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ABSTRACT integration issues, digital phase-locked loop (DPLL) design tech-
PPV phase macromodels are important for speeding up simulation niques [6-8] have rapidly gained in popularity, especially for highly-
of oscillator related circuits, such as PLLs, without sacrificing ac- integrated SoC applications. DPLLs provide characteristics such
curacy. Prior numerical methods for extracting PPVs face very sig- as fast switching, full digitization, and good frequency stability [9].
nificant robustness and accuracy problems when confronted with The core component of a DPLL is the switch-tuned digitally con-
digitally controlled oscillators (DCOs, core building blocks in digi- trolled oscillator (DCO) [10, 11], the digital counterpart of analog
tal phase-locked loops), due to large RC time-constants from gated VCOs. A typical DCO consists of many gated capacitors or resis-
capacitors. In this paper, we present a hierarchical harmonic bal-

in Figuretrance based technique for numerically extracting the PPV of DCOs in Figure 1.
from their SPICE-level circuit descriptions. The proposed method However, the advent of DCOs and DPLLs poses unique chal-
applies hierarchical circuit partitioning and multi-level Newton meth- lenges for simLlation and verification, already a difficult enough
ods to achieve dramatically superior convergence and PPV accu- task for PLLs. SPICE-level getransient" simulation [12] is poorly
racy in the presence of large RC time-constants. We validate the suited for simulating PLLs in general, due to efficiency issues [17].
method on a large DCO with many gated capacitors and demon- To alleviate this inefficiency, a popular approach is to perform ap-
strate that it can extract the PPV efficiently and robustly, succeed- proximate PLL simulation using phase domain macromodelling of
ing when prior methods fail. The method also provides speedups sections of the PLL's feedback loop, including the VCO. Various
of an order of magnitude for large circuits, in addition to having phase domain macromodels for oscillators (e.g. [13-16]) are avail-
significantly smaller memory requirements. able; among these, the perturbation projection vector (PPV) [16]model, a nonlinear time-shifted macromodel that can be extracted

from SPICE netlists using numerical methods, has been shown to
Categories and Subject Descriptors be best for predicting a variety of oscillator and PLL phenomena

(such as injection pulling, lock/capture transients, phase noise andB.7.2 [Integrated Circuits]: Design Aids - simulation jitter, etc.) well [17,18].
Currently available numerical methods for extracting PPV macro-

General Terms models face significant challenges for DCOs, however, that severely
compromise the accuracy and utility of the extracted phase macro-

Algorithms model. There are two techniques available for PPV extraction:
the time domain monodromy matrix method [16,19] and the aug-

Keywords mented Jacobian method [20] in the frequency domain. Neither
of these is robust when applied to DCOs featuring banks of digi-

Simulation, macromodel, VCO, DCO, PLL, DPLL, PPV tally switched capacitors. The steady-state computations that pre-
cede PPV extraction are numerical very sensitive, often failing out-

1. INTRODUCTION right in Newton-Raphson convergence; the succeeding PPV com-
1. NT OD CTONputation is even more sensitive, resulting in large inaccuracies, es-

Phase-locked loops (PLLs) [1,2] are widely used building blocks pecially for the components at the crucial "off"-capacitor nodes.
in analog and mixed-signal systems. Traditionally, PLLs are ana- The root of the problem stems from that "off" capacitors contribute
log circuits that employ a voltage-controlled oscillator (VCO) for large RC-like time constants to the oscillator system, degrading the
converting voltage levels to frequencies. Although analog PLLs conditioning of the Jacobian matrix. Breakdown of these PPV com-
can feature high output frequencies and excellent spectral purity putation techniques poses a serious problem for the design of the
[3], they exhibit shortcomings such as narrow operating frequency largest and most advanced PLLs in the industry today, hence reme-
ranges [4], highly nonlinear frequency versus voltage characteris- dies are being urgently sought.
tics [5], etc.. These shortcomings come to the fore when PLL de- In this paper, we present a novel and effective approach for al-
signs migrate to deep-submicron (DSM) CMOS processes, which leviating this problem. Our technique, which can extract the PPV
offer very limited voltage headroom [6]. To overcome such DSM of any oscillator, is particularly advantageous for large oscillator

systems such as DCOs with many banks of switched capacitors.
The key advance of our method is breaking the computation, of
both the nonlinear steady-state and the PPV, down hierarchically
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not made or distributed for profit or commercial advantage and thiat copies gether using extensions of multilevel Newton concepts, originally
hear this notice and the full citation on the first page. To copy otherwise, to proposed in [21], to harmonic balance (HB), PPV computation and
republish, to post on servers or to redistnibute to lists, requires prior specific steady-state computations in general that we also develop and em-
perrnission and/or a fee. ploy in this paper. For the computation of a particular block, the
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Copyright 2006 ACM 1-59593-381-6/06/0007 ..$5.00.

1017



transfer functions", and the small Jacobian matrices, of the con- where w(t) represents deviations due to perturbations b(t), and A(t)
nections to the block under consideration. Although each block is a T-periodic matrix. According to Floquet theory [22], the state
consists of a set of nonlinear differential equations, this is possible transition matrix of system (1) can be decomposed as
because all computations deal simply with algebraic relationships (t, T) = U(t) exp(D(t-))V(T) (2)
between vectors of Fourier components.
We prove that our method is exactly equivalent to the augmented where U(t) and V(t) are T-periodic nonsingular matrices, satisfy-

Jacobian method in the sense that, with perfect numerics and infi- ing biorthogonality conditions vT(t)uj(t) = 3ij, andD = diag[pi, Ynite precision, identical results would be obtained. Our hierarchical where pi are the Floquet exponents. For an oscillator circuit, one
method is, however, far more robust and accurate for non-ideal non- of the Floquet exponents must be 0. Without loss of generality, we
ideal numerical computations with double-precision arithmetic, trun- chooseFl = 0 and ue(t) andvm (t) are corresponding left and right
cated Fourier series, etc.. The new hierarchical approach also has Floque teigenvectors. It has been shown [16] thatun(t) ae x(t), the
other important advantages. The size of each block reduces signifi- derivative of the steady state of the oscillator and vI (t) is the PPV
cantly when the circuit is partitioned, hence memory requirements . . T . '
for steady-state and PPV solution become much lower. This fea- satisfying uI (t)T vI (t) = 1 at any time point.
ture is of great importance for large DCOs in integrated RF appli- To calculate v, (t), we need to calculate the monodromy matrix
cations, simulations of which are often memory limited. Another 4D(T, 0) by numerically integrating
crucial feature of our method is that the large RC poles which cor- iw(t) A(t)w(t) (3)
rupt the Floquet eigenmode are completely eliminated, since they from 0 to T, using initial value w(0) = I, where I, is an identityare moved to a different hierarchical block which is solved sep- T (Tr In ispondingarately. The remainder of the DCO becomes much smaller and matrix of size n. vl (0) is an eigenvector of4T (T, 0) corresponding
has few, if any, remaining interfering eigenmodes. Because each to eigenvalue 1. vl (0) need to be scaled using u1 (O)T vI (0) = 1,
block is smaller and has better numerical conditioning, steady-state and then vi (t) can be calculated by integrating the adjoint system
computations enjoy more robust convergence and are also faster to of (3)
run. In addition, since DCO circuits have many identically repeated ()
cells (such as gated capacitor blocks), isomorphic simulation can (4)
apply in the HB solver to improve the simulation efficiency signifi- for one period, using v1 (0) as initial value.
cantly. Finally, hierarchical solution using multilevel-Newton con- According to above procedure for calculating the PPV, we need
cepts also makes the algorithm well suited for threaded and parallel to find an eigenvector of .7 (T, 0) corresponding to the oscillatoryimplementation.tofnanegnetro (T0)crepnngtthoslaoyWemimplementation. t d eigenvalue 1. If the circuit has many large RC poles, which intro-We implement the direct and hierarchical PPV solvers in a Mat- dueegnausvr.loet ,w ilhv trule ofnhlab/Python based analog/RF simulation platform, and evaluate them duce eigenvalues very close to 1, we will have trouble to find thelab/Pythonbasin analog-oRF simLationDCO.tBorm, andh work equally right eigenvector for the PPV extraction, as numerical integrationin detail using a cross-coupled LC DCO. Both methods error can accumulate in computing the monodromy matrix, causingwell when the circuit is small and there are no slow time constants the oscillatory eigenvalue become numerically indistinguishable.in the circuit. If some gated capacitors are turned off, thereby intro-
ducing large RC time constants, the direct PPV method starts devel-
oping difficulties: the HB solver converges very slowly due to the
poor conditioning of the Jacobian matrix, and the PPV extracted is 2.2 Augmented Harmonic Balance Jacobian
not accurate. In contrast, the hierarchical solver converges robustly Method
and goes on to find the PPV correctly. When the oscillator circuit To overcome the difficulty of the time domain method, a more
is very large, with many gated capacitors, direct methods run out of robust frequency domain method is proposed [20]. We use the har-
memory on our machines, which have 1GB of RAM. However, the monic balance method to solve the free-running oscillator equa-
hierarchical method of this work continues to works well, without tion. Since oscillators have infinite steady-states, we add an extra
significant increases in memory requirements. unknown for frequency and a phase equation to make the solution

unique. When harmonic balance converges, we obtain the Jacobian
LC tank matrix, which we call augmented Jacobian matrix, as we add one

1 7 1t z extra row and column for phase equation. The augmented Jacobian
matrix has the form of

CO C . C. X Jc 0 ...aug= ( CT ) (

where J iS the harmonic balance Jacobian of the oscillator equa-
tion, p is the vector of phase condition, q = iQXs iS the FourierFigure 1: Diagram of an LC DCO circuit. coefficient of xs(t), and r is a scalar.

If the augmented Jacobian matrix is not singular, the PPV can be
calculated by solving a linear equation

jT T=
2. RELEVANT PREVIOUS WORKS Jaugx e, (6)

In thissection, we provide a brief overviewof methods for ex- where e = [0,0, ..,0,v T,ando x [V,diT inwhichVq is the Fourier
tracting the PPV waveforms, and explain the difficulties of those coefficients of the PPV, and d is a scalar.
extraction methods when they apply to the DCOs. This method enforces uf (t) .v1 (t) = 1 when solving (6). Hence,

the correct PPV can always be obtained, even though there are other
2.1 Monodromy Method Floquet eigenvalues that are close to 1. However, when we apply

Since the PPV is one of the Floquet eigenvectors of the linear this method to DCO circuits, we still experience difficult: firstly,
periodic time-varying (LPTV) system linearized from the oscilla- there are many extremely large RC poles in the circuit, so that the
tor equation, we can apply the Floquet decomposition [22] to the augmented Jacobian matrix has very bad conditioning. As a result,
LPTV system and extract the PPV [16, 19]. the PPV obtained from solving (6) Si not accurate due to numer-
We use any simulation technique to simulate the free-running ical error. Secondly, since the augmented matrix can be close to

oscillator to steady state, and linearize it as an LPTV system singular in the worst case, the harmonic balance simulation can-
not converge and this method cannot apply without an augmented

t) =A(t)w(t) -+-b(t) (1) Jacobian matrix.
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3. HIERARCHICALHARMONICBALANCE Top lelvel Subcircuit
SIMULATION ViI

In this work, we adopt a multilevel Newton method [21], which y : x
was previously used for time domain simulation, in our harmonic v ip
balance solver. The method can eliminate the effect of large RC v v v
poles induced by gated capacitors/resistors, without affecting the
PPV extraction. In this method, the circuit is partitioned into a tree t 2 f ± ± ±
hierarchy, as shown in Figure 2. In each Newton iteration of the top - - - - - -
level, bottom level subcircuits are simulated and macromodeled as
simple devices without intemal nodes. The subcircuit macromodels Figure 4: Partition of the simple circuit.
are applied to higher level to improve the convergence of harmonic
balance. The circuit is simulated and macromodeled from bottom
level to top level until the top level converges.

where U are unknowns corresponding to interface nodes u in the
Top Level top level, which will be applied to the subcircuit as its input Vu,

and Iu are input currents from the subcircuit. Hu,op is different from
|subcircuit| subcircuit subcircuit Hu in (7): X is replaced by input current Iu, since u is split. The

~ = = Jacobian of the top level is
subcircuit subcircuit subcircuit A(Ju JY) (10)

Figure 2: Tree structure of hierarchical circuit. where Juu,, is different from Juu in (8), since u is split.
The harmonic balance equation for the subcircuit is

Hx(X, U)
Top level Subcircuit HKUb (XL U( Iu vu) HuS U,(XIU ) /]~~~~~~~~~~~~~~~~~KLU Vu"

where Vu are inputs from the top level, Iu are outputs corresponding
Y _ .x to input Vu, and KVL(U, VU) is KVL equations added for inputs Vu.

u =We need these extra equations for macromodelling the subcircuit.
The Jacobian of the subcircuit is

Jxx Jxu 0
Figure 3: A simple circuit with a top level and a subcircuit. Jsub = JuX JuUsub Ip (12)

O Ip 0

where Ip is an identity matrix of size p, which is from the extra
For the purpose of simplicity, we use a simple circuit that has KVL equations for input Vu. Due to the partitioning, the Jacobian

only one subcircuit, as shown in Figure 3, to explain our method. of interface nodes u is divided into two parts, which satisfy
In Figure 3, y is set of all internal nodes in the top level circuit, x is
set of all internal nodes in the subcircuit, and u is the set of interface JUU JUsub + JuU50p (13)
nodes between the top level circuit and the subcircuit. u has size of In our hierarchical harmonic balance simulation, we simulate the
p. The harmonic balance equation of the circuit can be written as bottom level subcircuit first, and macromodel it as a simple device

/Hx(X U) \ without internal nodes. The macromodeled Jacobian of the subcir-
H(X, U, Y) = O (7) cuit is use to formulate the equation for the top level circuit. Since(

Hy(U, Y) } ( the top level has full information of the subcircuit, harmonic bal-
H'(U, Y V :ance has good convergence, and the PPV extraction is possible. We

where X, U and Y are Fourier coefficients of unknowns in x, u, know a device model needs to provide two informations: one is its
and in y, respectively. Hx is harmonic balance equations respect output respect to given inputs; the other is the Jacobian matrix of
to nodes in x, HU is harmonic balance equations respect to nodes the device. For the subcircuit in Figure 4, its output can be ob-
in u, and Hy is harmonic balance equations respect to nodes in y. tained by solving (11). To obtain the Jacobian J = -, we adopt a
Corresponding harmonic balance Jacobian can be written as i e iumacromodelling technique proposed in [21].

Jxx Jxu 0 Since we can always solve (11) to obtain the solution of X,U
J= Jux Juu JU , (8) and Iu for any Vu applied to the subcircuit, X, U and Iu can be

0 Jyu JYY / considered as functions of Vu, and we can rewrite (11) as

where Jnx = ,dHu =
x ajdH etc. Hsub (X(VU), U (Vu),Iu (Vu), Vu) = ° (14)

Now we cut the circuit on the interface nodes u, and partition the Since for any Vu, we can find X(Vu), U(Vu) and Iu(Vu) to satisfy
circuit into two independent parts, as shown in Figure 4. For sim- (14), in this solution space, we have
plicity, we assume the top level circuit takes currents Iu = [il, i2, jj,ip]T dHsub(X(Vu), U(VU) Iu(Vu), Vu)
as input, and outputs voltages on interface nodes Vu = [v Vu,...,vp]T; 0 -
The subcircuit takes voltages Vu = [vI, V2 ..., vp]T as input, and out- . dx
puts currents L = [i I. ...,. i,]T that is applied to the top level as D b OTHsub Hsub H0bL (15)
input. Using this input/output relation, we can write the harmonic = + 0u.4 a
balance equation for the top level circuit as KV dxAX AU d10Jt

Htop (l0u,nrY) = ( HuP ((U'LJY))) 0,° (9)X
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(ax \

dU I dHsub dHsub dHsub dHsub modeled subcircuit is

iIav=_ ax ' du ' diu dVu (16) f) dx
/ l aHsub t = Jsub VdHsubdv. VU (6 dU __

sub- dVu dVu

where Jsub is the Jacobian matrix of the subcircuit, Eb is the input = ( x JxU 0 0 (22)dVup JUX ~~~~~~~~JUUSub 'P
vector that can be obtained from subcircuit equation, and dIu is the ( lp 0 (pdv.u
Jacobian of the macromodeled subcircuit we need for formulating XX0
top level circuit equations. Adding du to Juu,0p in (10), we make =- 1P )
the Jacobian of the top level Jacobian complete. -JUXJxx1JxU+JUsub

This macromodel is an exact model that exactly represents the
behavior of the subcircuit [21]. Once du is calculated, we can = =JUXJ7-jXU-JuUSUb (23)
apply this Jacobian to formulate the circuit equation for the top Vu
level simulation. Quadratic convergence can be achieved by using Applying the Jacobian of the macromodeled subcircuit to the top
this method [21], and the PPV extracted from the top level Jacobian level Jacobian, we obtain the top level Jacobian matrix of the hier-
is valid, as shown in Section 4. archical HB solver

= uutop + JUUsub - Jux Jxu JuY)JtOPh yU vY/ 24

Juu -Juxjxx~Jxu JUY
V yU JyYJy

By comparing (19) and (24), it is not difficult to show that [Vu; Vy]
4. HIERARCHICAL PPV EXTRACTION in (19) satisfies

In this section, we show that the PPV extracted from the top level JT Vu 0.(5Jacobian of the hierarchical harmonic balance simulation is valid, toPh VY )
and develop a method for extracting the PPV for all subcircuits
hierarchically from their multilevel harmonic balance Jacobians. Hence, the top level Jacobian is oscillatory, since it has an eigen-
We still use the simple circuit in Figure 3 for proving the validity value of 0. We can apply the augmented Jacobian method to cal-

of the PPV extracted from the hierarchical harmonic balance sim- culate the PPV for the top level circuit. If we apply the augmented
ulation. The proof can be extended to more complex circuits with Jacobian method to the top level Jacobian, and obtain the top level
multiple level hierarchy easily. PPV from hierarchical simulation

Since the PPV is a vector in which each entry represents the os- ( VU
cillator's phase sensitivity on corresponding node, we can express Vtoph = /Uh ) (26)
the PPV of the circuit as Yh

which satisfy JtOPh 0, or
V- Eu ' (17)

wV (Juu xuJxxJuxJ.vu, .( Vuh ) =0. (27)
where V is the PPV of the whole circuit, Vy is the PPV of nodes in Juy JyyJ VYh
the top level circuit, Vx is the PPV of the subcircuit, and Vu is the
PPV of the interface nodes. The Jacobian matrix of the circuit in Comparing (19) and (27), we find if we calculate the PPV for sub-
Figure 3 has the form of circuit x using

( Jxx Jxu 0 VXh Jxx JuxVX (28)
J= t Jux Juu JuY' (18) the resulting PPV from hierarchical simulation0 Jyu Jyy

In [16], the PPV has been shown to be the only vector in the null ( Vh (29)
space of jT, Hence, we have the relationship JTV = 0, or YhJ

( JT JT 0 \/ VX satisfy (19). Hence, the PPV extracted using our macromodel based
xu Juu J Vu |=0. (19) hierarchical simulation is valid: it is exactly the same PPV calcu-
0 jT JT lated using direct harmonic balance simulation. The PPV of theoiuy yy VY subcircuit can be calculated using (28), when the top level PPV is

If we partition the circuit as shown in Figure 4, the Jacobian of available.
the top level circuit can be expressed as

(Ju U,0 JUY (20 5. SIMULATION RESULTSitop tJyu Jy y (2) In this section, we apply and evaluate the hierarchical PPV ex-
traction technique. We implement the proposed method in our Mat-

And the the Jacobian of the subcircuit can be expressed as lab/Python based analog/RF simulation platform, and compare to

( JxX Jx 0 direct augmented Jacobian method. The oscillator we use in our
Jsub = 'uX JuU b Np|v(1 simulation is a cross-coupling LC oscillator, as shown in Figure 5.Vu\ 0 'sub p (21 The oscillator has a bank of gated capacitors controlled by digital

P ~~~~~~~~signals, for generating different frequencies. All simulations are
Now we macromodel the subcircuit, the Jacobian of the macro- performed in MATLAB, using BSIM3 device model.

1020



a RI= I= 4 W|n
4C -- ~~~~Hier. PPV solver

C5 *=20f8C3 f 111f 36 Direct PPV solver
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20-0
_r=-8.37 R20 t21.

L7 =In Rl14=400m Rl5S400m L8=ln 11
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-20

net58 -30
net60 -4C1"n , M12 MiO X l t M9 Ml13 n- - 0 0.2 0.4 0.6 0.8 1

injectionsignal netOS7 iJection signal time (T)

v0 I M31 Figure 7: PPV waveform of node (1) (4 gated capacitors).

-----------------F
Cl+I ci- 40

Hierarchical PPV solve
30- e Direct PPV solver

control voltage 2 c.

it 2~~~~~~~~~~~~~~~~~~~~~~~0X0

Gated capacitor 10
I- 4

0-0 -

0-

Figure 5: A cross coupling LC DCO with capacitor bank. -10
-20

-30 -.We first simulate the circuit with four gated capacitors that are all
turned on, and extract the PPV, using both direct and hierarchical _40
methods. The system size is 78 if the direct harmonic balance is 0 0.2 0.4 0.6 0.8 1
applied. Using the hierarchical method, we simulate a top level cir- time (T)
cuit of size 44, and a subcircuit of size 14. The direct method takes
about 4 minutes to finish the simulation and PPV extraction; the Figure 8: PPV waveform of node (1) (one capacitor is off).
hierarchical method takes about 7 minute to do the same job. The
direct method is faster in this case because the circuit is small and
the conditioning of the circuit is good. The oscillation waveform
and the PPV of the node (1) in Figure 5 are shown in Figure 6 and and the PPV of the circuit, since it is off. The system size is 88 for
Figure 7. Two methods have exactly the same results. The direct direct method. Using hierarchical method, we reduce the circuit
method works well in this case, as all gated capacitors are on, so to a top level of size 44, and two subcircuits of size 14. The new
that there has no large RC pole in the circuit. gated capacitor introduces large RC poles to the circuit, so that the
We then add one more gated capacitor to the circuit, which is direct harmonic balance has trouble to converge: it converges in 29

turned off. This new gated capacitor should not affect the waveform Newton iterations, total computational time is about 14 minutes.
For the hierarchical method, its iteration number does not increase,
computational time is about 9 minutes. The 2 minutes increase in
simulation time is due to we need to simulate one more subcircuit.

2.5 1-Hier HB, 1=1.76608857e+09 In Figure 8 and Figure 9 , we plot PPV waveforms of the node
2.4 - e - Direct HB, f=1.76608858e+09 (1) and the node (2) from both methods. There is slight differ-

ence between direct method and hierarchical method in this case.
2.3 By comparing Figure 8 with Figure 7 in the first case carefully, we
2.2 observe the amplitude of the PPV waveform from direct method

> 21 , % reduces slightly in Figure 8, which should not happen since the cir-
cuit does not changed. This small difference can be due to numer-

2 ical errors when solving (6) using an augmented Jacobian matrix
> 0 . 5 with bad conditioning. The hierarchical method does not has this

1.9 XXproblem, since it has the nature to isolate the bad conditioning sub-
1.8 circuit from the top level. If circuits are very large and have many
1.7 X 0Rk gated capacitors that are off, we expect the direct method will havelarger numerical error, and the hierarchical method will give the
0.0 PPV more accurately.00.2 ~~time(T) 08 1Finally, we simulate and extract the PPV for the full circuit with

64 gated capacitors. The circuit has about 200 transistors, and the
system size is more than 500. We have trouble to apply direct har-

Figure 6: Oscillation waveform of node (1) (4 gated capacitors). monic balance in this case due to memory issue. Using hierarchical
method, we simulate a top level of size 44 and several subcircuits of
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Figure 9: PPV waveform of node (2) (one capacitor is off). Figure 11: PPV waveform of node (1) (64 gated capacitors).
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