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Abstract-We present a novel method for generating small, accurate
PLL macromodels that capture transient response and jitter performance
with unprecedented accuracy, while offering large speedups. The method
extracts and uses a highly accurate oscillator phase macromodel termed
the TP-PPV macromodel. The core idea behind the novel extraction
procedure is to combine concepts from strongly nonlinear trajectory
piecewise macromodeling techniques together with PPV-based time-
shifted nonlinear phase macromodels. As a result, TP-PPV generated
macromodels offer excellent global as well as local fidelity. These
properties are necessary for handing large excursions in PLL control
voltages during capture/lock in, e.g., hopping frequency synthesizers.
We validate TP-PPV on a 5-stage interpolative ring VCO based PLL
and compare results against full simulation, as well as against prior
macromodels. We show that, unlike prior macromodels that only work
well when the control voltage of the VCO has small excursions, the
TP-PPV macromodel provides near-perfect matches against full SPICE-
level simulation over a wide range of design scenarios, while achieving
speedups of about three orders of magnitude.

1. INTRODUCTION
PLLs [1] are widely used in all mixed-signal and digital systems.

Their applications include frequency synthesis, clock and data re-
covery (CDR), signal modulation and demodulation, low-phase-noise
clock generation, etc.. Even though PLLs are familiar to designers,
their design still presents significant challenges. Modern PLL design
involves trade-offs between various conflicting design metrics such
as phase noise/jitter, lock and capture range, acquisition time, etc.,
for different kinds of applications. Simulation tools are extensively
used in design processes for finding a good balance between design
metrics to meet the performance requirements. Unfortunately, existing
full circuit simulation tools (such as SPICE [2]), are very inefficient
for the simulation of PLLs at the transistor level [3]; and this problem
worsens when dealing with frequency synthesizers with large divide
ratios. It is not uncommon for many months to be required to finalize
the design of today's advanced PLLs. As a result, a fast and accurate
method for PLL simulation and jitter analysis is of great practical
importance for the semiconductor design industry.
To improve simulation efficiency, macromodel based simulation is

widely used in PLL designs -full circuit simulation is replaced
by the use of small, simple behavioral models to approximate
PLL responses [4], resulting in great speedups. In a typical PLL
macromodel, the voltage controlled oscillator (VCO) is replaced by a
phase-domain oscillator macromodel. Linear VCO macromodels [4]-
[6], in which the VCO is represented as a simple linear integrator
that converts input voltages to output phases, are widely used due to
their conceptual and implementation simplicity. However, the linear
approximation of the VCO in phase domain is an oversimplification
[7] as a result, they are not well suited for predicting many important
aspects of PLL performance.
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The shortcomings of linear VCO macromodels are largely over-
come by the use of dynamically time-shifted nonlinear phaose macro-
models [7], [8], which have been successfully used for predicting
injection locking [9] and loop non-idealities in PLLs [7]. In a
nonlinear VCO macromodel, the VCO is represented by a simple one-
dimensional time-shifted nonlinear phase equation [10 . A quantity
called the perturbation projection vector (PPV) [10], [11] is the basis
of the time-shifted nonlinear phase equation; it can be extracted
automatically using numerical methods [10], [12], [13]. The far
greater accuracy of the time-shifted nonlinear phase equation stems
from its provable correctness for small perturbations [10].

However, despite being nonlinear, time-shifted oscillator macro-
models still have the drawback that they are small signal models
extracted from linearizing oscillators about their steady-states; they
only work well when perturbations to the oscillator are small. This
is not a big problem in the many applications where external pertur-
bations signals do remain relatively small. However, in certain PLLs
(especially frequency synthesizers), the control voltage of the VCO
can undergo large swings, varying from 0 to V1d. Large swings of
the control voltage tend to invalidate even the time-shifted nonlinear
phase macromodel; indeed, all previous PLL macromodels [7], [8
become unsuitable.

In this paper, we present an algorithm for generating strongly
nonlinear phase domain macromodels of VCOs that take into account
both time shift and amplitude nonlinearities. Our technique is based
on generalizing the time-shifted PPV using piecewise techniques
from TPWL and PWP [14], [15]. TPWL/PWP offer good global
fidelity [14], especially useful for large control voltage swings, while
nonlinear time-shifted phase macromodels ensure provably accurate
local fidelity [10] for small perturbations such as power supply
noise. By combining both techniques, we obtain a more globally
accurate VCO macromodel that predicts oscillator responses well at
any control voltage.

In our method, several nonlinear VCO phase macromodels are
extracted about different control voltages, then combined together to
form a uniform trajectory piecewise PPV-based (TP-PPV) nonlinear
phase macromodel. We propose a new modified form for the phase
equation of the combination, since the original nonlinear phase
equation of [10] is no longer directly applicable when the free-
running frequency of the oscillator is not a constant. The net result
is a more generally applicable and accurate PLL macromodel than
previously possible. This macromodel captures the dynamics of
complex phenomena in PLLs, such as step input response, jitter
induced by reference noise and low-pass filter noise, etc., and
replicates qualitative features from full SPICE-level simulations more
accurately than previous techniques, especially when the control
voltage has large swings.
We validate the proposed technique using a PLL with an XOR

phase detector, a 2 frequency divider and a 5-stage interpolative
ring VCO. We simulate transient responses and jitter of the PLL using
our method, and compare to other macromodeling techniques and
full SPICE-level circuit simulation. The numerical results obtained
confirm that our approach captures the transient responses of the
PLL with much better fidelity than previous techniques, achieving
indeed, near-perfect matches with SPICE-level circuit simulation for
PLL jitter prediction.
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The remainder of the paper is organized as follows. In Section II,
we briefly review previous PLL macromodeling techniques and piece-
wise techniques. In Section III, we present our trajectory piecewise
nonlinear oscillator macromodeling approach. In Section IV, we
illustrate the proposed technique using a 5-stage interpolative ring
VCO based PLL. In Section V, we present simulation results of our
macromodel and compare with previous macromodeling techniques
and full SPICE-level simulation.

II. RELEVANT PREVIOUS WORK
In this section, we summarize relevant macromodeling techniques

that relate closely to our work, including the PPV-based oscillator
and PLL macromodels and trajectory piecewise macromodeling tech-
niques.

A. PPV Based PLL Macronodel
In PPV based PLL macromodels [7], [8], the VCO is modeled

using a nonlinear time-shifted oscillator macromodel [10], 16].
[16] postulated that an oscillator's output under perturbation can be
expressed as

xp (t) = Xs(t + a (t)) +y(t), (1)

where x,(t) is the steady-state solution of the unperturbed oscillator,
while xp (t) is the solution of the oscillator under perturbation. The
effect of the perturbations is decomposed into two parts in the above:
a phase shift a(t) and an amplitude deviation y(t).
The amplitude deviation y(t) can be ignored to first order for PLL

analysis, since it is small and it is the phase that is of major concern. It
was shown in [10] that a (t) is governed by the nonlinear differential
equation

a(t) = i (t + ao(t) ) b (t), (2)

where wr is the VCO's free-running frequency.
A drawback of this method is that the macromodel is a small-signal

model, extracted for one specific VCO control voltage. If any "input"
to the VCO (such as its control voltage) varies over large ranges, the
macromodel becomes increasingly inaccurate.

B. Trajectory Piecewise Techniques
The key idea of trajectory piecewise techniques [14], [15] is to

put together a nonlinear system using a number of different of small
signal models valid in adjoining polytopes of a system's state space,
each centered around an "expansion point". The chief advantage
of piecewise linear models is that, under the right circumstances,
they feature good global fidelity for strongly nonlinear systems. This
property is complementary to that of small-signal models, which are
typically very accurate in small regions but suffer from poor global
accuracy for strongly nonlinear systems.

Consider a nonlinear system in differential algebraic equation
(DAE) form

dx
dt

-Cyx

where x is the unknown state vector and f(x) is a nonlinear function
vector.
A TPWL model [14] for (5) can be built as follows:
1) Linearize (5) at various expansion points {xi}

dx
__-i uE f(xi) +Ai(x x1 +Bu,

dt
2) Each linearized model is reduced to

dt f(zi) +Ai ) Bdt

y = Cx. (6)

y Cz (7)

where b(t) is a vector of external perturbations to the oscillator and
v1 (t) is an quantity called the Perturbation Projection Vector (PPV).
The PPV can be extracted from the oscillator's steady-state solution
using numerical methods [10], [12], [13]. It is a vector of periodic
waveforms with the same period as the free-running oscillator. Each
waveform represents the "nonlinear phase sensitivity" of the oscillator
to perturbations applied at the correspondinrg circuit node.

7+ KpfdA(P H(S) ex(t) vI(t±+a(t)).b(t)

Fig. 1. PPV based PLL phase-domain macromodelL

Using the nonlinear phase equation (2) to replace the VCO circuit
in the PLL, we obtain a PPV based PLL macromodel, as shown in
Figure 1. It has been shown [7] that the using the PPV macromodel
not only predicts the PLL's frequency variations due to control voltage
changes, but also captures timinrg jitter due to other perturbations
(e.g., power/ground supply noise) applied to the VCO. This can be
seen more clearly if we rewrite (2) in the form

(?t) =-- v,c (t + ac(t)) b,n (t) +vnT t+o() b^, (t), (3)

where b,, (t) is the perturbation at the control voltage, vv (t) is the
PPV of the control node, bn,(t) is a vector of noise currents/voltages
applied to the VCO, and vT (t) is corresponding PPVs. The first term
on the right hand side of (3) models the transient response of the PLL
and jitter induced by the LPF's output; the second term on the right
hand side models the PLL jitter due to other perturbations applied to
the VCO.
When the phase deviation a(t) is obtained by solving (3), the total

phase of the VCO in radians can be calculated using

Ov-co(t ) =:: "o(t + af(t)) (4)

using linear time-invariant model order reduction (MOR) tech-
niques.

3) The reduced models are combined together using a scalar
weight function to form a single reduced nonlinear model:

Ed =Lw(E (zi) +Ai(z-zi)) +Bu,dt i=,
y = Cz, (8)

where wi (z) are weight functions, which satisfy 0 < wiz) <
and _wiv(z) = 1.

III. TRAJECTORY PIECEWISE NONLINEAR VCO MACROLMODEL
In this section, we combine the PPV phase macromodel with

ideas from trajectory piecewise techniques, deriving a trajectory
piecewise PPV-based (TP-PPV) macromodel for the VCO. Note
that, unlike prior trajectory piecewise techniques [14], [15], each of
the time-shifted PPV models being put together in our method is
furndamentally and strongly nonlinear, this is crucially responsible
for the accuracy of TP-PPV.

A. Nonlinear Phase Macromodel And Its Shortcoming For The VCO
The phase deviation due to small sigral perturbations can be

represented by the nonlinear time-shifted equation [10]

(9)
In this equation, a (t) is the phase deviation caused by a perturbation
b(t); v- (t) is the PPV [1L0].
As noted in the previous section, (9) works well when the perturba-

tion b(t) is small, but its accuracy deteriorates under large fluctuations
of, e.g., the control voltage. The reason for this is that the PPV v- (t)
can change significantly as a furnction of the input. For example,
Figure 2 depicts PPV waveforms of an interpolative ring VCO with
DC control voltages of 1.2V and 2.4V; it can been seen that they are
quite different. Hence, if we use the PPV at v,t,l = 1.2V to solve the
phase equation (9), the macromodel becomes very inaccurate as the
control voltage changes to 24V.
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(t) / I UT dT (13)

where f(T) is the VCO free-running frequency at time , determined
dynamically by the changing control voltage v (r). (12) can then
be rewritten as

o(t) v(j f(T) (I +x(T)dT)d b (14)

v (/ f (T)dT + f(T)U T))dT) b(t) (15)

Multiplying both sides with the current free-running frequency f(t) C
{fi, the phase equationr can be written as

o 0.2 0.4 0.6 0.8

Fig. 2. PPV waveforms of a VCO with different control voltages.

One possible means of overcoming this drawback is that to
calculate the PPVs of the VCO for different control voltages and
then to (somehow) switch the PPV waveforms suitably during the
simulation. However, this approach is ad-hoc; we prefer a more

structured approach that provides a concrete nonlinear differential
equation as the macromodel. The trajectory piecewise approach
presented below concretizes the intuition of switching from one

PPV to another appropriately, within the framework of differential
equations.

B. Piecewise Nonlinear VCO Macronodel
We cannot simply apply the trajectory piecewise approach of

TPWL/PWP (Section 11-B) to (9) directly. Firstly, the VCO has
different free-running frequencies at different control voltages. As
a result, the PPV in (9) also has different periods when the control
voltages are different; it is not straightforward to simply combine
equations valid at different frequencies directly. Secondly, the state
variable a(t) in (9) is the time shift due to perturbation, which is used
to calculate the VCO phase using (4). a(t) is only meaningful in the
context of a particular free-running frequency, i.e., oc(t) at different
free-running frequencies have different meanings. Hence, we cannot
use a(t) as the state variable when we apply the piecewise technique,
as the state variable in a piecewise system should be consistent for
different expansion points. In the following, we derive a new phase
equation that addresses these issues.
Assume that we solve for the steady-state solution of the VCO at

several DC control voltages vci , i rn, and obtain correspond-
ing steady-state frequencies {ffi and the PPVs {vl, (t)}. The nominal
phase equation for each vc, can be written as

(x(t) 4 (t+ ait b(t) (10)

Since the PPVs V-1 (t) have different frequencies, we cannot combine
(110) directly. To make the combination possible, we first normalize
the period of each vfI(t) to 1; then, (10) can be rewritten as

n, (1 1)

where vi (t) is the normalized PPV with the period of 1, and fi is the
free-running frequency at the ith value of the large-signal DC control
voltage. A generic form of (I ) can be written as

tt-v{I (t a(t))) b(t) (12)

where vi C l and f C f l Within (I2)ldefine (tr) ff (t+at
to represent the phase of the VCOvwhich is only true if the VCO
free-running frequency is a constant. However, if the VCO control
voltage switches within {v } and the free-running frequency varies
within fff, the phase of the VCO can be generalized to be

f( ) (t) ((t) VT (tf(T)dT+ (T)a(T))dT) b(t),

Now we introduce the new variables

00 (t)= f,f(T)dT, 0 (t)= f;(T) & (T))dT,

(16)

(17)

where 0o(t) is the phase of the VCO without perturbations and ¢(t)
is the phase deviation of the VCO due to perturbation. Using these
new variables, (16) can be written as

¢(t)=)-:f(t) vI(¢o (t)+ 0(0) b(t). (18)
In (18), Po(t) can be calculated incrementally at runtimce. ¢(t) is our

new state variable which already incorporates frequency information
implicitly and is hence a single, consistent phase variable even as

when we switch between different free-running frequencies. Hence,
we can apply (18) to generate a piecewise VCO phase equation.

Using an appropriate weight function [14], [15], the piecewise
VCO phase equation can be expressed as

m

¢)(t)=Ewi(t)
Tvl(0(t)+ (t)). b(t), (I 9)

where wi (t) are weight functions. The phase of the VCO can be
calculated using

Ovco(t) = Qo (t)+ 0(t) (20)
Using (19) as the VCO phase macromodel, the resulting PLL

macromodel has considerably better global fidelity than the approach
in Section II-A, as shown in the next section.

IV. A PLL APPLICATION OF TP-PPV

In this section, we describe a realistic PLL application, shown in
block form in Figure 3, of TP-PPV. We demonstrate how to generate a

high-fidelity PLL macromodel using our technique, step by step. The
PLL has an XOR phase detector, followed by a simple charge pump

and a second-order low-pass filter. The VCO is a 5-stage interpolative
ring oscillator with a tuning range of 160MHz -390MHz when
the control voltage is between 0 -3V. A D flip-flop is used for
2 division. We first macromodel each constituent block separately,

then put the macromodels together to form a high-fidelity PLL
macromodel.

A. The VCO MaVcromodel

We sweep the control voltage from 0V to 3V in steps of 0 3V
simulate the VCO using harmonic balance simulation, and extract
PPVs for different control voltages [11]. The nonlinear relationship
between the control voltage and the oscillation frequency is plotted
in Figure 4(a).
We normalize the freqluencj of the PPVs to 1, and plot the PPV

waveform of the control node in Figure 4(b). In Figure 4(b), one

horizontal axis is time, from 0 to 1s, since the frequency of the PPV
is normalized to 1; the other horizontal axis is the control voltage,
from 0V to 3V; the vertical axis is the PPV (or the phase sensitivity
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Fig. 3. PLL block diagram.
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(a) Frequency vs control voltage.

waveform) of the control node. We can see from the figure that the
waveforms of the PPV depend strongly on the control voltage. Hence,
TP-PPV is useful and necessary for this VCO.

Once {fi} and {v1,(t)} are available, we can apply (19) to model
the VCO using the trajectory piecewise technique outlined above.
The trajectory piecewise VCO phase equation can be expressed as

,t) = wi(t0fi (vi vco(t)) vct V) +[ 'v(tn nt))n

(21)
where ovco (t) = 0o (t) + 0 (t) is the VCO phase, fi the VCO free-
running frequency on control voltage vc,, and wi(t) is a weight
function. In this equation, we split the dot product4 i. (0, t)) bb(t) in
(19) into two terms: the first term vVc (pvco(t)) (vct(t)- vc) models
the VCO's phase response due to fluctuation on the control voltage,
in which v^c (t) is the PPV of v.t,l node on control voltage vc, vctrl (t)
is the current control voltage; the second term vT(- n(t))n(t))
captures the phase deviation of the VCO due to noise applied to
other nodes in the VCO.

0>.

0-

3

control voltage (V)

(b) PPVs o

time

Af the VCO on different control voltages.

Fig. 4. Frequency and the PPV waveforms of the VCO on different control
voltages.

B. Phase Detector, Charge Pump and Low-pass Filter

Figure 5 depicts the phase/frequency detector, the charge pump
and the low-pass filter of the PLL. In the figure, v1 f is the reference
signal, V1W is the voltage from the frequency divider, Vjfd is the
output voltage of the phase/frequency detector, IPUMP is the current
of the charge pump, and Vct,l the control voltage for the VCO.
From full simulations, we find that the response of the XOR phase

detector to inputs Vref and VIfd is very ideal. Thus, we model the
phase detector using an ideal XOR function with a gate delay.

VpJfd (t) XOR(Vref (t -tpfd) ^ Vfd (t- tffdd)) (22)

where tpfd is the XOR gate delay.
From Figure 5, we know the charge pump current Iptp, depends

on two input voltages: vp,fd and vctri, or

Ipump(t) Fpump(vpf)d t) Vc ri(t)) (23)

where Fp ,,po is a nonlinear function, which can be identified
numerically using DC sweep analysis. We perform a 2-dimensional
DC sweep on vpfd and V,t,l, and plot IPUmp as a function of Vpfd
and v,tr/ in Figure 6.

Since Ipump (t) can be evaluated by performing a 2D interpolation
on Figure 6, the DAE equation of the low-pass filter can be written
as

d d
C dt Vctrl (t) + C2 (vctrl (t) v t

1 ump .t)
t dt (24)

C2 t (VI (t) V (tr ) + (I =dt R

C. Frequency Divider
Since the output of the frequency divider goes to an ideal XOR

phase detector, small deviations in the output's amplitude can be
ignored; we model the frequency divider as a square wave generator
with delay

Vfd (t) S(Ovco (t -tfd ))7 (25)

where So) is a square wave function with the period of 2 (for a
division ratio of 2), ¢, is the VCO phase, and tfd is the frequency
divider delay.

D. TP-PPV PLL Macromodel
Putting together the macromodels of each component, we can write

DAE equations to macromodel the behaviors of the PLL:
m

9(t) =-Wii(t)i(vci(vco (t )(Vct (t V)- ) +Vi ( n(t)) t)
i=I

d d
C dt Vctrl (t) + C2 (Vctrl (t) VI() = Ipump(t)dt ~~dt

C2 (vI (t )) RVI(t) =+
dtR

(26)
In (26), bvco.t) is the phase of the VCO, which can be calculated

using (20). IUmp (t) can be evaluated using

lpuwzp(t) =Fpumzp(XOR(vr^e,f(t-tp~fd) 7S(Ov(.,o(t-td))),Vctri(t)),7 (27)
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different v,, happens, the TP-PPV PLL macromodel provides almost
identical results as the PPV based PLL macromodel.

Using the phase domain PLL macromodel leads to significant
speedups in simulation time. For this PLL circuit, the runtime in

C2 MATLAB for full transient simulation with the SPICE level I device
N nmodel is about 5000 seconds, for a simulation duration of 100
V1 VCO cycles. However, it takes only 20 seconds to simulate the

same number of cycles using the macromodel - an approximately
R 250 times speedup. If we use the BSIM3 device model for full

circuit simulation, the simulation time increases to 19000 seconds,
translating to a 950 times speedup.

Fig. 5. Phase detector, charge pump and low-pass filter in the PLL.

full simulation Macromodel
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time (S)

(a) Full siniulation.
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x 10-7 time (S) x 10-7

(b) Macromodel.

Fig. 7. Step response of the PLL (ef = 104MHz).

3
Now we apply a larger step input: we change the reference

--II frequency from IOOMHz to 11IMHz. The simulation results are
3 shown in Figure 8. From Figure 8(a), it is clear that the PPV based

PLL macromodel is not able to match the full simulation well. In
contrast, the TP-PPV PLL macromodel exhibits a close-to-perfect
match, as shown in Figure 8(b).

Fig. 6. Pump current Ipu,
voltage v,trl

,vs phase detector output vpfd and VCO control
2.4 - Full simulation

- Nonlinear macromodel (PPV based)

where td tjfd + jd iS the total delay in the PLL loop. (26) can be
solved using any DAE/ODE solver, with reference voltage Vef (t) as

input.

V. RESULTS AND VALIDATION

In this section, we simulate the TP-PPV PLL macromodel of
Section IV, and compare the results against full SPICE-level sim-
ulation and the PPV based PLL macromodel proposed in [7]. All
simulations are performed using a MATLAB-based circuit/system
simulation environment. Since local fidelity properties of the PPV
based PLL macromodel have been extensively studied earlier [7], we
focus on the global fidelity aspects in this work.

A. Step Response Simulation

In the simulation, we first apply a reference frequency of I OOMHz
to the PLL, and run the simulation until the PLL is in lock. We
then increase the reference frequency and observe the PLL's transient
response due to this frequency step Since it is not eas to extract
the PLL's changing frequency from the time-domain waveforms of
full SPICE-level simulation, we plot the control voltages of the PLL
as a validation metric.

Figure 7 depicts the PLL's response when the reference frequency
changes from IOOMHz to 104MHz. The control voltage of the PLL
is plotted in this figure. There are small high frequency fluctuations
in the control voltage due to the non ideality of the LPF In this ca se,
both macromodels (PPV and TP-PPV) work well: the patterns from
the macromodels are very close to the result from full SPICE-level
simulation. Since the step is very small and no switching between

2.2

a 2

> 1.8

1.6

1.4

1.2 L
0 5 10

time (S)

(a) Full simulation vs. PPV base
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15
x 10-8
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(b) Full simulation vs. TP-PPV PLL macromode

Fi 8. Step response of the PLL (f, -llMH)
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We keep increasing the step size of the reference, simulating the
PLL with reference frequencies 125MHz and 143MHz. The results
are plotted in Figure 9. With such large step sizes, the control voltage
exhibits very large swings during the capture/locking process, the
PPV based PLL macromodel makes totally wrong predictions in these
cases. However, the TP-PPV PLL macromodel of this work still
provides excellent predictions, with near-perfect transient response
matches evident in Figure 9(a). When the reference frequency is
143MHz, the PLL is unable to lock, which is predicted correctly
by the TP-PPV macromodel, as shown in Figure 9(b).

x 10

4

3

°9 2

ll - i'0
a)

0-2 f

TP-PPV nonlinear model
Full simulation

2.6

2.4

>2.2-

2
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0.5 1 1.5 2
time (S) x 10-7

(a) Full simulation vs. TP-PPV PLL macroirodel (J 125MHz).
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:' 1.8
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2 1.6
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1.4-

AI

1.2

5 10
time (S)

15

(b) Full simulation vs. TP-PPV PLL macromodel (f,
x 10-8

= 143MHz).

Fig. 9. Step response of the PLL.

B. Phase Deviation Sinulation
Since PLL jitter simulation using the locally-accurate PPV macro-

model has already been extensively studied in [7], here we provide
a simple example demonstrating the jitter prediction ability of the
TP-PPV macromodel. We first make the PLL lock to a reference
frequency of IOOMHz, then apply a small, periodic phase noise to
the reference signal, and simulate the PLL phase deviation due to
reference jitter. The simulation results are plotted in Figure 10. In
this figure, the vertical-axis is the phase deviation of the PLL due to
reference jitter. Again, our TP-PPV macromodel offers good matches
against full SPICE-level simulation.

VI. CONCLUSIONS
We have presented a novel VCO macrommodeling technique by

combining strongly nonlinear trajectory piecewise macromodeling
techniques with PPV-based time-shifted nonlinear phase macromod-
els. The resulting TP-PPV macromodeling technique offers not only
local fidelity, but also excellent global fidelity by virtue of its

-4
0 20 40 60 80 100 120 140 160 180 200

time (T)

Fig. 10. Phase deviation due to reference jitter.

piecewise nature. This leads to more broadly applicable and accurate
PLL macromodels than previously available. We have demonstrated
the proposed techn1ique on a 5-stage interpolative ring oscillator based
PLL illustrating the process of TP-PPV based PLL macromodeling
step by step. The simulation results show the TP-PPV PLL macro-
model is able to simulate a variety of PLL transient responses and
capture PLL Jitters at SPICE-level accuracy, with speedups of about
three orders of magnitude.
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