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Analytical Equations for Nonlinear Phase Errors and
Jitter in Ring Oscillators

Shweta Srivastava and Jaijeet Roychowdhury

Abstract—In this paper, we present a simple analytical equation
for capturing phase errors in 3-stage ring oscillators. The model,
based on a simple but useful idealization of the ring oscillator, is
provably exact for small noise perturbations. Despite its simplicity
and purely analytical form, our model correctly captures the time-
dependent sensitivity of oscillator phase to external perturbations.
It is thus well suited for estimating both qualitative and quanti-
tative features of ring oscillator phase response to internal noises,
as well as to power, ground and substrate interference. The non-
linear nature of the model makes it suitable for predicting injection
locking as well. Comparisons of the new model with existing phase
models are provided, and its application for correct prediction of
thermal jitter demonstrated. Requiring knowledge only of the am-
plitude and frequency of the oscillator, the model is ideally suited
for early design exploration at the system and circuit levels.

I. INTRODUCTION

CORRECT modeling of the phase response of free-running
oscillators is of great importance in the design of com-

munication and computer systems. Phase errors caused by de-
vice or interference noise result in timing jitter and phase noise;
these have a large impact on overall system functionality met-
rics, such as bit-error rate (BER) in communication systems and
clock skew in synchronized digital systems. As a result, it is im-
portant to model phase errors as realistically as possible, from
the very beginning, during architecture, system and circuit level
design.

Indeed, the crucial rôle of early design exploration in making
overall architectural decisions that best trade off performance
vs cost metrics is well recognized by system designers. At the
early design stage, only the sketchiest details of each block
comprising the system are usually available—typically, only
the broad nature or topology of a circuit block will be known.
For example, during the early design process, the qualitative
phase response properties of ring oscillators might be compared
against those of LC oscillators, but the only information avail-
able about the oscillator block would be its center frequency and
its desired phase noise or jitter performance. Due to the absence
of concrete circuit realizations at the early design stage, using
simple generic models of blocks that, however, capture impor-
tant qualitative properties correctly, is of the utmost importance.

In this paper, we present a simple analytical equation that
captures the phase response of idealized 3-stage ring oscillators
(shown in Fig. 1) accurately. The simplicity of the model stems
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Fig. 1. Idealized ring oscillator. The inverters are assumed to switch between
output levels of �1, with abrupt switching at input level 0. All resistors/capac-
itors are assumed identical.

from its explicit dependence on only two design parameters: the
amplitude (power) of the output waveforms and the oscillator’s
desired frequency. The equation is a single scalar nonlinear dif-
ferential equation for the phase error and is amenable to further
simplification and abstraction. Despite its simplicity, the model
is powerful enough to capture timing jitter and phase noise due
to small device and interference noises accurately. The simple
analytical model can also predict injection locking. Existing os-
cillator phase models for early design (e.g., [12], [15]), which
apply a simplistic voltage-controlled oscillator (VCO)-like tech-
nique of linearly integrating noise/perturbation inputs in time to
produce phase errors, do not capture these effects correctly (or
at all, e.g., for injection locking).

Our approach is based on a theory for nonlinear perturba-
tion analysis developed in [2], [4], which developed a numer-
ical procedure for finding a periodic phase-sensitivity function,
termed the perturbation projection vector (PPV), of any oscil-
lator. In this work, we apply the same rigorous theory, but in
a completely analytical manner, employing no approximations
(other than idealizing the ring oscillator system at the outset). In
other words, we start by finding an exact analytical form for the
steady-state of the ring oscillator, then obtain its time-varying
linearization analytically, and continue to perform Floquet anal-
ysis [5] of the system, culminating in expressions for the mon-
odromy matrix [2], [4], [5] and the PPV, analytically. The non-
linear phase macromodel is a simple scalar differential equation
that employs this PPV.

Having a simple analytical expression for the PPV (as op-
posed to a numerical procedure for computing it) has the ad-
ditional advantage of providing direct design insight into noise
and perturbation properties of ring oscillators. The PPV directly
captures the time-dependent sensitivity of the oscillator’s phase
response to any perturbations; hence plots of the PPV, together
with knowledge of its scaling properties with respect to oscilla-
tion, frequency and amplitude, can guide both circuit and system
design decisions without the need for system-level simulation.

Interesting features of our mathematical development in-
clude Floquet analysis of an impulsive system, a waveform-
relaxation-like analytical solution technique, exact analytical
eigendecompositions of integer matrices, and a form for the
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PPV that shows its explicit amplitude- and time-scaling depen-
dence on the frequency/period. An additional curious aspect is
that the number , well known as
the Golden Mean or Divine Proportion [6], [13], [14], emerges
to be central to our exact analytical phase model.

We provide comparisons of the nonlinear equation proposed
here with prior linear approaches, in particular the closed-form
impulse sensitivity function (ISF) based approach of [8]. Ex-
tending what has already been shown numerically [2]–[4] and
analytically for a simple oscillator in radial state space [1], we
prove that for the ring oscillator, linear phase equations lead to
significant qualitative and quantitative errors. In addition to pro-
viding a derivation of the analytical nonlinear phase error equa-
tion in Section II, we provide demonstrations of its application
to predicting thermally-induced jitter in Section III.

II. RING OSCILLATOR: ANALYTICAL PERTURBATION ANALYSIS

AND PHASE ERROR EQUATIONS

Fig. 1 depicts an idealized 3-stage ring oscillator. All re-
sistors, capacitors and inverters are assumed identical; ideally
switching inverters, with output voltages of and input
switching threshold zero, are assumed. The assumptions of
symmetry and zero switching threshold are not essential, having
been made simply for convenience; the key assumption, on
which much of the following relies, is that of ideal switching of
the inverters. Deviations from nonideality (especially delay-re-
lated aspects) are captured by the R and C elements outside the
inverters.

The key to our novel phase macromodel is that we are able
to carry out, in a completely analytical fashion, Floquet anal-
ysis [2], [5], [7] of the ring oscillator. Floquet analysis consists
solving the linear periodically time-varying (LPTV) system of
equations that results from linearizing the nonlinear ring oscil-
lator about its oscillatory steady state. It is important to note,
though, that while LPTV calculations are at the core of our pro-
cedure, the result of this analysis (a quantity known as the PPV
[2], [4]) is used to form a nonlinear macromodel.1 This non-
linearity is key to the accuracy of the analytical equation—for
example, for capturing complex dynamical phenomena such as
injection locking.

In this section, we obtain the new phase equation via the fol-
lowing steps of Floquet analysis, which we perform analytically.

1) First (Section II-A), we obtain the differential (1) of the
ring oscillator of Fig. 1.

2) Next (Section II-B), we find an exact analytical oscilla-
tory solution of (1), in terms of the electrical parameters of
the circuit. The solution comprises analytical expressions
for the time-period of the oscillator and for the voltage
waveforms at the capacitor nodes of Fig. 1.

3) Next (Section II-C), we find the (adjoint) linear period-
ically time-varying (LPTV) differential (13) that capture
perturbations to the oscillator around its nominal oscilla-
tory steady-state. (13) contains impulsive terms due to the
abrupt switching of the inverters.

1Indeed, extending LPTV Floquet analysis to capture nonlinear phase be-
havior in oscillators is the key qualitative advance of [4] over the prior pio-
neering work of [9] and related approaches such as [8].

4) Next (Section II-D), we solve (13) analytically, to obtain a
general solution for any initial condition.

5) Using this general solution, we next calculate
(Section II-E) the 3 3 monodromy matrix [5], [7] of
the oscillator. We find that the entries of the monodromy
matrix consist of only the integers 1,4,9 and 12. Next,
we show that, surprisingly, an exact eigen-analysis of the
monodromy matrix is possible completely analytically,
resulting in expressions for all eigenvalues and eigen-
vectors. Furthermore, we find that all these quantities
are related very simply to a single scalar number,

. Curiously, this quantity is
the celebrated Golden Mean or Divine Proportion (e.g.,
[6], [13], [14]), a number well known for its significance
in fields as diverse as pure mathematics, geometry,
science, music and architecture. From the eigenvectors
obtained, we choose the eigenvector corresponding to the
oscillatory eigenvalue (i.e., Floquet exponent 0).

6) Next (Section II-F), we use the general solution of the
LPTV (13), using the oscillatory eigensolution obtained
above, to find the PPV [4] analytically in (34). The ana-
lytical expression is found to be a piecewise-exponential
waveform with discontinuities. With the PPV available an-
alytically, it is embedded within a simple, scalar differen-
tial equation [2] to obtain the exact analytical nonlinear
phase error macromodel (35).

7) Finally (Section II-G), we incorporate resistive noise,
power rail interference and ground node interference
terms into our analytical nonlinear phase error model (35).

A. Differential Equations for the Ring Oscillator

From Fig. 1, the equations of the ring oscillator may be easily
derived from first principles to be

(1)
where is the ideal inverter characteristic

if
otherwise.

(2)

Define .

B. Periodic Steady State

Assuming is -periodic, we realize from posi-
tive–negative symmetry that

(3)

with . Requiring from symmetry that
, we obtain

(4)

From delay symmetry, we have and
. From (2), it follows that the voltage at
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Fig. 2. Ring oscillator steady-state waveforms: v ; v ; v .

will keep on increasing as long as , following
which it will start decreasing as soon as rises above zero.
Since achieves its maximum at , this implies that
has a zero crossover at . Using these facts, we plot the
steady-state waveforms for , and , showing the
zero crossover points concretely, in Fig. 2.

Hence, we have one zero crossover point at for .

(5)

we have

(6)

Solving, we have , the
Golden Mean [6], [13]. ; close to
the that would result from a perfect delay model. Moreover,

.
Expanding further in terms of , we obtain

(7)

Summarizing the periodic steady-state waveform of the os-
cillator, we have

(8)

with and , where is the
Golden Mean. Denote this periodic steady-state by , i.e.,

. The formula above is confirmed
by simulation, as shown in Fig. 3.

We next obtain an expression for the derivative of ,
which will be needed later

(9)

In particular

(10)

C. Time-Varying Linearized System

Next, we need to linearize (1) about the periodic steady state
obtained above. Because the inverter characteristic has a
perfect negative step of amplitude 2 at , its derivative is

From inspection of (1), the forward LPTV system is of the
form

(11)

where is a size-3 3 -periodic matrix of the form

(12)

The adjoint system is

(13)

Recall from the previous section that ;
; and .

Hence, has a positive zero crossing at and a negative
zero crossing at ; has a positive zero crossing at

and a negative zero crossing at ; and has a
positive zero crossing at and a negative zero crossing at 0.
Hence, we can re-write as

(14)

with

(15)

Equation (14) is valid over , with -periodic.
is the point where crosses zero; the slope at
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Fig. 3. Ring oscillator steady-state waveforms (simulation).

Fig. 4. G (t) (simulation).

this point is , which follows directly from (1).
Incorporating correctly in (14) is important for capturing
the integrals of the -function terms, which are key metrics to
be preserved. Fig. 4 depicts the impulse-like obtained
from simulation. Note that the spikes, synchronized with zero-
crossings of , are all positive, as predicted by (14).

D. Solution of the Adjoint LPTV System

Noting that

(16)
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we can expand the adjoint LPTV system into
individual components, and denoting ,
we obtain

(17)

The above equations can be solved analytically, using a wave-
form-relaxation-like approach, because of the simplicity of in-
tegrating functions. For given initial conditions ,
and , the solution is

(18)

as can be verified by direct substitution.
Observe that the solution is not completely specified yet,

since the unknown quantities , , ,
and appear on the right-hand side of (18).

We can, however, solve for these in three passes through (18).
In the first pass, we obtain

(19)

in the second pass, we obtain

(20)

and in the third pass, we obtain

(21)

Substituting (19), (20) and (21) in (18), we obtain

(22)

valid over .

E. Monodromy Matrix of the Adjoint LPTV System

To obtain the adjoint monodromy matrix, we need to evaluate
the above at , for initial conditions , and , respec-
tively. Doing so, we obtain

(23)

Recalling that and that
(where , ), we
have

(24)

The characteristic polynomial of above is

hence the eigenvalues of are

(25)

resulting in eigenvalues for of . (Note that
and that ). The eigendecompo-

sition of is

(26)

Therefore

(27)
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F. Analytical PPV and Nonlinear Phase Macromodel

We are now in a position to obtain an analytical expression
for the PPV [2], [4] of the ring oscillator. Note that the eigen-
vector , corresponding to the periodic Floquet multiplier
(eigenvalue 1), is the first column of , or

(28)

Applying as the initial condition to (22), we obtain the
scaled PPV function

(29)

To obtain a properly scaled PPV, we need to normalize (29)
against . It suffices to calculate ;
however, care is necessary in this calculation, since, from (29),

. Using (10) and (29), we obtain (using
and )

(30)

We confirm correctness of by also computing it as

(31)

and noting that the result is identical to (30).
Applying the scaling constant, we obtain an analytical expres-

sion for the PPV of an ideal three-stage ring oscillator, shown
in (32) at the bottom of the page.

Observe that the three components of the PPV in (32) are
simply shifts of a single waveform; hence (32) can be re-written
as

(33)

where (34) at the bottom of the page, holds.
With the analytical expression for the PPV (34) available, the

nonlinear phase macromodel of the ring oscillator can be ex-
pressed as [2], [4]

(35)

where is the timing jitter caused by the vector perturbation
to the oscillator. The components of represent per-

turbations to the individual equations of (1).

G. Incorporating Intrinsic and Interference Noise Inputs

To use (35) to analyse the ring oscillator’s phase deviations
due to the presence of intrinsic and interference noise from the
oscillator’s internal resistors, as well as from the power and
ground lines, it is helpful to expand to more explicitly rep-
resent these effects. To this end, we re-write (1) to incorporate

(32)

if

if

(34)
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Fig. 5. Plots (from analytical expressions) of the steady-state waveform, its derivative, the PPV and the closed-form ISF [8, eq. 31] of the ideal 3-stage ring
oscillator.

voltage variations in the power supply node, voltage vari-
ations in the ground node, and thermal noise from each of
the three resistors in Fig. 1

(36)

In (36) above, , i.e., selects 1 when the
power rail is shorted through to the inverter output, and 0 when
the ground rail is connected. represent three independent
stochastic white noise waveforms of identitity PSD.

III. APPLICATION OF THE ANALYTICAL PHASE MODEL

A. Comparison Against Linear Phase Macromodels

Fig. 5 plots the PPV (34) for a ring oscillator with ,
together with the ring oscillator’s steady-state waveform, its
derivative, and the closed-form ISF from [8, eq. 31] for com-
parison. Several facts about the PPV are noteworthy.

The first interesting feature is that “jumps” in the PPV com-
ponent of a given node (e.g., node 1, the solid lines) are not
synchronized in any simple manner with the steady-state wave-
form or its derivative. Indeed, the PPV’s discontinuities, which
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occur at its maxima/minima, take place when the oscillator’s
response is smooth. This indicates that any intuition about the
phase sensitivity of a ring oscillator that is based on when nodes
change rapidly is erroneous. Indeed, the correct intuition, de-
rived from the PPV waveform, is that a node is most sensitive
to noise and perturbations when the next node in the ring ex-
periences rapid transitions. Points A, B, and C are marked in
Fig. 5 to exhibit this behavior. Maxima of (point
“C” in Fig. 5) occurs when (the next node) reaches at its
maximum (point “B” in Fig. 5). It can also be noted that
is perfectly smooth at the maximal points of .
Clearly, the phase sensitivity of a particular node is not related
to the derivative of that node’s steady-state waveform in any
straightforward fashion.

It is instructive to compare the PPV with the well-known
“ISFs” proposed in [8]. In this context, we first note that the
(numerical) ISF [8, Appendix A], obtained via simulations of
the oscillator with delta-function excitations at each perturbing
input, is not identical in general to the “closed-form ISF” [8,
Appendix B, eq. 31]. Although this fact has been established be-
fore [1]–[4], it appears to remain a point of common confusion
within the community. The numerical ISF is in fact a re-dis-
covery of the concept of oscillator phase sensitivity to pertur-
bation that was first proposed by Kärtner [9], who also noted
that it was related to the adjoint of the oscillator’s small-signal
LPTV equations. The PPV (of [2], [4] and this paper) and the
numerical ISF are in fact identical to each other and to Kärtner’s
adjoint LPTV impulse response function2 [9]. It has been estab-
lished [2] that this PPV (or the numerical ISF function) is in
fact the function that can correctly predict phase errors due to
perturbations.

It is important to note that the correct use of the PPV/nu-
merical ISF is within the nonlinear phase equation (35), not
within a linear time-varying phase equation [8, eq. 11], [9]. The
nonlinearity in the phase (35) is critically important for correct
prediction of a variety of oscillator effects, including injection
locking [10] and jitter due to power/ground interference [16].
The nonlinearity originates from the introduction of a time shift
into Kärtner’s purely LPTV model. If the voltage of a node in
an oscillator is plotted against the current leaving that node, the
trace of the voltage forms a closed curve (limit cycle), due to pe-
riodicity. In the presence of noise or perturbation, periodicity is
lost; therefore, the trace no longer conforms to the original limit
cycle. The extent of phase or time deviation from the original
limit cycle depends on noise amplitude, in addition to the os-
cillator’s steady-state characteristics. This time deviation is the
reason (35) is nonlinear in .

The normalized tangent-vector-based closed-form ISF
(CF-ISF) [8, Appendix B, eq. 31] is in general not identical
to the PPV, in spite of the fact that designer intuition about
oscillator phase sensitivity is often (erroneously) based on this
quantity. This is underscored by the dramatically different
shape and magnitude of the closed-form ISF, compared to the
PPV, seen in Fig. 5. While the PPV/numerical ISF scales lin-

2To avoid confusion between the numerical and closed-form ISFs, we have
used the acronym PPV throughout this paper to refer to the correct quantity.

early with , the closed-form ISF, being normalized to 1, does
not scale similarly. Phase changes from using the closed-form
ISF can in fact be in the opposite direction from the correct
one. For example, if a noise impulse is injected into node 1
at time about (i.e., 0.2 along the horizontal axis),
the closed-form ISF predicts a positive phase change (point
E in Fig. 5), whereas in fact, the correct phase change is in
the negative direction (point D in Fig. 5) and of a different
magnitude, as predicted by the PPV/numerical ISF.

We also compare the PPV with the derivative of the steady-
state waveform, i.e., the time-varying tangent vector to the oscil-
lator’s steady-state orbit. The tangent vector has been proposed
as an approximation to the PPV/numerical ISF in [8, Appendix
C] and is also sometimes used for guiding designer intuition.
It can be seen from Fig. 5 that the PPV and the tangent vector
are not identical—time-shifts and amplitudes are both different.
From the analytical expressions, it can be seen further that the
two waveforms scale in opposite directions with respect to the
RC time constant . Hence, intuition about ring oscillator phase
sensitivity that is based on the amplitude and shape of the tan-
gent vector of the oscillator’s state-space trajectory can be very
misleading.

In spite of the fact that the PPV and numerical ISF are in
principle identical, calculating the PPV using adjoint LPTV
methods [2], [4] (as opposed to transient simulation of the os-
cillator with delta-function-like excitations [8]) has a number of
advantages. Firstly, as we have shown in this paper, analytical
expressions and design insights can result for specific circuits.
Furthermore, computation of the PPV using adjoint steady-state
techniques is numerically superior to direct first-principles cal-
culation via transient simulation with delta-function inputs,
for two reasons. First, adjoint calculation makes it possible to
obtain phase sensitivities with respect to all possible inputs
using a single matrix solution [4]; if direct transient simu-
lation is used, a simulation needs to be carried out for each
perturbing input, which can become tedious and expensive
for large circuits. Second, transient simulation of oscillators
is inherently prone to excessive numerical error, particularly
for phase characteristics. In addition, transient simulation of
oscillators typically involves circuit-specific heuristics, such
as guesses for how long to simulate before the phase error is
deemed to stabilize. For high- LC oscillators, this can be very
many oscillation cycles, which exacerbates inefficiency and
phase inaccuracy issues.

B. Jitter From Thermal Noise Perturbations

For stationary Gaussian white noise perturbations, the time-
average of the square of the PPV plays a central rôle [2] in de-
termining mean-square jitter and the shape of the oscillator’s
power spectral density. This quantity is identical for all three
components of the PPV (33), hence it suffices to calculate its
value for the third component (34). The square of the third PPV
component is

if

if
(37)
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while its averaged integral is

(38)

using and .
The mean-square jitter increase per unit time due to resistive

thermal noise from all three resistors, denoted by , is given
by [2]

(39)

where is Boltzmann’s constant and
the ambient temperature in degrees kelvin. Note that this quan-
tity is independent of .

IV. CONCLUSION AND FUTURE WORK

In this paper, we have derived a nonlinear analytical equation
that correctly captures phase errors in idealized 3-stage ring
oscillators. Curiously, the analytical model centers around the
well-known Golden Ratio. We have applied the model to obtain a
simple expression for phase noise stemming from white thermal
perturbations. We have also provided comparisons with existing
numerical and semi-analytical approaches for predicting phase
responses in ring oscillators; further, we have clarified issues
pertaining to the validity of such approaches. In addition to
its intrinsic scientific novelty, the analytical nonlinear model,
easily encapsulated in MATLAB, is well suited for early design
exploration and simulations at the system level. We anticipate
that it will find significant use not only in guiding ring oscillator
design and providing insight not only into random noise, but
also for supply interference, injection locking, etc.
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