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Abstract— We present a novel nonlinear phase macromodel based
technique for quickly and accurately predicting superharmonic injection
locking (SHIL) in injection-locked frequency dividing (ILFD) oscilla-
tors and PLLs. Our approach is useful for both hand analysis and
fast/accurate simulation. We derive an analytical phase slope and peri-
odicity based criterion for detecting SHIL from macromodel simulations
and present an insightful way of understanding SHIL phenomena using
phase macromodels. We present detailed examples of the new technique
and validate our results against full SPICE-level simulation, obtaining
speedups of 150–200×.

I. INTRODUCTION

PLLs are heavily used in electronics, communication and in-
strumentation. They are used in clock generators, RF and wireless
transceivers, frequency synthesizer, optical fiber receivers, jitter/skew
reduction circuits, etc.. In many RF applications, PLLs are used for
frequency synthesis, i.e., for generating a programmable output fre-
quency that is, e.g., a multiple of a high-quality low frequency signal
[1]. Standard architectures for PLL synthesizers involve placing a
frequency divider within the PLL’s feedback loop, as shown in Fig. 1.
The most common approach to frequency division is to use digital
counters [2]; however, digital dividers tend to be more difficult to
design at very high frequencies, as well as to consume more power,
than analog alternatives [3], [4]. In this context, there has been
considerable recent interest [5], [6] in the use of injection-locked
frequency dividers (ILFD) for frequency division, due to their design
simplicity and their property of maximizing speed/power performance
in a given technology. .

Oscillators exhibit frequency division via superharmonic injection
locking (SHIL), a special form of a universal phenomenon known
as injection locking (IL) in oscillators. IL refers to the fact that
when an oscillator is disturbed by an external signal, it can, under
appropriate conditions, change its oscillation frequency to exactly
match the frequency of the disturbance; SHIL refers to the fact that an
oscillator’s frequency can adjust itself so that the disturbing frequency
becomes an exact integer multiple of the new oscillation frequency —
thereby effectively dividing the disturbing frequency. In other words,
if the oscillator’s free running frequency is f0 and it is disturbed by
a signal of frequency f1, it can “lose” its original frequency f0 and
start oscillating at frequency f1/M (where M is an integer). Typically,
this occurs only if f1/M and f0 are close to each other.

In spite of their performance advantages and small circuit sizes
compared to digital dividers, ILFDs can be challenging to design be-
cause of the complex nonlinear dynamics of oscillators in general and
the SHIL phenomenon in particular. Prior attempts to understand and
predict IL and SHIL from the design perspective [7]–[9] have tended
to rely largely on linearized analysis. While aspects of linear analysis
are useful, it leads to an incomplete understanding of IL phenomena
and provides only approximate predictive power. The work of Rategh
and Lee [6] recognized the crucial rôle of nonlinearities in IL/SHIL
and used polynomial approximations for circuit nonlinearities in their
analysis. It should be noted, however, that polynomial approximations
are not very well suited for strong nonlinearities (such as those arising
in, e.g., diodes, BJTs and MOSFETs).

From a simulation and numerical analysis standpoint, oscillators
and IL/SHIL also present unique challenges. The standard approach
of using transient simulation to predict IL/SHIL is often extremely
inefficient and also inaccurate; this is because transient simulation
of oscillators faces unique numerical challenges that stem fundamen-
tally from their autonomous nature [10]–[13]. In practice, oscillator
transients can last thousands of cycles, thereby exacerbating com-
putation and inaccuracy problems. Another issue is that it is often

difficult to determine by observation of transient waveforms small
frequency differences between the disturbing signal’s frequency and
the oscillator’s perturbed frequency.

In this paper, we present a new technique for accurate and efficient
prediction of SHIL that is useful for both hand analysis and for
fast/accurate simulation. The technique is based on the automated ex-
traction and use of nonlinear phase macromodels of oscillators [13]–
[15]. In recent years, such nonlinear phase macromodels have been
shown to be effective for predicting a variety of oscillator and PLL
phenomena [12]–[14], including (same-harmonic) IL, phase noise,
jitter from power/ground interference, PLL lock/capture dynamics,
cycle slipping, etc.. In this paper, we extend the applicability of
nonlinear phase macromodels to SHIL in ILFDs and ILFD-based
PLLs, as well.

We first analyze the nonlinear phase macromodel (which uses a
quantity called the Perturbation Projection Vector or PPV [14]) “by
hand” to provide insights into how SHIL occurs. In the process, we
clarify how nonlinearity is critical to the SHIL process. Using this
analysis, we also obtain simple mathematical criteria that enable us
to determine whether a simulation (also based on the nonlinear PPV
macromodel) is predicting SHIL or not.

We then apply the PPV macromodel to simulate SHIL, first in
a standalone LC oscillator acting as an ILFD, then within a PLL
(containing two oscillators, the VCO and the ILFD). We demonstrate
the usefulness of the nonlinear PPV macromodel in predicting the
correct behaviour of the system in all cases — whether or not
ILFD occurs (using the criterion noted above). We validate the new
technique via comparisons against careful and detailed SPICE-level
transient simulations of the original circuits. Using the new technique
results in speedups of 2–3 orders of magnitude .

Compared to prior approaches for the analysis and simulation
of oscillatory and PLL systems with ILFDs, our technique has a
number of other advantages as well. The technique is generically
applicable to any kind of oscillator and is not limited to, e.g., simple
LC oscillators. Indeed, the PPV macromodel is extracted in a push
of a button – i.e., via numerical algorithm – from a full SPICE-
level circuit of the ILFD, which can contain extracted parasitics,
complex semiconductor device models (such as BSIM or PSP). As
such, it fully handles strong nonlinearities of any kind and is not
limited to polynomials. Furthermore, in view of the fact that the PPV
phase macromodel is also suited for predicting the gamut of other
oscillator/PLL phenomena, the new technique is especially suited
for use in comprehensive, next-generation PLL design methodologies
[10].
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Fig. 1. PLL: Architecture of Frequency Synthesis
The remainder of the paper is organized as follows. In Section II,

we provide a brief introduction to the nonlinear, PPV-based phase
macromodel equation at the core of our SHIL prediction approach.
In Section III, we analyse the PPV equation to develop insights
into SHIL, as well as a concrete criterion for detecting SHIL in
macromodel simulations. In Section IV, we apply the new technique
to a standalone oscillator and an ILFD-based PLL, and provide
validations/comparisons against full SPICE-level simulation.
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II. PPV EQUATION AND PHASE MACROMODEL

The first work on prediction of IL is apparently the classic work
of Adler [7] in 1946; this was followed by many others. These
class of methods provides intution into LC oscillator IL mechanisms,
but does not fully account for nonlinearities and higher harmonics,
which limits their use to approximate analysis of restricted classes of
oscillators.

The use of phase domain macromodels for oscillators is widespread
in PLL design [1], [16]; however, these macromodels have not been
useful, until recently, for IL related phenomena. Most available phase
macromodels are based on linear integration of a perturbing input to
generate output phase deviation (e.g., [17]–[22]) and are therefore
provably unable to handle IL, which depends crucially on phase
macromodel nonlinearity [13]. In this short section, we note the
basics of the nonlinear phase macromodel [23], which we will use
in prediction of super-harmonic locking in the oscillator.

Given a free-running oscillator, denote by xs(t) its steady state
(i.e., the periodic, time-domain waveforms of voltages/currents in the
circuit). It can be shown that the response of the oscillator under
external perturbation will be given by xs(t + α(t)) + y(t) [13], [23],
where α(t) is a (usually growing) phase deviation and y(t) is a small
amplitude variation. The phase α(t) of the perturbed oscillator can
be shown to be governed by the PPV equation [23]

α̇(t) = V T
1 (t + α(t)) ·b(t). (1)

In (1), the quantity V1(t), also a periodic vector waveform with the
same frequency/period as xs(t), is called the Perturbation Projection
Vector (PPV). One of the utilities of (1) is that it is based on a
rigorous and general theory, which makes it applicable to any kind
of oscillator, however complex or varied. We will use the above
equation in the next sections to determine techniques and criteria
for superharmonic injection locking.

III. SUPERHARMONIC IL VIA THE PPV EQUATION

In this section, we use (1) to understand SHIL and derive criteria
for detecting the phenomenon. The utility of α(t) for IL is that
its derivative directly provides the frequency of the oscillator at
any given point in time. In particular, if the perturbed oscillator
becomes locked to an externally applied frequency, we are interested
in determining an analytical form for α(t) that reflects this condition,
and in using it for predicting SHIL.

To develop intuition into IL and SHIL, consider first the simplified
case where the oscillator’s steady-state response is a pure sinusoid,
i.e., given by xs(t) = sin(2π f0t). Now we perturb this oscillator by a
signal b(t) = Ain j sin(2π f1t +θ ), where θ is a constant phase and the
external signal’s frequency is f1. If f1 is almost M times of f0, there
is a possibility that the oscillator might get locked to the Mth sub-
harmonic of f1 which would be very near to f0, the natural frequency
of the oscillator. Now suppose that oscillator has actually become
locked to the Mth sub harmonic of f1, i.e., the oscillator’s steady
state frequency is now f1

M . Therefore, the oscillator new response
can be given by x1(t), where x1(t) = sin( 2π f1

M t + φ(t)). φ(t) can, in
general, be periodic with frequency f1

M . The large-signal component
of the new response of the oscillator (i.e., ignoring small amplitude
variations) can be written as x1(t) = xs(t + α(t)), as noted in the
previous section. This implies that

2π f0(t + α(t)) =
2π f1

M
t + φ(t),

or that α(t) =

(
f1−M f0

M f0

)
t +

φ(t)
2π f0

,
(2)

where φ(t) has the following form:

φ(t) = φDC + φperiodic(t). (3)

In the above, φDC is the DC term of φ(t), while φperiodic(t) is
purely periodic with frequency f1

M and with a zero DC component.
To recapituate, if the oscillator becomes locked to f1

M , then we expect
α(t) to be in the form of (2) and φ(t) to be in the form of (3). If we

differentiate (2) w.r.t time, then φ̇(t) is given as

φ̇ (t)
2π f0

= α̇(t)+

(
1− f1

M f0

)
(4)

Since φ(t) is periodic with frequency f1
M , so is its derivative φ̇(t),

implying that α̇(t) must be periodic with frequency f1
M .

We emphasize here that the equations (2), (3) and (4) are valid
only when oscillator is superharmonically locked, therefore, these
equations are just a criterion for testing whether or not superharmonic
injection locking has occurred.

Since we compute α̇(t) using (1), we combine (2) and (1) to obtain
a more specific form for α̇(t) in the event of SHIL:

α̇(t) = V T
1 (t + α(t)) ·b(t)

= V T
1

(
f1

M f0
t +

φ(t)
2π f0

)
b(t)

(5)

Since, V T
1 (t) is periodic with frequency f0, (5) implies that

V T
1 ( f1

M f0
t +

φ (t)
2π f0

) must be periodic with f1/M. Also, b(t) is periodic
with frequency f1, hence α̇(t) becomes periodic with f1/M, a
required criterion from (4).

We can obtain graphical intuition into this change of frequency
of the PPV — it is the result of squeezing/stretching of the PPV
waveform along the time axis due to the phase deviation α(t). A
graphical representation of this is provided in Fig. 2. For second
harmonic injection locking (M =2), the factor by which the PPV
waveform will squeeze is given by f1

2 f0
. In the plot, f1 = 2.1 f0 was

taken for illustration; therefore, the new PPV plot is squeezed by a
factor of 2.1 f0

2 f0
= 1.05 and thus it will now be periodic with f1/2. For

third harmonic injection locking, the PPV will need to be squeezed by
the factor of f1

3 f0
. Another plot, where we took f1 = 3.1 f0 resulting

in a squeeze factor of 3.1 f0
3 f0

= 1.03 for third harmonic locking, is
also shown in Fig. 2. It is obvious that if the squeeze factor is not
sufficient for Mth harmonic locking, the oscillator will not be able to
lock to the frequency f1/M.

V1(1.03t)

V1(t)

V1(1.05t)

Time

Fig. 2. Squeezing/stretching of the PPV under SHIL: V T
1 (t + α(t))

Our technique for predicting SHIL (or the absence of SHIL) will be
to obtain α(t) by numerically solving equation (1), then to compute
φ(t) using (2). If the computed φ(t) has the form (3), SHIL can
be confirmed by observing the slope of α(t), which should equal
f1−M f0

M f0
. In the next section, we will apply and validate this technique

on standalone oscillators and PLLs, confirming that φ(t) indeed has
the form (3) when SHIL happens.

IV. PPV-EQUATION BASED FREQUENCY-DIVIDER PLL DESIGN
AND METHODOLOGY VALIDATION

A. SHIL in cross-coupled LC Oscillator
We first simulate the cross-coupled LC oscillator circuit, shown

in Fig. 3, to predict superharmonic injection locking for M = 2 (i.e.,
2nd harmonic locking) using the above technique. Parameter values
of l1 = l2 = 2.58nH and c = 5pF were chosen for the simulation.
We used the harmonic balance method to find the oscillator’s natural
frequency (about 1.0009GHz) and its steady-state waveform. Fol-
lowing HB solution, the PPV was computed for the circuit using the
technique described in [15], and using the PPV, we computed α̇(t) for
500 cycles by solving (1) numerically using Runge-Kutta integration,
with b(t) = 0.0575sin(2π f1t) and f1 = 2.001 f0. f1 = 2.001 f0 was
then chosen (via a trial-and-error process) to be close enough to 2 f0
to excite 2nd harmonic IL. An appropriate amplitude for b(t), about
0.0575, was similarly chosen to achieve SHIL.

The numerically computed waveform of α(t) is shown in Fig. 4(a).
If the oscillator is locked to f1

2 , then the slope of α(t) should be
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Fig. 3. Cross-Coupled LC oscillator
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Fig. 4. M=2 SHIL (locked)

f1−M f0
M f0

from (2), in this case 0.005. Upon estimating the slope of the
numerical α(t) waveform, we confirmed a value of 0.005, implying
that oscillator is indeed superharmonically locked.

More detail is available in the zoomed picture of α(t), shown
in Fig. 4(b). From the zoomed version, it is clear that periodic
components are present in α(t), matching our formulation (2) and
further confirming presence of SHIL. We emphasize that although
the correct slope of α(t) is in principle sufficient to predict SHIL,
we also plot φ(t) to ensure that it is periodic in nature and of the
form (3).

The plot of φ(t) is shown in Fig. 4(c). Since the plot is for
500 cycles, we can only see the DC value of φ(t) from Fig. 4(c).
To obtain a clearer picture of the periodicity of φ(t), we plot the
last two cycles of φ(t) in Fig. 4(d). It can be seen from Fig. 4(d)
that the waveform (four cycles) is indeed periodic, hence φ(t)
is also periodic with frequency f1/2 and also f1. Therefore, all
numerical waveforms validating our criterion for prediction of M = 2
superharmonic injection locking, developed in the last section.

The above simulations were all performed using the new PPV
macromodel based technique; to validate these results, we performed
full simulation of the circuit. The oscillator’s voltage from full
simulation is plotted in Fig. 5(a); it is evident from the plot that
the oscillator is locked to f1

2 (in addition to measurement of the
frequency of the waveforms, the absence of amplitude envelopes is
a telltale indication of successful IL).
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Full Simulation: Oscillator Output
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Fig. 5. Full Simulation results for locking and non-locking case
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Fig. 6. For M=2; SuperHarmonic Non Injection Locking

Now, we want to simulate another case, first using the PPV macro-
model and then using full simulation, where (M = 2) superharmonic
injection locking is not occurring. We found from various simulations
that if b(t) = 0.08sin(2π f1t), where f1 = 2.1 f0, the oscillator does
not lock to f1

2 . Plots of α(t) and φ(t) are shown in Fig. 6(a) and
Fig. 6(b). In this case, the slope of α(t) is 0.003856, which is not
equal to f1−2 f0

2 f0
, therefore indicating the absence of injection locking.

Note, also, that the plot of φ(t) is not periodic, a consequence of the
slope of α(t) not being equal to f1−2 f0

2 f0
. These results are verified via

full simulation. The oscillator’s output voltage from full simulation
is plotted in Fig. 5(b). It is clear from the plot that amplitude of the
oscillator output is varying with time; closer inspection also confirms
non-uniform periods, indicating that the oscillator is not locked.

We have shown, above, that the new technique is able to predict
when superharmonic injection locking is occurring, as well as when
it is not. It is able to do so much faster than full simulation: it took
almost 3 hours to simulate 500 cycles of the oscillator using full
simulation, while the new PPV macromodel based approach took
about 70 seconds for 500 cycles, a speedup of about 150×.

B. ILFD-based PLL
Phase

Detector
Charge Pump

&
LPF

5Stage Ring

VCO

Ref Frequency
fi

PD_OUT Vctrl VCO

ILFD
%2

2fi

fi

Fig. 7. PLL with ILFD

Next, we simulated/designed a PLL frequency synthesizer which
incorporates a superharmonically locked oscillator as a frequency
divider in its feedback path, in order to multiply its input frequency
by a factor of 2. The schematic of the PLL is shown in Fig. 7. The
Injection locked frequency divider (ILFD) is implemented using the
cross-coupled circuit shown in Fig. 3, but its natural frequency is
now changed to 100.122Mhz because the PLL which we are using
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in our simulation is designed to work in the range of 80-120MHz of
input reference frequency.

Note that the VCO within the PLL uses a 5-stage ring oscillator
topology, with center frequency f0 = 198MHz. VDD=3V was used
for the simulation and therefore, for input frequency fi = 100Mhz,
the VCO control voltage (Vctrl) (i.e., the output of the LPF block)
stabilizes at 1.55V, resulting in a VCO center frequency at 198Mhz
(slightly less than 200Mhz). The control voltage is plotted in the
Fig. 8.
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Vcontrol: Steady State for frequency reference of 100MHz

Fig. 8. Steady State of Vcontrol; steady at 1.55V for fre f = 100MHz
The steady state behavior of Vcontrol confirms correct working of

the ILFD, i.e., the oscillator in the feedback path is getting locked to
the second sub-harmonic frequency of the VCO’s output frequency,
thus enabling correctly-locked PLL operation. Having obtained the
steady state of Vcontrol, we try to observe the unit step response
of the PLL under different reference frequencies, using both full
simulation of the circuit and a full-PLL macromodel (using the
approach of [12]). Vcontrol waveforms from full simulation for the
unit steps fre f = 1.02 fi and fre f = 1.03 fi are plotted in Fig. 9(a) and
Fig. 9(b). It is clear from the plot that Vcontrol tracks the change in
the reference frequency.

Next, we obtained the same step response using the PPV phase
macromodel technique of [12], augmented with an extra nonlinear
PPV macromodel for the ILFD – in other words, the PLL contains
two oscillator macromodels, one for the VCO and one for the ILFD.
Responses of the PLL to step changes in reference frequency are
shown in Fig. 9(a) and Fig. 9(b). It is clear from the results that our
nonlinear macromodel approach for the simulation of PLL exactly
tracks the plots obtained from the full simulation. For fre f = 1.02 fi,
Vcontrol became stable at 1.61V both from full simulation and from
the macromodel based simulation; for fre f = 1.03 fi, Vcontrol reached
1.64V, again both from full simulation and from the macromodel.

Thus, using the PPV-based phase macromodel, we have demon-
strated successful use of ILFDs as a frequency dividers in PLL and
have also We can now compare the speedups that we have obtained
using the macromodel. Full simulation of the PLL took about 1 hour 6
min (step response simulation of 50 cycles), while the macromodel-
based approach took only 20 seconds for the same simulation – a
speedup of about 200×.
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