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Abstract— System-level variability analysis and design centering for
oscillators relies on fast and accurate methods for obtaining the paramet-
ric sensitivities of higher-level performances (such as center frequency)
directly from phase macromodels. We present an efficient and elegant
method, involving no numerical simulation, for finding parametric
sensitivities of oscillator frequencies directly from nonlinear phase domain
macromodels. We validate the method, termed FS-PPV, on numerically
extracted ring and LC oscillator PPV macromodels, as well as on a purely
analytical exact PPV macromodel for idealized ring oscillators. We apply
FS-PPV to find statistical distributions of oscillator center frequencies and
validate these distributions against Monte-Carlo simulations. FS-PPV
achieves speedups of more than 3000× over brute-force Monte-Carlo
based parameter variation analysis.

I. INTRODUCTION

Oscillators are fundamental objects in many physical and engi-
neering domains – for example, in electronics (e.g., VCOs, PLLs),
mechanics (e.g., mechanical clocks), optics (e.g., lasers) and biology
(e.g., circadian rhythms, neural signaling, heart muscle cells). The
free-running frequency of an oscillator is one of its most important
properties. In high-speed digital, mixed-signal, RF and analog circuits
alike, a central goal of oscillator design is to accurately place, and
to stabilize, its free-running or “center” frequency. The exact depen-
dence of center frequency on oscillator design parameters is typically
complex – for example, in on-chip LC oscillators, it depends not
only on nominal LC tank parameters but also on device/interconnect
parasitics and the nonlinear gain properties of active devices. The
dependence of center frequencies on semiconductor device param-
eters and parasitics is even more acute for ring oscillators, which
are of central importance in most integrated applications. Because of
the non-trivial dependence of frequency to a variety of parameters,
accurate tools for finding the relationship quickly and accurately play
an especially critical rôle in oscillator system design.

As is well known, technology scaling from the 90nm to the 65nm
node in recent years (with 45nm and 32nm on the way) [1] has led to
a dramatic increase in the importance of manufacturing tolerance and
parameter variability issues. At these feature sizes, layout geometries
and process parameters are subject to large variations. Underlying
lithographic and process parameter variations translate to uncer-
tainties in electrical parameters such as threshold voltage, parasitic
capacitances, etc., which, in turn, impact the center frequencies of
oscillators. It is crucially important during design to quickly but
accurately obtain information about yield and variability with regard
to center frequency. In this context, random dopant effect1 and surface
roughness2 are two effects of particular concern, since they directly
impact threshold voltages of MOS devices.

Being able to predict the effects of variability properly depends
on several components: accurate deterministic and/or statistical char-
acterization of all the varying parameters, good device models,
and efficient analysis/simulation algorithms for predicting circuit
performance variability and yield [2], [3]. The varying parameters
are ultimately a set of physical parameters (e.g., doping levels and
profiles, geometrical dimensions etc.), each one of which involves
both correlated and uncorrelated variations [2]. For example, the vari-
ation of dopant density level includes both a correlated part — which
comes from global variations (e.g., die-to-die doping variations) or
deterministic variations (e.g., dopant gradients across chip) — and
an uncorrelated part, which comes from local random variability
(e.g., random doping fluctuation) and systematic effects that are
inadequately modelled (e.g., dopant variations that are sensitive to
proximity effects) [2], [4]. Physical parameters with such variations
affect important electrical parameters, such as MOSFET threshold
voltage. Good device models, featuring physically based parameters,
are important for proper characterization of variability – for example,
models such as EKV and PSP are preferred over BSIM, while features
hundreds of empirically fitted, redundant parameters.

1Typical numbers of dopant atoms in a MOS channel now number under
100 atoms.

2Gate oxide thicknesses today correspond to about 10 molecules of SiO2.

The most commonly used analysis method for obtaining circuit
performance statistics is the Monte Carlo method. For analyzing
frequency variability, Monte-Carlo consists simply of randomly
sampling parameters according to specified probability distributions,
finding the center frequency of the oscillator for the given parameter
choices (using a simulation algorithm such as harmonic balance [5])
and thus obtaining a distribution of center frequencies. The technique
is extremely general and broadly applicable; however, it suffers from
being very computationally expensive since it typically requires very
large numbers of samples3. A widely used alternative approach is
to first approximate the relationship between parameters and circuit
performances (e.g., an oscillator’s center frequency) as a simple linear
function, specified by the sensitivities of the performance to each
parameter of interest. This linear function, once available, can be
evaluated rapidly for any given choice of parameters; more impor-
tantly, analytical or fast computational methods can map statistics
or min/max bounds of the parameters directly to statistics/bounds of
performances.

Given a SPICE-level circuit for an oscillator, finding the sensitiv-
ities of its center frequency with respect to parameters is a long-
solved problem; adjoint sensitivity techniques in conjunction with
oscillator steady state computation methods like harmonic balance
and shooting [5], [6] are typically used. However, this capability is
not sufficient for variability analysis of large on-chip systems today,
which are typically comprised of many hierarchical circuit blocks. For
system level simulations, it is common practice to use macromodels to
replace these blocks in order to make computation tractable [7]–[10].
This is especially the case for oscillator-based systems, where phase-
domain macromodels — particularly, nonlinear time-shifted PPV
macromodels [11]–[13] — are heavily used. Just as for individual
circuits, it is important to assess the impact of variability on systems
comprised of macromodels. Indeed, it is common for the SPICE-
level circuit of an oscillator not to be available to a system simulator
(e.g., due to intellectual property concerns); only the macromodels
are available.

For variability analysis of systems comprised of macromodels, the
macromodels must themselves be parameterized. While the problem
of coming up with good parameterized macromodels is itself a diffi-
cult one in general, we have recently been successful in developing a
general procedure for rapidly extracting accurate parameterized PPV
macromodels for any oscillator [14]. By employing the parameterized
PPV macromodel in transient or harmonic balance (HB) simulations
[14], [15], it is possible to calculate the impact of variability in
the parameters on center frequency changes. This process does not
directly provide center frequency sensitivity information, however;
computing sensitivities via finite differences on transient/HB simula-
tions is cumbersome and can suffer from accuracy/roundoff errors.

In this paper, we present a simple and elegant means to calculate
the frequency sensitivity of any oscillator from a parameterized PPV
macromodel. Our method, termed FS-PPV, is based on an exact
analytical result that we derive: the center-frequency sensitivity of an
oscillator is simply the average over one cycle of the parameterized
PPV. In addition to its computational utility, the simplicity of this
result translates into increased design insight.

We demonstrate the use of FS-PPV for ring and LC oscillators,
with numerically obtained PPVs as well as with purely analytical
PPVs for an idealized 3-stage ring oscillator. We firstly apply our
new method to a three-stage ring oscillator with ideal abruptly-
switched inverter. FS-PPV is validated by comparing the derived
analytical expression of frequency sensitivity to that in the previous
work. Secondly, taking two practical oscillators – a cross-coupled LC
oscillator and a 3-stage ring oscillator – we use FS-PPV to calculate
their frequency sensitivities and derive an simple expression for the
PDF of frequency assuming Gaussianly distributed, uncorrelated4 We
demonstrate that the output PDF matches results from Monte Carlo
analysis.

3its accuracy improves only as the square root of the number of samples
(i.e., relatively slowly).

4Correlated parameters are also handled easily, using principal component
analysis (PCA).
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The remainder of the paper is organized as follows. In Section II,
we briefly review the parameter variability aware PPV macromodel
[14]. In Section III, we derive an analytical expression calculating the
frequency sensitivity. In Section IV, we validate our new method by
applying it analytically to an idealized ring oscillator and comparing
with a previously known analytical result for this oscillator. In Section
V, we validate FS-PPV on two practical oscillators, find center
frequency PDFs, and compare against the Monte Carlo method.

II. PREVIOUS WORK - PARAMETER VARIABILITY AWARE,
NONLINEAR TIME-SHIFTED OSCILLATOR MACROMODELS

In this section, we briefly introduce the parameter-variability
equiped PPV macromodel.

A general oscillator can be described by an ODE equation,

ẋ(t)+ f (x(t), p∗) = 0, (1)

in which p∗ stands for the nominal parameters. It has been proved
[14] that, the steady-state solution under a small parameter variation
∆p can be expressed as

xp(t) = xs(t +α(t))+y(t +α(t)), (2)

where xs(t) is the steady-state solution of (1) and y(t +α(t)) is the
amplitude variations which can be omitted when parameter variation
is small [14]. The time shift α(t) in this solution abides by

α̇(t) = −vT
1 (t +α(t))SFp(t +α(t))∆p, (3)

where vT
1 (t) is the PPV [10] and SFp(t) is the sensitivity function

defined by

SFp(t) =
∂ f
∂ p

|xs(t),p∗ . (4)

This PPV macromodel enables parameter-variability aware sim-
ulation of oscillator phase, hence frequency variance wrt parameter
variation can be obtained from the phase waveform and the frequency
sensitivity is estimated by numerical differentiation. However, the
numerical differentiation introduces unwanted round-off or approx-
imation error, and the byproduct, phase waveform, is unnecessary.
So we try to avoid simulating the phase waveform, and find a direct
analytical expression of the frequency sensitivity.

III. PPV BASED ANALYTICAL EQUATION FOR CALCULATING
FREQUENCY SENSITIVITY

In this section, we derive an nice analytical expression for the
frequency sensitivity, which is only one simple integration of the
parameter-variability equiped PPV macromodel.

We define that the nominal frequency f0 shifts ∆ f under a small
variation of the parameter ∆p. The new frequency is

f1 = f0 +∆ f . (5)

Using the parameter-variability aware PPV macromodel discussed
in Section II, the time shift α(t) abides by the equation

α̇(t) = −vT
1 (t +α(t))SFp(t +α(t))∆p. (6)

New frequency being f1 = f0 + ∆ f , the time shift α(t) can also
be expressed as

α(t) =
1
f0

[∆ f · t +q( f1t)], (7)

where q(·) is a 1-periodic function.
Hence, the increase of the time shift α(t) within a new period

T1 = 1/ f1 is

α(t +
1
f1

)−α(t) =
∆ f
f0 f1

. (8)

We can also calculate this increase by integrating the α̇(t) using
(6):

α(t +
1
f1

)−α(t) =
∫ 1

f1

0
−vT

1 (t +α(t))SFp(t +α(t))∆pdt, (9)

in which vT
1 (t) and S f (t) are both f0-period function. For simplicity,

we define a 1-periodic function χ(·) by

χ( f0t) = −vT
1 (t)SFp(t). (10)

Then (9) becomes

α(t +
1
f1

)−α(t) =
∫ 1

f1

0
χ( f0(t +α(t)))∆pdt. (11)
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Fig. 1. Idealized ring oscillator.

Replacing α(t) in the right hand side using (7), and we have

α(t +
1
f1

)−α(t) =
∫ 1

f1

0
χ( f1t +q( f1t))∆pdt. (12)

When ∆p is 0, α(t) remains zero. So, it’s reasonable to say that
q( f1t) in (7) is small when ∆p is small. Applying Taylor expansion
to (12), we get

α(t +
1
f1

)−α(t) = ∆p(
∫ 1

f1

0
χ( f1t)dt +

∫ 1
f1

0
χ ′( f1t)q( f1t)dt). (13)

From (13) and (8), the ratio of frequency shift ∆ f to the parameter
variance ∆p can be expressed as

∆ f
∆p

= f0 f1(
∫ 1

f1

0
χ( f1t)dt +

∫ 1
f1

0
χ ′( f1t)q( f1t)dt). (14)

The second part of the right hand side damps with ∆p approaching
0, therefore the frequency sensitivity is

f sp =
∂ f
∂ p

= lim
∆p→0

∆ f
∆p

= f0 f1

∫ 1
f1

0
χ( f1t)dt = f0

∫ 1

0
χ(ts)dts. (15)

This equation only requires one integration for calculating the
frequency sensitivity. The key element χ(ts) in this equation is
composed of two parts: vT

1 (t) and SFp(t)5. The former carries the
phase sensitivity to equation perturbation which results in frequency
variance, and the latter bears the equation sensitivity to parameter.
Therefore, despite its simple expression, it contains all the elements
for accurately calculating the frequency sensitivity.

Furthermore, for some kind of oscillator, even the analytical
expression of the frequency sensitivity can be derived. This provides
a direct design insight.

IV. ANALYTICAL FREQUENCY SENSITIVITY FOR IDEAL
THREE-STAGE RING OSCILLATOR

In this section, an purely analytical frequency sensitivity is derived
for an idealized three-stage ring oscillator. We demonstrate that the
result is identical to a one-step derivation of a previously derived
frequency expression [16]. The perfect conformity between these
two expressions provides a persuasive proof of the correctness of our
proposed FS-PPV.

Figure 1 shows the diagram of the idealized ring oscillator, in
which the three inverters are assumed to switch abruptly at the input
voltage equaling 0 and the output voltage is ±1. All the resistors and
capacitors are assumed identical (R1 = R2 = R3 = R,C1 =C2 = C3 =
C), and we define τ = RC.

In previous work [16], the analytical expressions of this oscillator’s
steady-state and PPV waveforms have been derived. And its period
T (T = 1

f0
) abides by e

T
τ = ϕ6, where ϕ is the Golden Mean 1+

√
5

2 .
Next, taking R1 as the varying parameter, we derive the analytical

expression for the frequency sensitivity.
Based on the derived steady-state and PPV waveforms6, the key

component χ(·) in the frequency sensitivity expression (15) can be
derived:

χ( f0t) =
1

R2
1C1

·




− τ√
5

ϕ3 0 ≤ t ≤ T
6

−τ( 2√
5
−1)ϕ3 T

6 ≤ t ≤ T
2

( 2√
5
−1)τϕ6 T

2 ≤ t ≤ 2T
3

τ√
5

2T
3 ≤ t ≤ T

. (16)

Noticing that f0 = 1
T , τ = RC, e

T
τ = ϕ6 and ϕ = 1+

√
5

2 , we can
easily calculate the frequency sensitivity wrt R1 and write it in a

5Only SFp(t) is included because it is based on the ODE equation, while
for the general DAE case, another element SQp(t) needs to be added.

6Refer to the paper [16] for the expressions.
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Fig. 2. Cross-coupled LC oscillator.

simple form:

f sR1 = − f0

3R1
= − f0

3R
. (17)

This expression is based on our proposed FS-PPV. We can also
derive one using the existing frequency expression [16]. Substituting
T and τ with 1

f0
and RC in e

T
τ = ϕ6, we have

f0 =
1

6RCln(ϕ)
. (18)

Taking derivative of the f0 wrt R, we get

∂ f
∂R

= − 1
6R2Cln(ϕ)

= − f0

R
. (19)

Because of the symmetry, each resister bears the same amount of
the frequency sensitivity. Therefore, the frequency sensitivity wrt one
resistor is

f̃ sR = − f0

3R
. (20)

This expression is identical to (17), which we have derived using
our proposed FS-PPV. The exact conformity consolidates our new
method.

V. NUMERICAL RESULTS

In this section, we apply our proposed FS-PPV to two practical
oscillators: cross-coupled LC and 3-stage ring oscillator. For each
one, frequency sensitivity wrt one parameter over a range of this
parameter is calculated, and the results are compared to those of
the numerical differentiation method. Then, using the calculated
frequency sensitivities, we map the statistical distribution from pa-
rameters to frequency with an analytical expression, for the simple
case that all the considering parameters, assumed to be not correlated,
are gaussianly distributed. The resulting PDFs have good matches to
those of the Monte Carlo method, with speedups of more than 3000×
at least.

A. Cross-Coupled LC Oscillator

Figure 2 shows the block diagram of the cross-coupled LC os-
cillator. We choose the nominal parameter L10 = L20 = 2.4345e−
7/(2π)H and C10 = C20 = 4e− 12/(2π)F , making it oscillates at
about 1GHz.

1) Frequency Sensitivity Calculation: We firstly use Harmonic
Balance [5] to simulate the frequency and steady state waveform.
The sensitivity function SFp(t) can be easily got after the steady state
waveform is simulated. Secondly, PPV waveform vT

1 (t) is extracted
using the existing efficient tool [17]. Then, the frequency sensitivity
is only a one-step integration of χ(ts).

In this case, we calculate the sensitivity wrt L1, with ∆L1
varying from −0.05L10 to 0.05L10. As a validation, we estimate
the frequency sensitivity at each parameter using the numerical
differentiation. The results of both these two methods, plotted in
Figure 3, have good matches to each other.
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Fig. 3. Frequency Sensitivity from Two Methods.(LC OSC)

2) Parameter Variation Analysis: Frequency sensitivity wrt four
parameters7 (L1, L2, C1 and C2) are calculated at the nominal
parameter. Afterward, we implement this technique for a purpose of
parameter variation analysis. We only deal with the most simple case,
in which all the parameters, assumed uncorrelated, are gaussianly
distributed with their standard deviations being σL1, σL2, σC1 and
σC2. Based on a reasonable linearization approximation, the prob-
ability density function of frequency is also gaussianly distributed.
Denoting the calculated frequency sensitivities as f sL1, f sL2, f sC1
and f sC2, we can simply write the standard deviation of the frequency
distribution as

σ f =
√

( f sL1σL1)2 +( f sL2σL2)2 +( f sC1σC1)2 +( f sC2σC2)2. (21)

To validate this approach, we do a Monte Carlo on the four
parameters, whose relative standard deviations are chosen to be 0.01.
About 3500 points are simulated. Figure 4 shows the histogram of the
PDF of the frequency. The solid red line is the PDF plot using (21).
The histogram is scaled for a good comparison. We demonstrate that
the two PDFs have good matches to each other. This consolidates
that our linearization approach is valid.

The time cost for calculating the frequency sensitivity equals one
step of Monte Carlo simulation, so speedup of 3500× is easily
achieved with the Monte Carlo taking only 3500 points. It’s bigger if
more samples are required for a better accuracy of the PDF. For more
parameters being randomly distributed, our method only requires the
frequency sensitivities wrt the extra parameter to be calculated, while
using the Monte Carlo method we have to redo the whole simulation
again taking far more points .

B. 3-Stage Ring Oscillator

Figure 5 shows the block diagram of the 3-stage ring oscillator.
For this oscillator, we investigate the frequency sensitivity wrt the
threshold voltages of the MOSFETs. At nominal value (V T N10 =
V T N20 = V T N30 = V T P10 = V T P20 = V T P30 = 0.3V ), the fre-
quency is about 0.9GHz.

1) Frequency Sensitivity Calculation: Sensitivity wrt the threshold
voltage of NMOS1 (VTN1) is calculated, with ∆V T N1 varying
from −0.5V T N10 to 0.5V T N10. The result is compared to that of
the numerical differentiation in Figure 6. The solid line, result of
numerical differentiation, suffers zigzag because of the round off
error, while the that of FS-PPV looks smooth.

2) Parameter Variation Analysis: Similarly in this case, we do
a Monte Carlo simulation varying the threshold voltages of the
six MOSFETs. Compared to Section V-A.2, more points (about
130000) are simulated, and a better histogram of the probability
density function is obtained in Figure 7. We also derive an analytical
expression for the PDF using the calculated frequency sensitivity and
plot it with the histogram. We demonstrate that the two PDFs fit well.

7More parameters can be conveniently calculated without extra computa-
tional cost.
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Fig. 5. 3-Stage Ring Oscillator.

VI. CONCLUSIONS

We have proposed a new method of obtaining frequency sensitivity
analytically based on the PPV macromodel. The crucial feature of our
FS-PPV method is it establish a link between the frequency sensitivity
and the PPV with a nice simple expression, artfully implementing an
existing efficient and mature technique (PPV macromodel) for keep-
ing accuracy. It has been successfully implemented in the parameter
variability problems, and its simple expression ensures that it can be
potentially directed to more complicated parameter variability cases.
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