result in a frequency of roughly 1GHz). We re-interpret the circuit
of Figure 1(a) as (crucially) the interconnection of 2 two-port blocks.
The first is the RLC tank circuit (including Vdd) as shown by the upper
box. The two ports are (v1, i1) and (v2, i2). For this block, we consider
the currents [i1, i2]T to be the “inputs” and the voltages [v1,v2]T to be
the “outputs”, as depicted in the upper block of Figure 1(b). The lower
box of Figure 1(a) encapsulates the transistor as well as the emitter
degeneration resistor Re, as a two-port nonlinear block. For this block,
the “input” is [v1,v2]T and the output is [i1, i2]T , as shown in the lower
block of Figure 1(b). The choice of input and output above is based on
the fact that transistors are voltage controlled. Ebers-Moll model [16]
of BJT is used in the analysis. Since the BJT works in the cut-off and
active regions (CB diode is reverse-biased), [i1, i2]T are independent of
v1, thus simplifying the analysis.
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Fig. 1. Block diagram .

Next, we cut the feedback loop on v2, as shown in Figure 1(c) (this
cut is only conceptual; it not a physical cut [18], since the currents are
connected but the voltages are not). We assume that v2 is sinusoidal
with a DC component, i.e., of the form (this assumption will be justi-
fied later)

v2(t) = A0 + A1sin(ω0t). (2)

Then at the output of the 2-port transistor block, i1 and i2 are given by
(as mentioned early, we ignore the CB diode here)

i1 = d(−v2),

i2 =
v2

Re
− i1

α
=

v2

Re
− d(−v2)

α
.

(3)

Here, the nonlinear function d(.) is an exponential v-i relationship for
the base-emitter diode within the BJT [16], α is common-base cur-
rent gain. Since v2 is periodic and the BJT model is memoryless, i1
(and i2) are also periodic with the same period. Therefore, they can be
expressed by Fourier series [12]. We are mainly interested in the fun-
damental harmonics of [i1, i2]T since higher harmonics will be filtered
out by the RLC tank block, as shown later. We denote the fundamental
harmonics of i1 and i2 as I11(A0,A1) and I21(A0,A1), respectively. i1
and i2 will also contain significant DC and higher harmonic content
due to the strongly nonlinear characteristics of the BJT. In terms of
phase characteristics, a memoryless nonlinear element can only con-
tributes a phase shift of either 0 or π.

Now, consider the response of the RLC tank on the input [i1, i2]T .
The input-output relations of the two-port RLC network can be easily
derived from:

[
i1
i2

]
=

[
1
sL + GL + sC1 −sC1
−sC1 s(C1 +C2)

][
v1−Vdd
v2−Vdd

]
. (4)

We denote the above equation as I = GV . The transfer function V (s)
I(s) is

the inverse of G (i.e., V = G−1I), denoted as Z:

Z =

[
Z11 Z21
Z21 Z22

]
. (5)

Z12 = Z21 due to reciprocity of the linear, time-invariant block [11].
Since we only interested in v2, we need only consider the amplitude
and phase characteristics of Z21 and Z22. To obtain an intuitive appre-
ciation of these quantities, we plot the amplitude and phase character-
istics of Z21 and Z22 in Figure 2 and Figure 3. Observe that at DC
(i.e., s = 0) Z22 is infinity. This implies that the DC component of i2,
denoted as I20(A0,A1), is zero:

I20(A0,A1) = 0. (6)

Next, we note that Z21 acts as a filter on i1 with the amplitude peak
at the resonant frequency ωc = 1

LC (the value of the peak is C1
C1+C2

RL).
The amplitude falls down rapidly on both sides. The rate at which Z21
falls down depends on the Q factor of the RLC tank. Even for modest
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Fig. 2. Amplitude and phase characteristics of the transfer function Z21
(V2 vs. I1).
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Fig. 3. Amplitude and phase characteristics of the transfer function Z22
(V2 vs. I2).

Q, all non-fundamental harmonics are filtered to very near zero. At
the resonant (fundamental) frequency, the phase characteristic crosses
zero rapidly.

On the other hand, the amplitude characteristics of Z22 is infinity at
DC but falls quickly as the frequency increases. This implies that i2
contributes mostly to the DC component of v2 (DC component of i2 is
zero (6)) but very little to the other harmonics, especially the higher
harmonics. The phase features a nonzero peak at the resonant fre-
quency and falls down rapidly on both sides of ωc. The value of this
peak depends on the Q factor of the oscillator. For a high-Q oscil-
lator, the value approaches zero; for a moderate-Q factor, this value
can, however, be far away from zero (e.g.. for a Q = 3 oscillator, this
value is around −500). The total effect of the feedback network is the
combination of these two:

v′2 = Z21i1 + Z22i2. (7)

From the above analysis, we justify our original assumption that v2
in (2) was sinusoidal with a DC component. Furthermore, the fre-
quency of the oscillator (ω0) has to be close to the resonant frequency
(ωc), but not necessarily exactly equal to it. (If the frequency is too far,
the fundamental harmonic is filtered out.) It is now clear why we limit
attention only to the fundamental (and DC) components of [i1, i2]T ,
since higher harmonics are filtered out. Thus, the fundamental har-
monic of the output of RLC tank output is:

v′21 = 2[I11(A0,A1)Z21(ω0)+ I21(A0,A1)Z22(ω0)]. (8)

To close the loop, we must have v′2 = v2 for both amplitude and phase.
Thus,

A1 = 2|I11(A0,A1)Z21(ω0)+ I21(A0,A1)Z22(ω0)| (9)

and the phase of v′2 is zero. Or equivalently,

ℜ(2I11(A0,A1)Z21(ω0)+ 2I21(A0,A1)Z22(ω0)) = A1,

ℑ(2I11(A0,A1)Z21(ω0)+ 2I21(A0,A1)Z22(ω0)) = 0.
(10)

As noted previously, the memoryless BJT block only causes a phase
shift of 0 or π. Because of its negative resistance nature during in-
tended operation [18], the phase shift of i1 is π (we do not consider
i2 initially, since it contributes very little to the fundamental, as noted
earlier). Also note there is a minus sign for i1 because the current en-
ters the nonlinear box. Thus, the total phase shift is 2π. Therefore the
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RLC tank should have a phase shift of 0 for oscillation to result. The
phase shift of i1 at the resonant frequency ωc is exactly 0. However,
the phase characteristics of Z22 shows that the phase is not exactly 0 at
ωc, especially for low-Q oscillators. It is for this reason that we treat
the oscillation frequency as an extra unknown (ω0) since the deviation
from ωc generates some phase shift in Z21 part which compensates the
phase shift in the Z22 part (with correct relative amount according to
I11 and I21), thus making the total phase shift to be 0. This is one of the
key differences between our approach and the approach in [18]. This
also explains why the oscillator frequency is not exactly ωc, especially
for low Q oscillators. As mentioned earlier, the phase shift of Z22 is al-
most 0 at ωc for high-Q oscillators. Since the amplitude characteristics
of Z21 falls down rapidly on both sides of ωc, little deviation from ωc,
which is ignored in [18], can cause not-so-small difference in output
voltage.

(6) and (10) form an equation system with 3 equations and 3 un-
knowns. It can be solved numerically by any nonlinear solver, such as
Newton’s method; however, blind numerical solution does not generate
much insight. We now present a graphical approach, which provides
much more design insight, to estimate A0, A1 and ω0.

We first fix a value for A0 (which we will later sweep over a range).
Then, we can first solve for A1 from (6). The A1-A0 relation is plotted
in Figure 4 as solid line. The final solution should be on this line.
Similarly, with fixed values of A0, we also solve for A1 and ω0 from
(10). We now have a new A1-A0 relations, as shown in Figure 4 in
dashed line. The intersection of these two lines satisfies all equations
and is the final solution of A0 and A1. The ω0 corresponding to these
A0 and A1 (from (10)) is the oscillator frequency.

We also show the A1-A0 relations with different parameters in RLC
tank (the first line remains unchanged). As can be seen, the intersection
moved to the right as R goes high. This information can be used to aid
oscillator design. More results are shown in Section IV.
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Fig. 4. Solution A1 and A0 using nonlinear feedback.

III. NONLINEAR ANALYSIS FOR INJECTION LOCKING

One of the key benefits of the above nonlinear feedback analysis is
that it can be extended naturally to predict injection locking. We inject
an external voltage perturbation at v2, as shown in Figure 5(a) and
Figure 5(b) (current injections can be handled similarly). We assume
that the injection signal is a sinusoid of vin j = Aicos(ωit +φi(t)). Here
ωi is assumed to be close to the oscillator’s natural frequency ω0.
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Fig. 5. Colpitts oscillator with voltage injection.

When the oscillator is in lock, it changes its frequency to be the same
as the injection signal ωi. This motivates our assumption that

v2(t) = A0 + A1sin(ωit). (11)

Note here that the input frequency is ωi, not ω0.
The nonlinear analysis for the BJT part remains the same as in Sec-

tion II since it is a memoryless element. In addition, since ωi is very
close to ω0, the previous conclusion that higher harmonics are filtered
out still holds. We only need to consider DC and fundamental compo-
nents of the output [i1, i2]T .

However, the analysis of the feedback network is different from
Section II. First, we note that (6) remains true since it derived from
the DC value of Z22 (all transfer functions remain the same). From
Section II, we know that at exactly ω0, the output v′2 has an amplitude
equivalent to input amplitude (A1) and zero phase shift (or 2π). Then
the deviation from ω0 (now, the fundamental frequency is ωi) normally
generates a different amplitude and non-zero phase shift. It is the injec-
tion signal that compensates for these differences so that the amplitude
is exactly A1 and the phase is exactly zero (or 2π) at the output.

In [2] and [18], a simple graphical approach using phasor diagrams
is provided for finding lock range. However, the approach provided
in [2] made some simplification by assuming that H(ωi)I1(A) remains
the same when A changes (i.e., the amplitude at the output of the loop
does not change regardless of input amplitude (A)). Then the mini-
mum amplitude of injection signal needed to lock the oscillator at a
fixed locking frequency is easily determined, since it is the perpendic-
ular distance between the tip of H(ωi)I1(A) and the horizontal axis,
as shown in Figure 6. The lock range, the maximum deviation of in-
jection frequency from ω0 under certain perturbation strength, can be
obtained. However, this assumption is not always true even for the
simple negative LC oscillator in [18].

A’

vout : H(ωi)I1(A)

vin : A

v′in jvin j

Fig. 6. Phasor diagram

Here, we present a simple but rigorous graphical approach for pre-
dicting the lock range of the Colpitts oscillator. In our technique, we
fix the injection frequency ωi and estimate the minimum injection am-
plitude to lock the oscillator. Similar to the technique in Section II, we
first fix a value for A0 and solve for A1 using (6). The A1-A0 relations
are the same as in Section II since they does not depend on frequency.
The final solution must satisfy these A1-A0 relations. With these (A0,
A1) pairs, as well as ωi, we can calculate the fundamental harmonics
at the output of the loop using (8), as shown in the phasor diagram
Figure 7(a). As can be seen, it is not a constant with different (A0, A1)
pairs. The input has amplitude A1 and zero phase shift, as shown in
Figure 7(a). Therefore, one input A1 (hence A0, determined from (6))
corresponds to one fundamental harmonics of output v′21 in the phasor
diagram Figure 7(a). The difference of the two is the injection signal,
as shown in Figure 7(a). Thus, the minimum difference is the mini-
mum injection amplitude. Usually, it is not as predicted by [18] to be
perpendicular to the input signal. Figure 7(b) shows the amplitude of
this difference as it varies with different inputs A1. A minimum can
be seen in Figure 7(b), which is minimum injection amplitude. The
corresponding A0 and A1 are the DC and fundamental components of
the input when the oscillator is in lock. More results are shown in
Section IV.
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parameters our method HB simulation
R (Ω) L (nH) C1 (pf) C2 (pf) Q A0 (v) A1 (v) f/ fc A0 A0 f/ fc
200 1.6 20 74 19.8 -0.424 0.194 1.0013 -0.424 0.195 1.001
300 1.6 20 74 29.7 -0.32 0.305 1.0006 -0.32 0.305 1.0004
500 1.6 20 74 49.5 -0.097 0.536 1.00022 -0.097 0.536 1.00014
1000 1.6 20 74 99 0.544 1.19 1.00006 0.544 1.19 1.00004

TABLE I
COMPARISON: RESULTS FROM OUT NONLINEAR OUTPUT VOLTAGE ANALYSIS AND HB SIMULATION.

IV. VALIDATION

In this section, we first show results from the preceding nonlinear
vector feedback analysis (with different circuit parameters), validating
against Harmonic Balance (HB) simulation. We also compare the lock
range predicted by our technique against full simulation, as well as
against Adler’s method. We compare corresponding oscillation wave-
forms obtained via our approach with those from full simulation.

A. Free Running Oscillation
Our nonlinear free-running oscillation analysis is tested using the

circuit in Figure 1(a). In this experiment, we change the value of R in
the RLC feedback network, which changes the Q factor of the oscilla-
tor and the characteristics of the feedback network. Table I shows the
results from our analysis. For comparison, we also show the results
from HB simulation, which is used to solve oscillator steady state. As
can be seen, they are in good agreement. Also, it verifies our con-
clusion in Section II that the oscillator frequency is not exactly ωc
(ωc = 2π fc), especially for low-Q oscillators.

B. Injection Locked Oscillation
In this experiment, we fix R to be 500 (all other parameters remain

the same as in Figure 1(a)), resulting in a Q factor of about 50. The
perturbation is a voltage source connected as in Figure 5(a). Figure 8
shows the lock range predicted by our technique, compared with full
simulations (first using transient simulation and then refining the re-
sults by HB). As can be seen, they match almost perfectly. In addition,
we also show results from Adler’s equation, which is based on linear
simplifications and is over-conservative [18].
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We also show corresponding output voltages when the oscillator is
in lock perturbed by the injection signal predicted above. We verify
the results by full simulation, as shown in Figure 9. Another approach
similar to [18], in which injection signal is estimated to be perpendic-
ular to the input, is also tested. The result is also shown in Figure 9. It
does not match full simulation well.

V. SUMMARY
We have presented a simple but rigorous technique for understand-

ing and predicting free-running and injection-locked oscillation in two
port nonlinear resistance oscillators, such as Colpitts. Our approach
employs vector-based nonlinear feedback analysis which can be inter-
preted and implemented in a graphical way. We have validated our
technique against transient and HB simulations, demonstrating agree-
ment considerably superior than previous approaches. Our analysis is
general and can be extended to other LC oscillators, such as Pierce,
Hartley, etc., oscillators.
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