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Circadian rhythm mechanisms involve multi-scale intéoact between endogenous
DNA-transcription oscillators. We present the applicataf efficient, numerically well-
conditioned algorithms for abstracting (potentially ygystems of differential equation
models of circadian oscillators into compact, accuratespfanly macromodels. We ap-
ply and validate our auto-extracted phase macromodeléobrtique on mammalian and
Drosophila circadian systems, obtaining speedups of 83x over conventional time-
course simulation, with insignificant loss of accuracy,dmgle oscillators being synchro-
nized by day/night light variations. Further, we apply thearomodels to simulate a system
of 400 coupled circadian oscillators, achieving speedfigd@x and accurately reproduc-
ing synchronization and locking phenomena amongst thédlatscs. We also present the
use of parameterized phase macromodels for these circeyditams, and elucidate insights
into circadian timing effects directly provided by our augxtracted macromodels.

1. Introduction

Circadian rhythms are amongst the most fundamental of plogical processes. They
are found in virtually all organisms, ranging from unicédlu (e.g, amoebae, bacteria)
to complex multicellular higher organisms.§, human beings). These daily rhythms,
of period about 24 hours, are associated with periodic absaimy hormones controlling
sleep/wakefulness, body temperature, blood pressuret taea and other physiological
variables. Importantly, circadian rhythms ardogenousr autonomoushowever, they
are typically influenced by external cues, such as lightgfass in quantitative biology

has established that such rhythms stem fundamentally fiermblecular levet;2 involv-

ing complex chains of biochemical reactions featuring a lbemof key proteins/hormones
(such as melatonin and melanopsin), whose levels rise dndufdng the course of the
day. These biochemical reactions, which take place bothinvihdividual cells and at an

extracellular level, function asiological oscillators or body clock®

Quantitative understanding, simulation and control o€ailian rhythms is of great
practical importance. Applications include devising noadliremedies for rhythm disor-
ders €.g, insomnia, fatigue, jet laggstc), synthetic biology (where a goal is to “program”
artificial rhythms that are biologically viable), artifitha extending periods of wakeful-
ness/alertnesg (g, for military purposes), and so on. Improved understandingrcadian
rhythm mechanisms has led to increased awareness of hoaspasly they affect virtually
every aspect of the life of an organism. Hence, their sinuénalysis is an important

endeavour in the biological domatrt.

Although individual oscillators constitute the fundamedntore of circadian rhythm
mechanisms, the rich circadian functionality of multio&r organisms results from tlie-
teractions of many oscillatoever multiple temporal and spatial scales. Observatiopsof
riodicity in behavior, metabolism, body temperatwets, indicate that coupling/coherence
mechanisms play a key role. Hierarchical organization efdincadian system, from the
fundamental DNA transcription/translation level to endioe system levels, involves com-
plex oscillator interactions. The complex connectivitgdmgh dimensionality of such cou-
pled oscillator networks, which lead to unique effects sag$ynchronizatiorandinjection
locking/pulling®® make them difficult to understand at the intuitive or analftlevel, thus
engendering the need for efficient and powerful simulatioth @analysis tools with multi-
scale capabilities.

Several oscillatory mathematical models are availablecfaradian rhythms? that
capture the dynamics of the relevant molecular biochemézadtions (see Sectidifor de-
tails). These models are in the form of systems of diffegatigebraic equations (DAES)
or ordinary differential equations (ODEs). The prevalectinique today for their simula-
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tionisto runinitial value simulations. While such “timeurse integration” of ODEs/DAEs
has the advantage of generality, it suffers from seriousddigntages for oscillators, which

are inherentlymarginally stablé® For initial-value simulations, marginally stable systems
tend to require orders of magnitude more computation forexifipd accuracy, particu-
larly phase/timing accuragyhan stable systems; even for individual oscillatorsysenall
timesteps€.g, many hundreds per oscillation cycle) are typically needk=atling to high
computational cost. The situation worsens for coupledllasai systems, which typically

feature multiple time scale®.g, envelope&® typically feature much longer time scales
than individual oscillation cycles.
In electronic circuit desigrautomated nonlinear phase macromodel extractech-

niques:8-9 have proven effective in solving sucsuch oscillatory peahs. Given any oscil-
lator as a system of DAEs or ODEs (however complicated),ieffiand well-conditioned
numerical techniques extractsaalar nonlinear differential equatigrthe phase macro-
model. This macromodel captures the dynamic response aidti#tator’s phase or tim-
ing characteristics to external influences. It has been shbat such “PPV” (Perturba-
tion Projection Vector) phase macromodels are able to atelyrcapture the gamut of
phase/frequency-related dynamics of oscillators; mogoitantly locking, synchroniza-

tion and phase noise (timing jitter) effeés® Using the PPV macromodel instead of the
original DAEs/ODEs confers important advantages: largeutation speedups due to sys-
tem size reduction, the ability to use larger timesteps fbathe original system, abstrac-

tion to the phase or timing level, precise insight aboutrigrinfluences without the need for

simulation.etc. These advantages are especially pronounced for systemasnyfcoupled

oscillators spanning different temporal and spatial scHle
In this work, we present the first application of PPV-basetmated nonlinear time-
shifted macromodelling methods to biological systemsj$sing on circadian rhythms. We

use PPV phase macromodetdto model circadian oscillators and show that they are con-
siderably more efficient than standard “time course” sittioifes. PPV models alleviate the
lack of accuracy and general applicability of a widely usednphase model (Kuramoto’s
model, see below), while retaining its advantage of retasivnplicity and computational
efficiency. PPVs provide direct insights into the effecterfernal stimuli, such as slow-
ing down/speeding up of circadian rhythms; for examples &asy to determine when and
how to apply a light pulse for greatest de-synchronizatidgsing PPV macromodels, we
are able to efficiently produce plots of circadian lock ramgemplitude of external stim-
uli; this is valuable for guiding experiments, explainingservations, and designing new
(“synthetic”) DNA/protein based biological clock netwark-urthermore, we also present

the application oparameterizedPV macromodel$3 which directly incorporateffects of
parameter changesto our phase-only models of circadian rhythms. Being &bldirectly
and quantitatively predict the impact of parameter changgshase, frequency and timing
behaviour is of significant biological value.

Indeed, the PPV constitutes a rigorous, Floquet-theogetieralization of Winfree’s

seminal concept of timing maps and phase sensitivity fonsfi* used within “phase-only

models” of oscillators popular in computational biologyiriémotd® applied the theory of
asymptotics to finginusoidalexpressions for Winfree’s phase sensitivity functionsst
are widely used for phase-only models, since they are capshtapturing synchroniza-
tion effects. However, the sinusoidal simplifications irdre in Kuramoto’s model lead to
significant inaccuracies for non-sinusoidal oscillatamsl(uding circadian ones). These in-
accuracies compound in large networks and often lead tagtisly incorrect conclusions

about,e.g, collective synchronizatioht16 From a utilitarian point of view, the usefulness
of PPV macromodels over Kuramoto is twofold: firstly, PPVpresent the correct (of-
ten highly non-sinusoidal) phase sensitivity functionshaf oscillator; secondly, the PPV
macromodel is generated via algorithmic computational procedufeom the oscillator’s
DAE/ODE description, typically taking seconds or less tduee systems 1000s of equa-
tions in size.
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We apply PPV macromodels to two different circadian rhyth
models: one for mammalid’ and one fobrosophila melanogaste
(the fruit fly, shown in Fig1).2 We show that the PPV macromod
els are significantly faster to simulate than the originalaipn
systems even for single oscillators (9x speedup for the maam
clock, and 13x speedup for tirosophilaclock). Modelling light
as an external input impinging upon circadian oscillataescon- Fig. 1. Male Drosophila
firm injection locking using PPV macromodels and obtain pldfruit fly).
of lock range vs amplitude of the light signal. We comment on
the biological significance of the shapes of important congmbs of the PPV. We then use
PPV macromodels to rapidly explore synchronization behavin a network of 400 cou-
pled oscillators, obtaining speedups of about:24Wer standard time-course simulation.
Finally, using parameterized PPV macromodels, we preldéceffects of varying a number
of model parameters on oscillation frequency and lock range

The remainder of the paper is organized as follows. In Seétity we provide back-
ground on circadian rhythms and their mechanisms, follolyed review of mathematical
models for circadian rhythms in Secti@r?. Oscillator and phase macromodels are then in-
troduced in SectioB; a brief review of PPV macromodels, injection locking arsiyand
parameterized PPVs is provided. Finally, in Sectipresults and speedups are presented.

2. Background and Previous Work
2.1. Circadian rhythms

Circadian rhythms are generated by “clock genes”, whiclodagenetic instructions that
produce certain proteins whose levels oscillate duringthese of the day. These oscillat-
ing biochemical signals control various functions, suclslagp/waking cycles — in other
words, they constitute our “internal biological clock”, igh adapts to the daily cycle of
day and night. However, the natural period of this interdatk is not exactly 24 hours;

it is typically longer if the organism is kept isolated andagvirom external cuet® most
importantly light (these cues are callgditgebers Therefore, the internal clock needs to
be “reset” every day, in order to keep the organism’s bodiijgttims synchronized with the
external world’s day/night cycle.

Higher organisms are often composed of billions of cellse Tilucleus of each cell
contains the genetic material DNA, a long chain-like lineaslecule built up of many
links. RNA, also a nucleic acid polymer, serves as a DNA teatepfor thetranslationof
genes into proteins. The process of formation of an RNA madéefrom a particular DNA
is calledtranscription Unlike DNA, RNA is capable of leaving the nucleus and moving
into the cytoplasm. There, with the help of enzymes, speRifié strings get converted to
specific proteins responsible for different bodily funaso Some of these proteins return
to the nucleus, forming complexes by binding to other pritesome of which inhibit the
expression of their own genes, giving rise to oscillatoritgras in protein concentrations

and hencegircadian rhythmg-218

In mammals, core clock genes incluéker, Cry,
Bmall and Clock genes. Their proteins act by inhibit
ing or stimulating transcriptions of other core cloc
genes. The proteins of thBmall and Clock genes,
namely BMAL1 and CLOCK, form a complex CLOCK-
BMAL1 inside the nucleus. This complex activates t
transcription of thePer and theCry genes. In the cy-
toplasm,Per and Cry RNA translate to their respectivel T
proteins, PER and CRY. Some of these proteins dinfég- 2: Mammalian circadian clock
ize to form the complex PER-CRY which returns to tfgechanism rancis Levi, EORTC
nucleus where, by binding to the CLOCK-BMAL1 confzhronotherapy Group).
plex, it prevents the further transcription B&r and Cry genes. Thus a negative feedback
loop is created; PER and CRY proteins blocking the transoniof their own genes. The
above mechanism for the mammalian clock is illustrated ¢ Ei
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2.2. Models of Drosophila and mammal circadian rhythms

Computational models are available for circadian rhythm®iosophila Neurospora
cyanobacteria and mammalian systémsThese models, useful for computing concentra-
tions of core clock genes, take into account the processeartdcription, translation and
phosphorylation.

The mammalian circadian clock model we Lisensists of 16 variables (hence 16 dif-
ferential equations) and 52 parameters. It incorpora

the effect of negative autoregulationér/Cry gene ex- = i
pression by their own proteins. TBgosophilacircadian et plon Y
model we usé, consisting of only 5 variables (5 equa “
tions) and 18 parameters, is small enough to be rep .}, ..l N/ M
duced here: l LS S
dMp, KD Mp . :
B Fig. 3: Drosophila clock mecha-
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The variables in Eql are the same as those shown in Eigparameters that lead to en-

dogenous oscillations are taken from Gonze/Goldbétite that Eqlis in the canonical
nonlinear ODE/DAE system form

A& ®) + F(x() +b(t) =0, e)

with d(X) = X andb(t) = 0. b(t) represents the influence of external inputs, such as light,
which affects the transcription rate of tRer gene in both mammals ari2fosophila The
effect of light is modelled by including a parameter in theeraquations of th@er gene

(vs in Eq. 1), which we recast in the form of EG.with b(t) # 0 (details in Sectior).
3. Oscillators and PPV phase macromodels

The quantitative study and design of oscillators has a ristoty in engineering, particu-
larly in electronics: oscillators are fundamental compusén virtually all electronic sys-
tems. For example, they are widely used in communicatiotesysfor frequency transla-
tion of information signals; phase locked loops (PLLs) flack generation and frequency
synthesisetc. As noted earlier, phase macromodelling techniques arelyigsed to im-
prove simulation efficiency and accur@dy in electronics. In particular, the Perturbation
Projection Vector (PPV) phase macromdtfels well established on account of its rig-
orous Floquet-theoretic underpinnings, broad applidsibéffective numerical extraction
procedures, large simulation speedups and extensiveatialid We have already noted its
advantages in Sectidn here, we summarize mathematical details of the model. ¥ur-e
sitional convenience, we assume an ODE form for an osaillatder external perturbation:

S0+ 7 (x(0) = Bit). @
b(t) is the vector of perturbations applied to the free runningjliasor; X(t) and f(X(t))
have their usual meanings, as in Bq.The solution of this perturbed oscillator can be
showr to be in the form
Xp(t) = Xs(t+a(t)) +y(t+a(t)), 4)
whereXs(t) is the periodic, oscillatory solution of the unperturbediltstor anda (t) is
a phase deviatiortaused by the external perturbatibft). J(t + a(t)) is an amplitude
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variation; it is typically very small in circadian osciltais® and is therefore of secondary
importance compared to the phase deviatigt). Using a nonlinear extension of Floquet

theory, Demir et & proved thata(t) is governed by the scalar, nonlinear, time-shifted

differential equation
a(t) =vi(t+a(t))-bt), (5)

wherev{ (t) is a periodic vector known as thEerturbation projection vectoor PPV. Im-
portantly, they also showed that the PPV can be calculatiédesttly via simple post-
processing steps following time- or frequency-domain dyestate computatiof? Each
component of the PPV waveform represents the oscillatoiglinear phase sensitivity”
to perturbations of that component. The PPV needs to beatetranly once from EdlL
(even if parameters change, see the description of paremeetd®PVs below); once ex-
tracted, Eq5 is used for simulations.

3.1. Using the PPV macromodel for systems of coupled oscillators

By employingB(t) in Eq.5 to capture coupling, PPV macromodels can be composed to
represent systems of many coupled oscillators with diffecharacteristics. For purposes
of illustration, we outline the procedure fof identical oscillators coupling via only one
component ob(t). This results in the following set of governing equationstfee coupled
system:

di(t):VT(t+ai(t))‘M(t)7 iGl,'“,N, (6)
whereq; (t) is the phase shift of oscillatorv(t) is the phase sensitivity of the node on which
coupling occurs angk(t) is the perturbation resulting on oscillatodue to coupling from
other oscillators. If the coupling (t) and phase sensitivity(t) are purely sinusoidal, it is
easy to show that E@. is equivalent to Kuramoto’s modé?. In general, however, EG.
is far more accurate since it considers all harmonics of tARg¢<? We use the coupling
function model given in To et & asy;(t) in Eq.6, and solve for the phase dynamics of a
20x 20 network of coupled oscillators.

3.2. Injection locking analysis

When an external signal of frequendyis injected into an oscillator with a central fre-
quencyf, close tof, the oscillator can lock to the injected signal both in phasé fre-
guency. This phenomenon is known as injection locking amcbeavery easily captured by
the PPV macromodel of the oscillatbtt has been showtthat when injection locked, an
oscillator’s phase shiftr (t) varies linearly with time as

a(t) = 224 80 )

W W

wherewy, is the natural frequency of the unperturbed oscillator Aacthe difference be-
tween the frequencies of the injected signal and the unfertioscillatorf(t) represents
abounded, periodiphase difference function, the exact form of which can berdeined
via time-course or steady-state simulafiSrof Eq.5. The presence of injection locking

can therefore be detected by comparing the time-averagétpfvith AK‘:’.

3.3. Parameterized PPV macromodels

Circadian rhythm models typically involve large numbersrafdel parameters. For exam-
ple, there are 18 parameters in hwsophilaclock model while the mammalian clock
model has 52 parameters. The values of these parameters are cltotet the model's

predictions best fit experimental observations. LeloujdBettet’ have noted that circa-
dian rhythm properties (particularly frequency) are siresto variations in several param-
eters. The conventional approach to assessing the effgrameter variations involves
brute-force time-course simulation of circadian modelpr@cess that is not only expen-

sive but can also generate numerical inaccuracies in phase.
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We, instead, use an extended form of Edhat directly incorporates parameter varia-

tions —we call this thparameterized PPV macromodélThe key advantage of the param-
eterized PPV macromodel is that it does not involve re-efitrg the PPV when parameters
change - this leads to huge speedups wheg,many coupled oscillators with different pa-
rameters are involved. The parameterized PPV equationés diy

a(t) =V (t+a(t))- (b(t) - Sp(t+a(t))Ap), ®)
whereAp is a vector containing parameter variation terms 8p() is a periodic, time-
varying matrix function given by Y

Splt) = d—p\xs(t),p*~ 9)

In Eq.9, xs(t) denotes the natural periodic solution of the unperturbeilatr; p* rep-
resents the vector containing nominal (basal) parametaesaThis extra term captures
phase deviations due to parameter variations, withoutlgaia re-extract the PPV when
the parameters change. It also enables the study of thes@femultiple parameters vary-
ing at the same time.
4. Simulation of mammalian andDrosophila melanogaster circadian rhythms

using PPV macromodels

In this section, we present results obtained by applying RR¥romodelling, described
in Section3, to mammalian anrosophilacircadian rhythm models? We first extract
PPV macromodels for both circadian systems at nominal petien$h and then simulate
for phase deviation with external perturbation to dematstinjection locking. We model
the external perturbations as changes in external ligahgity by first assigning a constant
value to the light sensitive parameter(signifying darkness) and then applying an external

light signal of intensity

L(t) =A+ Asir‘(thW/mz, (10)
wherew = 2rtf, f being the frequency of the light/dark cycles., corresponding to 1
cycle in 24 hours. Often, light is modelled as a step funcfmmsimulations in biologi-
cal systemsi(e., constant values for light and dark conditions respectjvéfiowever, to
correspond more closely with continuously changing ligtensities in reality and to illus-
trate the generality of the PPV model, we apply sinusoid&risity waveform around an
average valué! (Note that any other shape, including step function shagesbe handled

equally easily). We assume the experimental setup used biyQkazaki?! where the illu-
minance of light is varied from 20 lux to 0.01 luik€., variation in light intensity from 0.15

W /m? to 0.00009W /), giving A ~ 0.08V/m? in Eq. 10. Moreover, Eq10 multiplied
by a constant gives the terhit) of Eq.2, where the constant signifies the chang®én
gene concentration forW /m? of light intensity. In this paper, we assume the constant to

be equal to M/ (W /m?). The constant can be modelled accurately in future expeine

We also extract parameterized PPV macromodels to studyffdw ef parameter vari-
ations in two cases — with and without external light vadas. In the absence of external
light variations, phase deviations from the parameterRBY¥ macromodel are useful for
predicting changes in free-running frequency. When exslelight perturbations are in-
cluded in parameter-varying PPV simulations, lock randgermation is also generated.

Finally, we put the above single-oscillator PPV macromsdebether to model a
locally-coupled 2620 network of oscillators — a simple representation of aiafamulti-
scale, coupled circadian system. We use this model to deratesynchronization behav-
ior, obtaining speedups of about 24@ver traditional time-course simulation.

4.1. Time-course simulations using full ODE models

For reference and validation, we first perform time-couliseutations of the two ODE
circadian rhythm models directly, to obtain concentratieewveforms for all clock pro-
teins and mRNAs in the model. The waveforms thus obtainedlaoe/n in Fig4(a) and
Fig. 4(b). We observe an anti-phase relationship between the coatiens of thePer/Cry

andBmallmRNAs, as expected from theohyThe period of the oscillating waveforms is
equal to 23.8 hrs for the mammalian clock and 22.4 hrs fobtusophilaclock.
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Circadian Oscillations (mammals) Circadian Oscillations (Drosophila)
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Fig. 4. (a) Plot of core clock gene concentrationsPér, Cry and Bmall) in mammals vs. time.
The concentrations are oscillatory and there is an antiphas relationship between thePer/Cry
and Bmall concentrations. (b) Plot of thePer gene concentration inDrosophila vs. time

4.2. Circadian PPV macromodels

In this section, we extract the PPV macromodel of the ciaradiscillator for both models.
Fig. 5(a)and Fig.5(b) show the PPV waveforms dfer gene concentrations. This wave-
form gives the phase sensitivity of the concentration &l ¢iawe instant and can be directly
used to find the new concentration waveform under the effesut @xternal perturbation. It
is equivalent to the phase response curve described by &&iHfwith the only exception
that PPV waveforms do not involve sinusoidal simplificatibhimplying greater accu-
racy, as already noted previously. By inspecting the phassitivity at each time instant,
it becomes possible to determine the time at which light khbe applied to shift the oscil-
lator’s time-keeping forward or backward. At zero crossing the PPV phase sensitivity

function, for example, a light pulse will have no effect oe fthase/frequency characteris-
tics of the oscillator.

PPV waveform (Per gene, mammals) PPV waveform (Per gene, Drosophila)
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Fig. 5. (a) and (b) Plot of PPV phase sensitivities vs. time for th®er gene concentration.

Speedups (a) For the mammalian clock model: full time course simolausing the
Backward Euler (BE) integration method requires 18 secofidemputer time, while find-
ing the free-running steady state via harmonic balanceyaisabhkes about 6 seconds. This
is followed by the PPV extraction algorithm, which takesward 1.5 seconds; the total time
required for PPV extraction is about 7.5 seconds, repregeatspeedup of some 2:6.
(b) For theDrosophilamodel: full time course simulation takes about 13 secs; baim
b?lance analysis takes 4 seconds, PPV extraction 0.5 seconds; resulting in a speedup
of ~ 3x.

To gauge the accuracy of the PPV macromodels, we plot coratiemt waveforms for
the Per gene, obtained from time course and PPV simulations, in@-igig. 6(a) shows
waveforms for an locked oscillator (distinct frequenciedile Fig.6(b) shows waveforms
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for a locked oscillator.

Transient vs PPV (unlocked) Transient vs PPV (locked)
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Fig. 6. Plots of Per gene (MRNA) concentration obtained from transient and PPV nacromodel
simulations. (a) Unlocked case. (b) Locked case.

4.3. Simulation of injection locking

In order to study the effects of external perturbations ocaclian rhythms, we calculate
phase deviations due to external perturbations {Hypby solving Eq.7. If the period
of the externally applied signal is close enough to the tagoif's free-running frequency,
entrainmenbr injection lockingoccurs.

4.3.1. Mammalian clock model

The free-running frequency of the mammalian circadianlciscfo = 4.19x 10~2hr—1.
We apply an external signal Witﬁnf— = —0.00623. Fig.7(a)depicts injection locking with

a light input of 0.009 + 0.009sing) W/m?, where the locking starts around 690 hours

(~ 30 cycles). Fig7(b) shows the same curve for light input of 0.05 + 0.0Ssinj(W/mz;
locking time reduces to about 260 hrs 11 cycles). From these results, we can Infer that
with smaller light intensities, the resetting phenomerakes a longer time.

Phase deviation (slope=—0.006993) Phase deviation (slope=-0.007000)
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Fig. 7. (a) Plot of phase deviatiora (t) vs. time for the mammalian clock model, with light input

0.009+ 0.009sir(wt)W/mP. The slope of—0.0069indicates injection locking, with lock reached
in about 690 hours. (b) Plot ofa(t) vs. time for the mammalian clock model, with light input

0.05+0.05sinct)W /m?. The slope is—0.007, lock is reached in about 260 hours.
4.3.2. Drosophila clock model

The free-running frequency of thérosophila circadian oscillator wasf, =
4.48x10-2hr~1; the frequency of the injected light signal whas- 4.16x10~2hr 1, leading
to éfi = —0.071. The intensity of the applied light is given by Bd), with A= 0.05W /n?.

Fig.US(a) shows the phase deviation vs. time; its slope is 0.071, equiile relative fre-
quency difference, thus confirming that the oscillator kkx to the injection frequency.
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Fig. 8. (a) Plot of phase deviationa (t) vs. time for the Drosophila clock model. The slope is
—0.071(injection locked) (b) Plot of frequency deviation vs. time
4.4. Lock range vs. injection amplitude

We also calculate the lock range (frequency ran™~ | ,ing rRange vs injection Amplitude
over which the oscillator remains locked to the extern 8
signal) for the mammalian clock and plot it as a fun 28
tion of injection amplitude. We find that the lock rang 5
increases roughly linearly with injection amplitude, ¢ %4
can be seen in Fig. However, at higher amplitudes 2
the linearity between lock range and injection ampl£°2
tude collapses. By calculating the lock range for a giv %
light amplitude, we can infer whether the system wou g 02 04 06
lose its rhythmicity or not on exposure to that particuliy 4. L'”l‘-‘clzf’” A”g"‘“de (W”"I ) .
light. Conversely, one can calculate the light amplituﬁ‘ : Ii'tudgc(,\',l”;]mn?gl?aen"élonéﬁc 1on
required to synchronize the free running oscillators. P

Speedups (a) Mammalian clock model: Time course simulations tak&8 seconds.
PPV macromodel simulations take2 seconds after PPV extraction, resulting in a speedup
of ~ 9x. (b) Drosophilaclock model: Time course simulations takel3 seconds; PPV
macromodel simulations take 1 second; resulting in a speedup-ofL3x.

4.5. Parameter variation simulations

To study the effect of parameter variations on circadiatimmg, we first simulate the phase
deviations given by EB with b(t) = 0. As an example, we vary all parameter values by
10% of their nominal values;e., Ap = 0.1p. The slope of the phase deviation curve gives
the relative change in frequency due to the change in paeasmés is evident from E@,

we can study the effects of all possible combinations of patar variations.

For the mammalian clock model, the relative frequency ckaisgfound to equal
0.186;i.e., the new frequency is equal to Athours (Fig10(a). For theDrosophilaclock
model, the relative frequency change equals114,i.e., the new frequency equals 25
hrs (Fig.10(a). Itis evident that even small changes in parameter valaesffect rhythm
frequency significantly.

Next, we combine parameter variations with external pbgtions to the oscillator.
Using the slope of the phase deviation curve, we can ca&thatrange over which param-
eters can be varied while keeping the oscillator oscillstitilocked to the injection signal
frequency for the same light input. As an example, we varpalameters simultaneously
and find the respective variation range for each model. |e cdsheDrosophilamodel,
parameters can be varied froabto10% without loss of lock; while for the mammalian
model, the range is smaller,5t01% variation. The light input in both the cases is given by

Eq.10with A = 0.05W/n?.
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Fig. 10. (a) Plot of the phase deviationa (t) vs. time for the mammalian clock model with 106
variation in the parameter values. The slope of the curve = 086 implying that the new frequency
of oscillations equals to 20.1 hrs. (b) Plot between the phagdeviation a(t) and time for the
Drosophila Clock Model with 10% variation in the parameter values. The slope =-0.114 and the
new frequency of oscillations is hence equal to 25.2 hrs.

4.6. Synchronization of coupled oscillators

In this section, we extend the single oscil
lator analysis to a system of many coupled o 1 unit
cillators (.e., a system of several interacting bi N >
ological cells, each behaving as an individui
oscillator and oscillating with a period of 24 .
hrs). We consider a system of 400 mammalie 1
clock oscillators arranged in a 20x20 grid, a
shown in Fig.11.1 The oscillators are identi-
cal in all respects except for their free-runnin
frequencies, which are selected randomly fro
a uniform distribution. Each oscillator is mod-
elled by a system of 16 ODEs (as used befo
for single oscillator analyses). In order to intro
duce coupling between the oscillators, we use
recently proposed coupling model given in To ¢
al?0 wherein neurotransmitters act as synchiag. 11: 2-dimensional oscillator grid. The
nizing agents between the cells. Then, usinguambers indicate the weight factors used for
PPV macromodel for each oscillator augmentte coupling. The black solid circle represents
by coupling equations, we simulate the entiggarticular cell of interes®
oscillator system.

We use Eqb6 to calculate the phase deviations for each oscillator,roiag instanta-
neous phases at regular intervals. In every phase@lpt &s shown in Figl2(a), a small
rectangle represents an individual oscillator; the cotiuhe rectangle represents its phase
visually; e.g, dark red denotes a phasemfwhile dark blue denotes 0 phase. Fig(a)
and Fig.12(b) show phase plots at= 1T and 5T respectively T is the free running fre-
quency of an oscillator) in the absence of coupling. The mtEsef coupling can easily be
surmised, from the random nature of the plots (absence gbattgrn;.e., unsynchronized
phases). For the coupled case, Rig(d) shows the phases at3T, when all the oscilla-
tors start synchronizing to the same phase (and frequérigy)L2(e)and Fig.12(f) are the
phase plots at later stages, confirming synchronizatiomgsidghe coupled oscillators. We
have also varied the random center frequency distributibtiee oscillators, and found that
with the same coupling strength, the oscillators ceasedo o each other for deviations
greater than @ of the free-running circadian period
Speedups (a) Time course simulations requike12 hours for full simulations, including
the time required for the formation of the coupling matrilx) PPV simulations require
~ 158 seconds for complete simulations. Hence, we obtain edsypeof~ 240x. If the
system size is larger and the oscillator model is more comtie speedups will be greater.
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(a) Phase Plotatt=1T (No (b) Phase Plotatt=5T (No (c) Phase Plot at t = 0
Coupling) Coupling) (Coupled)

(d) Phase Plot at t = 0.5T(e) Phase Plot at t = 0.75T(f) Phase Plot att = 1.25T
(Coupled) (Coupled) (Coupled)

Fig. 12. (a) and (b) Phase plots in case of no intercellular coupling étween individual oscilla-
tors. (c) - (f) Phase plots showing the synchronization of epled oscillators (all oscillators at the
same phase)

5. Conclusion

We have applied PPV phase macromodelling techniques to naiemmandDrosophila
circadian rhythms, for the first time. These techniques ipge¥ast/accurate simulations
of oscillator systems, predicting synchronization anett&sg in circadian rhythms via in-
jection locking cued by light inputs. In addition, PPV wawehs provide direct insight
into the effect of light on phases of the oscillating rhythi& have accurately predicted
synchronization in a coupled multi-scale system of 400adii@n oscillators using PPV
macromodels. Finally, the efficacy of parameterized PPVroraodels for circadian prob-
lems has also been demonstrated.
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