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ABSTRACT

Interdependent characterization of latch setup/hold times is a core
component of techniques for pessimism reduction via Setup/Hold
Interdependence Aware Static Timing Analysis (SHIA-STA) [1], [2].
We present an efficient and novel method for such characterization,
by formulating the interdependent setup-hold time problem as an
underdetermined nonlinear equation h(τs,τh) = 0, which we derive
from the latch’s state-transition function. We solve this equation
numerically using a Moore-Penrose Newton method. Further, we
use null-space information from the Newton’s Jacobian matrix to
efficiently find constant-clock-to-Q contours (in the setup/hold time
plane), via an Euler-Newton curve tracing procedure. We validate the
method on TSPC and C2MOS registers, obtaining speedups of more
than 20× over prior approaches while achieving superior accuracy.
This speedup increases linearly with the precision with which curve
tracing is desired. In view of the importance and large computational
expense of latch characterization in industry today, the new technique
represents a significant enabling technology for dramatically speeding
up industrial timing closure flows.
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I. INTRODUCTION
Accurately characterizing setup and hold times of latches and

registers is crucially important for static and dynamic timing analysis
of digital circuits [1], [3], [4]. With aggressive technology scaling,
devices have been becoming faster, but also much more non-ideal;
therefore, approximate characterization, typically based on idealiza-
tions, are becoming markedly less valid, especially for circuits with
memory such as latches and registers. At the same time, faster
speeds and smaller design margins make it all the more important to
characterize with high precision so as to achieve realistic timing cal-
culations devoid of unnecessary optimism or pessimism. Optimism in
setup/hold times can cause circuit failure, while pessimism results in
inferior performance. [1], [5]. As a result, full SPICE-level transient
analysis of latch/register circuits, using detailed device models, has
been emerging as the only reliable means of timing characterization
for cutting-edge industrial designs.

The computational expense of these SPICE-level simulations in
current industrial practice is extremely high. Setup/hold times need
to be characterized for every register/cell of every standard cell
library, each typically containing hundreds or thousands of cells, for
all process-voltage-temperature (PVT) corners or statistical process
samples. Characterization typically takes weeks or months even on
large dedicated computer clusters. Therefore, even relatively modest
improvements in core characterization procedures can have a large
impact on reducing the time taken to achieve timing closure and on
the quality of designs achieved.
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In general practice today, setup and hold times are determined
independently; in other words, it is assumed that the two quantities
are not correlated with each other. However, in actual fact, setup and
hold times are interdependent [1]; i.e., multiple pairs of setup and
hold times are possible that result in the same clock-to-Q delay1.
Flexibility in trading off setup vs hold time is becoming increasingly
important for circumventing hold violations and improving slack in
static timing analysis (STA) [1], [2] without sacrificing performance;
further, this flexibility is expected to have significant impact on power
optimization [2]. For example, if a certain path is constrained by
a hold violation, exploiting setup/hold interdependence can make it
possible to guarantee a shorter hold time (thus removing the hold
violation and avoiding spurious prediction of failure) at the expense
of a longer (but non-critical) setup time. Such setup/hold interde-
pendence aware STA (SHIA-STA) techniques [2] require no circuit
changes for improved performance; rather, by deeper exploitation of
latch dynamics, they provide an extra, “free”, degree of flexibility in
design, of considerable interest for power/performance optimization.

The prevalent technique today for finding interdependent pairs of
setup/hold times is to first obtain (using many transient simulations of
the latch) the clock-to-Q delays corresponding to many trial combi-
nations of setup and hold skews, i.e., a clock-to-Q delay surface. This
is followed by extraction of a contour in the setup/hold time plane
that contains all points that result in a prescribed increase (e.g., 10%
is typical) in clock-to-Q delay. Alternatively, interdependent pairs of
setup/hold times can be found by determining the register’s output
level at a particular time t f

2, again for many trial combinations of
setup and hold skews, to obtain a surface. This is again followed by
contour extraction; all points in the setup/hold time plane for which
the output reaches (for example) 50% of the final value at time t f
are found – this contour has a constant clock-to-Q delay which is
degraded by 10%.

One such surface for a register output Q vs setup/hold skews is
shown in Fig. 1(a); the setup/hold contour obtained is shown in
Fig. 1(b). The contour shown in Fig. 1(b) has a constant clock-to-Q
delay which is degraded by 10%, hence represents interdependent
setup-hold times pairs of interest for timing analysis.
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Fig. 1. (a) Q output surface as a function of setup and hold skews. (b)
Contour corresponding to a 10% increase in clock-to-Q delay.

A bottleneck limiting the use of interdependent setup/hold time
information in timing analysis flows is the cost of generating constant
clock-to-Q delay contours, typically obtained by post-processing
output surfaces like the one shown in Fig. 1(a). Automated generation
of output surfaces involves a much larger number of transient
simulations than for the already expensive task of characterizing setup
and hold times independently of each other [6].

1See Section II for an explanation of setup/hold times, clock-to-Q delay
and other relevant concepts.

2t f is the time at which clock-to-Q delay increases by (for example) 10%.
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In this paper, we adapt ideas from mixed-signal/RF simulation and
from homotopy/numerical continuation [7]–[11] to devise a new tech-
nique for finding interdependent setup/hold time contours directly,
without the need for generation of output surfaces. The first step
in our approach is to formulate the interdependent setup/hold time
problem as an underdetermined scalar nonlinear equation h(τs,τh) =
0, where τs and τh are setup and hold skews, respectively. h(·, ·) is
obtained by computing the nonlinear state-transition function [12],
[13] of the differential equations describing the latch or register,
as described in more detail later. We then use a modified Moore-
Penrose pseudo-inverse based Newton-Raphson (MPNR) method
[10], [14] to solve the equation h(τs,τh) = 0 numerically for one
pair of interdependent setup/hold times. Once this point is found, our
algorithm proceeds to determine other points on the constant clock-
to-Q contour efficiently by an Euler-Newton curve tracing procedure
[10].

Euler-Newton curve tracing operates by using information from
a given solution point on the clock-to-Q delay curve to solve for
a neighboring point on the curve efficiently. It leverages null-space
information from the Jacobian matrix of h(τs,τh) to first find a tangent
to the curve at the known solution point. It then extrapolates along this
tangent to predict a good approximation to a neighboring solution,
which it then rapidly3 refines, to any desired accuracy, using the same
MPNR nonlinear solution method used to obtain the first solution
point. This process is repeated to find the entire constant clock-to-Q
delay contour.

The key property that makes this curve tracing procedure more
efficient than surface generation is that the computation of irrelevant
points on the surface is totally avoided. As a result, the number of
latch simulations involved in curve tracing is linear in the number of
points n desired for characterizing the constant clock-to-Q contour, as
opposed to O(n2) for brute-force output surface generation. Hence,
Euler-Newton curve tracing provides speedups of about n times
over output surface generation, where n, the number of points on
the curve, also constitutes a measure of the precision to which
the setup/hold time contour is desired. In validations of the curve-
tracing technique on true single-phased clocked (TPSC) and C2MOS
registers, we obtain speedups of about 26× for n = 40 points on
the curve. Additionally, the points obtained on the curve by Euler-
Newton method are “exact” (i.e., refined to any prescribed accuracy
by MPNR), while the brute-force technique uses interpolation at the
postprocessing stage to extract the contour from the output surface.

The remainder of the paper is organized as follows. We first
provide some background on the register setup/hold time problem in
Section II. Section III is divided into five subsections. Section IIIA
formulates the interdependent setup/hold problem as an equation
h(τs,τh) = 0; Section IIIB provides a brief discussion of the special
case of solving for τs and τh independently of each other; Section IIIC
develops the procedure for solving h(τs,τh) = 0 by Moore-Penrose
pseudo-inverse based Newton-Raphson, focusing on a single point
on the curve; Section IIID outlines the Euler-Newton method for
tracing the solution curve of h(τs,τh) = 0; finally, Section IIIE
puts together the complete Euler-Newton curve-tracing algorithm for
interdependent setup/hold times using a pseudo-code description. In
Section IV, we validate the new technique on practical latch/register
circuits and compare against brute-force output surface generation,
confirming that Euler-Newton successfully traces the constant clock-
to-Q delay curve accurately and with large speedups.

II. TERMINOLOGY AND BRIEF BACKGROUND

Latches and registers are basic building blocks in synchronous
circuit design; in essence, they are circuits where a clock edge is
used to sample and store a logic value on a data line [15]. The
setup time is the minimum time before the active edge of the clock
that the input data line must be valid for reliable latching. Similarly,
the hold time represents the minimum time that the data input must
be held stable after the active clock edge. The active clock edge is
the transition edge (either low-to-high or high-to-low) at which data
transfer/latching occurs.

Clock-to-Q delay is a common term used in the context of
latches/registers; it refers to the delay from the 50% transition of
the active clock edge to the 50% transition of the Q (output) of the
latch/register. We use the term setup skew to denote a trial delay from
the 50% transition of the data line to the 50% transition of the active
clock edge; similarly, hold skew denotes a trial delay from the active
clock edge to the 50% transition of the data line. See Fig. 2, where
the setup and hold skews are denoted by τs and τh, respectively.

As already noted, the setup and hold times are not independent
quantities, but depend strongly on each other. Typically, the setup
time decreases as the hold skew increases, and vice-versa. The
tradeoff between setup and hold skews is a strong function of register

3i.e., 2-3 MPNR iterations is typical.

architecture. Because of this interdependence, the same clock-to-Q
delay can be achieved for many different pairs of setup and hold
skews, as shown in Fig. 1(b).

III. NONLINEAR STATE-TRANSITION FORMULATION FOR
INTERDEPENDENT REGISTER SETUP AND HOLD TIME

CHARACTRIZATION

hS h
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Fig. 2. Clock/data waveforms and their timing.
In this section, we first develop a formulation that expresses inter-

dependent setup/hold times as an underdetermined scalar equation.
We show how to solve the equation using a Moore-Penrose pseudo-
inverse based Newton procedure. We then develop an Euler-Newton
curve tracing procedure for efficiently finding all setup/hold time pairs
corresponding to a given clock-to-Q delay.

A. Interdependent Setup/Hold Time Formulation
Any nonlinear circuit or system (such as a latch or register) can

be represented by the following vector differential algebraic equation
[13]:

d
dt

�q(�x)+�f (�x)+�b(t) = 0. (1)

(1) is a size n system; �x ∈ R
n is the state vector of internal node

voltages and branch currents; �q ∈ R
n and �f ∈ R

n are the charge/flux
and the current terms respectively and �b(t) ∈ R

n represents all the
input source voltages and currents.

Without loss of generality, we assume positive-edge triggered
registers, and denote the clock waveform by uc(t) and the data
waveform by ud(t,τs,τh) as shown in Fig. 2. τs and τh represent
setup and hold skews, respectively. The data waveform is denoted as
ud(t,τs,τh) to emphasize its dependence on τs and τh explicitly.

Once the clock and data inputs (refer to Fig. 2) are separated as
above, the latch/register’s equations become:

d
dt

�q(�x(t,τs,τh))+�f (�x(t,τs,τh))+�bcuc(t)+�bdud(t,τs,τh) = 0. (2)

In order to find a pair of setup and hold skews (τs,τh) for which the
clock-to-Q delay increases by 10%, we need to monitor an output
waveform, given by�cT�x. Here,�c will typically be a unit vector which
selects an output node. The typical behavior of the output waveform
for different values of τs and τh is shown in Fig. 3(a). Note, from
Fig. 3(a), that for a constant value of setup skew τs1, the clock-to-Q
delay increases as the hold skew τh decreases. Note also that two pairs
of different setup and hold skews (τs1,τh2) and (τs3,τh3) point to the
same output waveform, i.e. they result in the same clock-to-output
delays. Typically, as setup and hold skews both increase (i.e., the data
remains stable for a long time before and after the clock edge), the
clock-to-Q delay becomes independent of setup and hold skews and
approaches the characteristic clock-to-Q delay of the register.
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Fig. 3. Behaviour of the Q output waveform for different setup skews.
We are interested in finding those pairs of setup and hold skews

(τs,τh) for which the clock-to-Q delay increases by (say) 10% from
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the characteristic clock-to-Q delay – this is a a typical criterion for
defining setup and hold times. Let tc denote the time at which the
output reaches the characteristic clock-to-Q delay; t f the time when
the clock-to-delay increases by 10%; and r the value of the output
at the 50% transition. These quantities are depicted graphically in
Fig. 3(b) — tC−Q1 represents the characteristic clock-to-Q delay and
tC−Q2 a 10% increase in tC−Q1. Therefore, those setup/hold skew
pairs that lead to 10% degradation in clock-to-Q delay in the second
waveform are the setup/hold times.

Let the state transition function of (2) be denoted by �φ(t;�x0, t0 =
0,τs,τh), and the initial condition �x0 =�x(t = t0) be fixed to a given
value. The setup/hold time determination problem consists of seeking
(τs,τh), given r, t f and�x0, such that the output is at value r at time t f ,
i.e., �cT�x(t f ) = r. Writing this in terms of the state transition function,
we obtain

�cT�φ(t f ;�x0,0,τs,τh)− r = 0 or �cT�φ τ (τs,τh)− r = 0,

where �φ τ (τs,τh) ≡ �φ(t f ;�x0,0,τs,τh).
(3)

Hence, the nonlinear equation we need to solve to obtain (τs,τh) is

h(�τ) ≡ h(τs,τh) ≡�cT�φ τ (τs,τh)− r = 0. (4)

where �τ = [τs,τh].

B. Solving for setup/hold times independent of each other
We note that a simplification of (4) can be used to find either the

setup or the hold time, by assuming a fixed, unchanging value for
the other. For example, since the setup time becomes independent for
very large value of hold skew, (4) can be written as follows for very
large τh:

h(τs) ≡�cT�φ τ (τs)− r = 0. (5)

(5) is a scalar equation with one scalar unknown τs, hence can be
solved using the standard Newton-Raphson method [14]. In prior
work [6], we have shown how to solve (5) using NR, achieving
speedups of 4 ∼ 10× over the current practice of binary search.

C. Solving for interdependent setup/hold times via Moore-Penrose
based Newton-Raphson

Since (4) is an underdetermined scalar nonlinear equation with two
unknowns τs and τh, the Newton-Raphson method (which requires
“square” nonlinear systems) cannot be directly applied. However, a
modification, based on the application of the Moore-Penrose pseudo-
inverse [10] during the linear solution step, can be applied instead,
as described in this subsection. Intuitively, Moore-Penrose Newton-
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Fig. 4. Convergence of a point via Newton-Raphson on a constant
clock-to-Q delay curve.
Raphson (MPNR) starts with an initial guess of (τs0,τh0) and con-
verges to a solution (τs

c,τh
c) of (4), which lies on the constant clock-

to-Q delay curve, as shown in Fig. 4. A denotes the initial guess,
while B denotes the point on the solution curve Fig. 4 that MPNR
converges to. It can be proven that, under the right circumstances,
MPNR will converge to a point B on the solution curve that is closest
to A.

In order to solve (4) using MPNR, it is necessary to perform
three tasks: 1) evaluate h(τs,τh) given any (τs,τh), 2) evaluate[

dh(�τ)
d�τ

]
=

[
dh(�τ)

dτs
,

dh(�τ)
dτh

]
, a 1x2 matrix, and 3) compute the Moore-

Penrose pseudo inverse of
[

dh(�τ)
d�τ

]
.

h(τs,τh) is evaluated simply by running a transient simulation with

the given (τs,τh) and then evaluating (4). To compute
[

dh(�τ)
d�τ

]
, we

need to evaluate
[

d
dτ

�φ(t f ;�x0,0,τs,τh)
]
, which is achieved as follows

(the superscript ‘c’ denotes quantities that lie on the constant clock-
to-Q delay curve).

First, we write out (2) with all dependencies on τs and τh explicitly
shown for clarity:

d
dt

�q(�x(t,τs,τh))+�f (�x(t,τs,τh))+�bcuc(t)+�bdud(t,τs,τh) = 0. (6)

Next, noting that
[

d�φ
d�τ

]
=

[
d�x(t,τs,τh)

dτs
,

d�x(t,τs,τh)
dτh

]
, we first evaluate

d�x(t,τs,τh)
dτs

(computation of d�x(t,τs,τh)
dτh

proceeds similarly). To compute
d�x(t,τs,τh)

dτs
, we differentiate (6) with respect to τs and interchange the

order of differentiation w.r.t t and τs in the first term, to obtain:

0 =
d

dτs

[
d
dt

�q(�x(t,τs,τh))+�f (�x(t,τs,τh))+�bcuc(t)+�bdud(t,τs,τh)
]

=
d
dt

[
d

dτs
�q(�x(t,τs,τh))

]
+

d
dτs

[
�f (�x(t,τs,τh))

]
+�bd

d
dτs

ud(t,τs,τh)

=
d
dt

[
d�q(t,τs,τh)

d�x
d�x
dτs

]
+

d�f (t,τs,τh)
d�x

d�x
dτs

+�bdzs(t,τs,τh).

(7)

In (7), d
dτs

ud(t,τs,τh) is denoted by zs(t,τs,τh). Since we want to

evaluate dh(�τ)
dτs

at any given value of (τs,τh) (e.g., at (τ∗s ,τ∗h )), we
define the following terms for notational convenience:

C†(t) =
d�q(t,τs,τh)

d�x

∣∣∣∣
(τs,τh)=(τ∗

s ,τ∗
h )

,G†(t) =
d�f (t,τs,τh)

d�x

∣∣∣∣∣
(τs,τh)=(τ∗

s ,τ∗
h )

,

and �ms
†(t) =

d�x(t,τs,τh)
dτs

∣∣∣∣
(τs,τh)=(τ∗

s ,τ∗
h )

.

(8)

Rewriting (7) for (τs,τh) = (τ∗s ,τ∗h ), we obtain

d
dt

(
C†(t)�ms

†(t)
)

+G†(t)�ms
†(t)+�bdzs(t,τ∗s ,τ∗h ) = 0. (9)

(9) can be discretized using any integration method (e.g., Backward
Euler (BE), Trapezoidal (TRAP), etc.) [12], [13]. For example, the
discretization of (9) using BE is

C†(ti)�ms
†(ti)−C†(ti−1)�ms

†(ti−1)
ti − ti−1

+G†(ti)�m†(ti)+�bdzs(ti,τ∗s ,τ∗h ) = 0,

(10)

which can be simplified to

�ms
†
i =

(
C†

i

∆t
+G†

i

)−1 (
C†

i−1

∆t
�ms

†
(i−1) −�bdzs(ti,τ∗s ,τ∗h )

)
, (11)

where the subscript i denotes evaluation at t = ti, and ∆t = ti − ti−1
is the time step used in the integration.

Also define:

zh(t,τs,τh) =
d

dτh
ud(t,τs,τh)

and �mh
†(t) =

d�x(t,τs,τh)
dτh

∣∣∣∣
(τs,τh)=(τ∗

s ,τ∗
h )

;
(12)

then, similar to (11), we have:

�mh
†
i =

(
C†

i

∆t
+G†

i

)−1 (
C†

i−1

∆t
�mh

†
(i−1) −�bdzh(ti,τ∗s ,τ∗h )

)
. (13)

To start the integration process, we set �ms
†
0 and �mh

†
0 to �0 (since

�x0 = �x(t = t0) does not change with τs or τh). Evaluating (11)
and (13) from t = t1 to t = t f (i.e. i ∈ 1,2, . . . , f ), we obtain

�ms
†
f = d�φ τ

dτs

∣∣∣
(t,τs,τh)=(t f ,τ∗

s ,τ∗
h )

and �mh
†
f = d�φ τ

dτh

∣∣∣
(t,τs,τh)=(t f ,τ∗

s ,τ∗
h )

. From

these quantities, we obtain the scalar quantities

dh(�τ)
dτs

∣∣∣∣
(t,τs,τh)=(t f ,τ∗

s ,τ∗
h )

=�cT d�φ τ
dτs

∣∣∣∣∣
(t,τs,τh)=(t f ,τ∗

s ,τ∗
h )

,

dh(�τ)
dτh

∣∣∣∣
(t,τs,τh)=(t f ,τ∗

s ,τ∗
h )

=�cT d�φ τ
dτh

∣∣∣∣∣
(t,τs,τh)=(t f ,τ∗

s ,τ∗
h )

.

(14)
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Finally, denoting the matrix
[

dh(�τ)
d�τ

]
by H(�τ), its Moore-Penrose

pseudo-inverse [10] can be expressed as

H(�τ)+
∣∣
(τs,τh)=(τ∗

s ,τ∗
h ) = H(�τ)t (H(�τ)H(�τ)t)−1

∣∣∣
(τs,τh)=(τ∗

s ,τ∗
h )

, (15)

where H(�τ)+ and H(�τ)t represent the pseudo inverse and transpose
of the matrix H(�τ), respectively. These quantities are used for the
MPNR-based curve tracing algorithm described in subsection E.

D. Constant Clock-to-Q Delay Contour Tracing by Euler-Newton
In the previous subsection, we provided the key computational

details of the MPNR procedure used to find a single point on a
constant clock-to-Q delay curve when an initial guess of setup and
hold skew is given. In this subsection, we outline an Euler-Newton
based method for tracing the entire constant clock-to-Q contour in
the τs −τh plane (as shown in Fig. 1(b)), i.e., the set of all solutions
of (4).

The Euler-Newton curve tracing [10] method used here follows a
standard predictor-corrector methodology [12], using Euler steps as
predictors and MPNR steps as correctors. Taking an Euler predictor
step involves computing the tangent vector to the solution curve at
a previously known point on the curve, and extrapolating to a new
point along the tangent. The MPNR procedure is then used as a
corrector that uses this new point as its initial guess and converges
to a nearby solution point on the curve. The Euler-Newton curve
tracing procedure is depicted graphically in Fig. 5, where the blue and
red arrows denote the Euler predictor steps and the MPNR corrector
steps, respectively.
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Fig. 5. Curve tracing using the Euler-Newton method.
For the Euler step, the key quantity we need to evaluate is a unit

tangent vector at any given point (τs
c,τh

c) on the curve. The unit
tangent vector at point �τc = (τs

c,τh
c), denoted by T (H(�τ)) (and

called “the tangent vector induced by H(�τ)”), can be computed as
follows [10]:

T (H(�τ))|�τ=�τc =
(− dh(�τ)

dτh

dh(�τ)
dτs

)
1√(

dh(�τ)
dτs

)2
+

(
dh(�τ)
dτh

)2

∣∣∣∣∣∣∣∣
�τ=�τc

. (16)

The rectangular matrix in (16) is simply the MPNR Jacobian matrix
at the current solution point, hence is already available; since it is
of size 2, the computation involved in finding the tangent vector is
trivial.

E. Euler-MPNR-based Curve Tracing Algorithm for Interdepen-
dent Setup/Hold Time Characterization

We now outline the overall procedure of finding all the pairs
(τs

c,τh
c) such that they satisfy (4). (4) is rewritten below for

convenience:
h(τs,τh) =�cT�φ τ (τs,τh)− r = 0. (17)

The above equation needs to be evaluated at time t = t f . We note
again that the curve obtained as the solution set of (17) will be a
constant clock-to-Q delay curve in the plane of setup and hold skews,
and therefore each point on the curve represents a setup-hold time
pair.

The complete algorithm for tracing the constant clock-to-Q delay
curve is:

1) Initialize τs, τh, �x, �ms and �mh.
a) (τs,τh) = (τs0,τh0). (τs0,τh0) can be chosen to be any

positive value; a good choice will always be less than
the time period of the clock. A good guess of (τs0,τh0)
will typically approximate some previously known pair
of setup and hold time of the similar kind of registers.
It is necessary also to ensure that (τs0,τh0) falls in the
convergence range of NR.

b) �x(t = 0,�τ) =�x0(�τ). �x0(�τ) can be made identical for all
values of �τ , i.e., equal to some �x∗0, where �x∗0 can assume
any arbitrary value. A good choice of �x0(�τ) is the DC
operating point for that particular value of �τ; here, �x0(�τ)
will differ for different values of �τ’s.

c) �ms(t = 0,�τ) = �ms0(�τ) and �mh(t = 0,�τ) = �mh0(�τ). As ex-
plained previously, �ms0(�τ) and �ms0(�τ) will be initialized
to �0 because �x0 does not change for with �τ .

2) Start the Euler-Newton procedure.

For an Euler iteration index k. (Note: k − 1 essentially
represents the number of points that has already been
computed on the curve.)

a) Start the Newton-Raphson procedure: For an iteration
index j inside NR,
i) Divide t = 0 to t f into N points: t0, t1, . . .,tN−1. For

each i ∈ {0, . . . ,N−1}, compute the following (�τk j =[
τsk j,τhk j

]
is the value of �τ being used for the NR

iteration index j and Euler index k):

A) Compute �xk ji using (2) (reproduced below). Here,
�xk ji denotes the fact that the quantity �x is being
evaluated at time ti for NR iteration index j and
Euler index k.

d
dt

�q(�x)+�f (�x)+�bcuc(t)+�bdud(t,τs,τh) = 0. (18)

(18) can be solved using any integration method
like BE, TRAP etc. [12], [13].

B) After having obtained �xk ji’s, compute the follow-
ing:

Ck ji =
d�q(�x)

d�x

∣∣∣∣
�x=�xk ji

and Gk ji =
d�f (�x)

d�x

∣∣∣∣∣
�x=�xk ji

.

(19)
C) Compute (�ms)k ji and (�mh)k ji using (11) and (13)

as follows.

(�ms)k ji =
(

Ck ji

ti − ti−1
+Gk ji

)−1

×(
Ck j(i−1)

ti − ti−1
(�ms)k j(i−1) −�bdzs(ti,�τk j)

)
,

(�mh)k ji =
(

Ck ji

ti − ti−1
+Gk ji

)−1

×(
Ck j(i−1)

ti − ti−1
(�mh)k j(i−1) −�bdzh(ti,�τk j)

)
.

(20)

We have now obtained �xk j(N−1), (�ms)k j(N−1) and
(�mh)k j(N−1).

ii) Calculate h(�τk j) defined in (4) as follows.

h(�τk j) =�cT�xk j(N−1) − r. (21)

iii) Check NR convergence (e.g., using relative/absolute
tolerances [16]). If NR has converged, then we have
obtained the optimal value of �τ as �τk j: jump to step(b)
to compute the Euler step at �τk j (we denote this
optimal value of �τk j , which essentially lies on the

curve, as �τk
c. Otherwise, calculate dh(�τ)

dτ defined in
(14) as follows:

dh(�τ)
dτs

∣∣∣∣
�τ=�τk j

=�cT (�ms)k j(N−1),

dh(�τ)
dτh

∣∣∣∣
�τ=�τk j

=�cT (�mh)k j(N−1).

(22)

iv) Calculate τk( j+1) and increment j.

τk( j+1) = τk j − h(�τk j)
(

dh(�τ)
dτ

)+
∣∣∣∣∣
�τ=�τk j

,

and j = j +1.

(23)
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In (23),
(

dh(�τ)
dτ

)+
is the Moore-Penrose pseudo-

inverse of dh(�τ)
dτ , which can be calculated using (15)

as(
dh(�τ)

dτ

)+
=

(
dh(�τ)

dτ

)t [dh(�τ)
dτ

(
dh(�τ)

dτ

)t]−1

,

(24)

where
(

dh(�τ)
dτ

)t
is the transpose of dh(�τ)

dτ . Go to step
(i) for the next iteration of NR.

b) Compute the tangent unit vector induced by dh(�τ)
d�τ using

(16) for �τ =�τk
c as follows:

T

(
dh(�τ)

dτ

)
=

(− dh(�τ)
dτh

dh(�τ)
dτs

)
1√(

dh(�τ)
dτs

)2
+

(
dh(�τ)
dτh

)2
(25)

c) Compute a new pair of (τs0,τh0) along the unit tangent
vector (the predictor step):

�τ(k+1)0 =�τk
c + α .T

(
dh(�τ)

dτ

)∣∣∣∣
�τ=�τk

c
,

and k = k +1.

(26)

α is a step length along the tangent direction. Go to step
(a) of the Euler-Newton procedure; repeat until the curve
is traversed to any desired extent.

IV. VALIDATION USING TSPC AND C2MOS REGISTERS

In this section, we validate the interdependent setup/hold time
characterization algorithm developed above using two types of
registers: a TPSC register and a C2MOS positive edge triggered
master/slave register. We describe the validation procedure in detail
below. Our results, which we compare against brute-force output
surface generation, confirm that the new curve-tracing method finds
constant clock-to-Q contours accurately, and with computation linear
in the number of contour points desired. We obtain speedups of
about 26× over surface generation4 for 40 curve points (representing
excellent precision for timing analysis purposes). Additionally, we
have chosen reltol/abstol for MPNR such that the points obtained on
the curve are accurate up to 5 digits.

A. True single-phased clocked register

CLK

Vdd

CLK

CLK

Vdd Vdd Vdd

CLK

D Q

Fig. 6. Positive edge-triggered register in TSPC.
The positive edge triggered true single-phased clocked register

shown in Fig. 6 features positive setup and hold time constraints.
The clock waveform uc(t) used in the register has a period of 10ns,
with logic 0 at 0V and logic 1 at 2.5V . The clock input has an initial
delay of 1ns; rise/fall times are both 0.1ns. Therefore, its active clock
edges are located at 1ns, 11ns, 21ns, etc.. The chosen data waveform
ud(t,τs,τh) is centered around the active clock edge which starts at
11ns. The data waveform changes its shape (variable pulse width,
refer to Fig. 2) depending on the values of τs and τh.

At first, to determine the characteristic clock-to-Q delay, the
register is simulated for large values of τs and τh and the output
is monitored. The output waveform reaches 1.25V (50% of its final
value) at tc = 11.348ns, hence the characteristic clock-to-Q delay
equals 298ps (the distance from the 50% active clock transition to
the 50% transition of the output). Here, we use a standard definition
for setup and hold times: that they lead to an increase of 10% over

4Speedup numbers are obtained via apples-to-apples comparisons on an
AMD Athlon64 3000+ based PC, with 512MB RAM, running Linux kernel
2.6.12. All algorithms are implemented in a MATLAB/C/C++ simulation
prototyping environment.

the characteristic clock-to-Q delay. Hence the constant clock-to-Q
delay value for contour generation equals 327.8ps. Accordingly, we
set t f = 11ns+ rise−time

2 +327.8ps = 11.3778ns and r = 1.25V in (4)
(tc, t f and r used here correspond to the same symbols in Fig. 3(b)).

Determination of the first point on the curve involves starting with
a good guess for (τs0,τh0) to seed NR. To find one, we make the
hold skew τh0 very large so that the setup time will becomes largely
independent of hold skew. We start with a setup skew interval
[τsL,τsR], where the register latches the data properly for τsL, and
fails to latch data for τsR. Hence this interval will contain the setup
time point τs

c. We then narrow down the setup skew interval using a
coarse binary search, until the interval length falls in the convergence
range of NR as shown in Fig. 7(b).
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(a) Setup-time characteri-
zation.

0
s

Cl
oc

k−
to

−Q
 D

el
ay

 

Range for NR
Setup Skew (tau): s

c

10% increase in clock to Q time.

(b) Convergence region for
MPNR.

Fig. 7. (a) Setup time characterization by running binary search within
an interval bracketing the setup time. (b) Convergence region of MPNR
in an interval around the estimate of setup time.

Either τsL or τsR can be used as the initial guess τs0 for MPNR
solution. Then, we start the Euler-Newton process as outlined previ-
ously. MPNR typically converges very quickly (2–3 iterations) as the
curve is traced since the Euler steps provide excellent initial guesses.
The constant clock-to-Q delay contour obtained by the procedure is
shown in Fig. 8. To verify the correctness of this curve, we also
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Fig. 8. Constant clock-to-Q delay curve obtained by the Euler-Newton
method. Curve represents the pairs of setup and hold skews which
increases the characteristic clock-to-Q delay by 10%.
extract the 10% degraded constant clock-to-Q delay curve for this
register using the brute-force output surface generation technique. An
output surface is generated at time t f = 11.778ns by independently
varying setup and hold skews as shown in Fig. 9. A plane at a
“height” of 1.25V is then drawn to obtain the intersection contour
of the output surface. This intersection curve represents the set of
all hold-setup skew pairs which results in 10% increase in clock-
to-Q delay. The top view of the curve obtained by this intersection

Fig. 9. Q output surface as a function of independent setup and hold
skews.
procedure is shown in Fig. 10. The contour from Euler-Newton curve
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tracing (Fig. 8) is overlaid on the intersection of the plane and the
output surface in Fig. 10. It is apparent from Fig. 10 that the curve
obtained by Euler-Newton methodology exactly matches the constant
clock-to-Q delay curve obtained from the surface, thereby verifying
the correctness of the new method.

Fig. 10. Top view of intersection curve of plane and output surface and
the superimposition of curve obtained by Euler-Newton method

In our implementation, Euler-Newton curve tracing took 45 min-
utes to trace 40 points on the contour, while brute-force output surface
generation consumed 20 hours (for 40×40 simulations) to obtain 40
points on the curve; representing a speedup of about 26×.

B. C2MOS positive-edge triggered master-slave register
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VddVdd

D X Q

(a) Register.

50%

80%

Failed Transition

Successful Transition

(b) Output waveforms.

Fig. 11. (a) C2MOS positive-edge triggered master-slave register. (b)
Output waveform fails to complete the transition even after reaching
80% of its true value.

To further validate the Euler-Newton curve-tracing method, we
apply it to the C2MOS register shown in Fig. 11(a). The clock uc(t)
and the data ud(t,τs,τh) used here are the same as for the previous
register. The register shown in Fig. 11(a) has zero hold time if there
is no overlap between the clk and clk inputs. To obtain a positive hold
time for this register, we delay the clk input line by 0.3ns after the
clk input line. As a result, a 0−0 and 1−1 overlap occurs between
clk and clk, which imposes hold time constraint on the data line
for a reliable transfer of data. Also, due to the overlap between clk
and clk, for some values of τh, the output reverts to the wrong logic
value even after reaching 80% of the correct logic value, as shown
in Fig. 11(b). To ensure that we are not capturing false transitions,
we set the setup/hold criterion to 90% of the final output (as opposed
to 50%) to calculate clock-to-Q delays for this register. Hence, for
a high (2.5V ) to low (0V ) transition in the data input line, we set
r = 0.25V in (4). The simulated value of tc (i.e., the time at which
output reaches 90% of its final value for large setup and hold skews)
was found to be equal to 12.055ns, and therefore t f (i.e., the time
corresponding to a 10% increase in clock-to-Q delay) was set to
12.155ns in (4). The constant clock-to-Q delay curve thus obtained
by running Euler-Newton curve tracing on (4) is shown in Fig. 12(a).
As in the previous example, we also plot the curve obtained by the
intersecting a plane at height 0.25V with the output surface generated
at time t f in Fig. 12(b). The curve shown in Fig. 12(a) is also plotted
on top of the intersection of the surface and the plane in Fig. 12(b).
The close match is evident, again validating the correctness of Euler-
Newton curve tracing. Once again, Euler-Newton curve tracing results
in a speedup of about 26× over brute-force output surface generation
(for 40 points on the constant clock-to-Q delay curve).

CONCLUSIONS

We have presented a novel method that directly solves for inter-
dependent setup-hold time contours via Euler-Newton curve tracing
on a state-transition equation formulation. The method is generally
applicable to any kind of latch or register. We have validated the
method on TSPC and C2MOS register structures and demonstrated
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Fig. 12. (a) Contour for 10% increase in clock-to-Q delay, obtained
by Euler-Newton curve tracing. (b) Euler-Newton curve overlaid on the
intersection curve of the plane and the output surface.

speedups of 26× over prior surface generation/intersection methods.
The new technique is expected to be a crucial enabler for SHIA-STA
algorithms for pessimism reduction in timing analysis flows.
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