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Abstract—Envelope-following methods face special challenges
when applied to oscillators because of their fundamental property
of dynamically changing frequencies. In this paper, we present a
novel and robust approach for oscillator envelope following. Our
method combines, unifies, and extends ideas from two prior os-
cillator envelope-following approaches, namely, Petzold’s method
and the warped multitime partial differential equation. Our tech-
nique uses two extra system unknowns, as well as two extra
“phase condition” equations, to track quantities related to dy-
namical frequency/time-period changes. These advances confer
significant robustness, without appreciable computational over-
head. We validate our method on LC , ring, and crystal oscillators,
accurately predicting frequency and amplitude modulations, as
well as transient startup envelopes. Speedups of one to two orders
of magnitude are obtained over traditional alternatives.

Index Terms—Amplitude modulations, envelope following,
frequency modulations (FMs), oscillators.

I. INTRODUCTION

O SCILLATORS are important in many engineering and
communication systems. For example, they are often

used as time references in digital circuits and for information
encoding in communication systems. As is well known, oscil-
lator simulation presents challenges that traditional SPICE-like
simulation (e.g., [1] and [2]) has difficulty in addressing effec-
tively. Due to their marginal stability [3], small phase errors ac-
cumulate unboundedly during transient simulation. This leads
to a much worse tradeoff between simulation timestep size and
accuracy for oscillators than for nonautonomous circuits. This
is especially true for high-Q oscillators, which often feature
very slow and sensitive amplitude responses. To obtain even
reasonably accurate results, extremely small step sizes can be
required during simulation.

A. Envelope

The envelope of a highly oscillatory signal refers to its
slowly varying characteristics such as gradual amplitude or fre-
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quency modulation (FM) of fast oscillations. When very slow
envelopes are present in an oscillator, predicting waveforms by
conventional time-stepping simulation can extremely be inef-
ficient because of the widely separated time scales of the fast
and slow components [4]. Simulation timesteps are constrained
to remain small (especially for oscillators, as noted earlier)
by the fast undulations of the signal. At the same time, the
presence of slow envelopes requires that thousands or millions
of these cycles be simulated, resulting in a long simulation
time. Such problems are encountered in many practical design
situations, e.g., when simulating startup/shutdown of oscillators
(especially high-Q ones), FM in voltage-controlled oscillators
(VCOs), phase-locked loops, injection pulling/locking by ex-
ternal signals, etc. It should be noted that, in such situations,
designers are often directly interested in the slow envelopes
themselves. The envelopes are often used to encode infor-
mation: For instance, variations in the envelope of oscillator
startup transients (i.e., changes in envelope shape) can be used
to detect weak antenna signals in ultralow-energy transceiver
design (e.g., [5]).

B. Previous Work

Over the past few decades, a variety of methods have been
devised to solve for envelopes more efficiently than transient
simulation. The majority of such techniques have focused on
circuits that are not oscillators, i.e., where the circuit’s fre-
quency does not change. The earliest of such a technique, to
our knowledge, is the time-domain envelope-following method
proposed by Petzold in [6], which was later adapted for circuit
simulation (e.g., [7]–[11]), with application to both transient
and steady-state simulations. Envelope-following methods op-
erate by utilizing the assumed smoothness of the envelope,
together with the circuit’s differential equations, to mathemat-
ically relate and then solve for faraway envelope samples,
without the need for computing in detail the skipped cycles. An-
other class of techniques (Fourier-envelope methods [12]–[14])
combines frequency-domain harmonic balance (HB) and time-
domain integration methods. These techniques solve for the
slowly varying Fourier coefficients of fast oscillations. Re-
cently, a family of methods based on multitime partial differ-
ential equations (MPDEs) [4], [15], [16] has also emerged.
These methods rely on separating slow and fast variations by
employing several artificial time variables.

The fundamental idea behind all time-domain envelope-
following methods is to sample consecutive cycles of the
oscillatory waveform in a phase-synchronized manner and to
interpolate between these samples to obtain a waveform called
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Fig. 1. Illustration of envelope and Petzold’s method. (a) Forward-
Euler-based envelope-following method. (b) Backward-Euler-based envelope-
following method.

the envelope. For example, a popular choice is to sample and
connect the peaks of each fast cycle [see Fig. 1(a)]. A key
feature for envelope following to be useful and meaningful
is that the envelope should be smooth and slowly varying, in
which case efficiency potentially can be gained by skipping a
large number of fast cycles between samples of the envelope.
To abstract the smoothness correctly, it is critical that the points
sampled for the envelope will all be “at the same point” within
the fast cycles. For nonautonomous systems (i.e., the time
period T of all fast cycles is the same and known a priori), the
issue of where to sample the envelope within each cycle is easy
to resolve—the sampling points can simply be integer multiples
of T (plus any constant phase shift), i.e., an integer number of
cycles are skipped between envelope samples.

For autonomous systems (oscillators), however, correct
phase-synchronized sampling of the fast cycles is a much
more complex problem. The reason is that (unlike for nonau-
tonomous problems) the period T of the fast cycles is
not known a priori, but is an unknown that needs to be
solved—this is a fundamental property of oscillators. Further-
more, the period T is subject to change continuously during

circuit operation as the oscillator is disturbed by external
influences—indeed, this feature of oscillators, called FM, is
extremely important in applications. Because of these reasons,
separating envelope samples by an integer number of cycles be-
comes more complicated. The problem has two components:

1) finding the unknown (and changing) period of the few
fast cycles that are chosen for sampling during envelope
simulation;

2) correctly accounting for the cumulative effect of changing
periods of the cycles skipped during envelope simulation
so as to still skip an integer number of cycles between
envelope samples.

To our knowledge, a prior work on envelope following for
oscillators has concentrated only on the aforementioned first
component.1 In [6], Petzold proposed a technique in tracking
the changing period by minimizing the difference between
values at the beginning and at the end of a period. Since the
cost of such minimization (via optimization) can be high, Gear
and Gallivan [17] proposed a heuristic to alleviate this issue,
identifying periods using zero crossings.

The second component of the envelope-sample synchroniza-
tion problem for oscillators noted earlier, however, appears not
to have been clearly recognized or addressed in prior work. As
shown in this paper, estimating the correct phase within the
cycle to be sampled is important. Any errors rapidly compound
and lead to loss of smoothness during envelope computation,
thereby destroying the robustness and effectiveness of prior
envelope simulation methods for oscillators.

C. Contribution of This Paper

The contribution of this paper is to identify this crucial issue
clearly and to propose an effective method to resolve it. Our
method introduces two extra system unknowns to help find the
correct sampling points. One unknown T represents the time
period of the next cycle to be envelope-sampled, which is a con-
cept similar to those in prior envelope methods [6], [17], [18].
In addition to this, however, a second unknown Tenv represents
the envelope timestep. This envelope timestep is calculated
implicitly as part of the envelope-following algorithm such that
each envelope step exactly spans an integral number of skipped
cycles, in spite of the fact that their periods are unknown and
changing. It is this feature that ensures that, even in the presence
of dynamic FM effects, the envelope is sampled smoothly and
correctly.

Addition of two extra unknowns leads to an under-
determined system of envelope-following equations. To ob-
tain a square system and solve uniquely for these unknowns,
we add two “phase condition” equations,2 which directly
enforce that the points being sampled for the envelope are
phase-synchronized. We will call this method “Multiple-Phase
Condition-based ENVelope following” (MPCENV).

1For Fourier and MPDE-based envelope methods, they do not have the
problem of accounting for the cumulative effect of changing periods. However,
they face the problem of finding good envelope initial conditions.

2We use derivative- and value-based phase conditions in this paper, but our
method can also use any other phase conditions.
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Because it does not rely on minimization, MPCENV’s com-
putational efficiency is similar to that of nonoscillatory en-
velope methods. By automatically taking good care of the
problem of choosing envelope steps correctly via the extra
variables, MPCENV achieves a considerable robustness while
retaining the computational efficiency expected of envelope
methods. We report results from validating MPCENV on sev-
eral types of LC and ring oscillators, analyzing FM and am-
plitude modulation, as well as slow startup transients. Our
simulations confirm excellent matches between MPCENV and
carefully conducted traditional transient runs, with speedups of
one to two orders of magnitude.

It is also interesting to compare MPCENV with another
family of oscillator envelope methods, based on generalizing
MPDE approaches using the notion of “warping” time to
even out the changing periods of fast cycles. This approach,
termed as warped MPDE (WaMPDE) [18], is appealing not
only because of its theoretical elegance but also on account of
its use of an explicit unknown variable, the local frequency,
that is solved along with all other waveforms to capture the
slowly changing time period (or frequency) of the oscillator.
A problem with the WaMPDE, however, is that of choosing
envelope initial conditions (ICs) [19]; unsuitable choices can
severely compromise computational efficiency, which is the
primary motivation for envelope simulation in the first place.

MPCENV can be viewed as combining the advantages of
Petzold-style methods and the WaMPDE while eliminating
their disadvantages. From the Petzold point of view, MPCENV
automatically chooses correct envelope steps regardless of dy-
namic frequency changes; from the WaMPDE point of view, the
envelope IC problem is sidestepped, while the notion of using
system unknowns to capture changing frequencies is retained
and generalized.

D. Organization of This Paper

The remainder of this paper is organized as follows. In
Section II, we briefly review Petzold-type envelope-following
methods and discuss issues for oscillator envelopes. In
Section III, we provide related background on the MPDE and
WaMPDE methods. In Section IV, we present the MPCENV
method and discuss its relation to the WaMPDE. In Section V,
we report results from applying MPCENV to several oscillators
and VCOs and investigate startup transients, amplitude modu-
lation, and FM.

II. ENVELOPE-FOLLOWING METHODS

In this section, we first review existing envelope-following
methods for nonoscillatory circuits and then discuss extensions
to oscillators [6], [17].

A. Nonautonomous Envelope-Following Methods

A circuit can be described by the system of differential
equations

q̇(x) + f(x) = b(t) (1)

where x is a vector of state variables (such as node voltages and
branch currents), q contains capacitor charge or inductor flux
terms, and f represents resistive terms [16].

We assume that the solution of the circuit to be simulated has
fast oscillations, whose amplitude changes much more slowly
than the oscillations themselves. When this solution is sampled
at every fast oscillation period T , the resulting samples can be
interpolated using a slowly varying curve, termed the envelope.
The basic idea of envelope-following methods is shown in
Fig. 1(a) using a scalar differential algebraic equation (DAE)
for illustration. We start our simulation at time t0, at which the
state variable has a value x0 (point A in the figure). Transient
simulation is performed accurately for one cycle of the fast
oscillation, and the state variable is now at point B shown
in the figure. A secant line between A and B is drawn and
then extrapolated over a large “envelope timestep,” which can
comprise many fast cycles, to reach the solution at pointC. This
process is repeated until the end of the simulation interval.

The process described earlier is analogous to solving the
envelope by conventional forward-Euler integration. It uses the
slope between points A and B to approximate the derivative of
the envelope solution at point A. This is a valid approximation
if the envelope varies much more slowly than the fast oscilla-
tion. If the envelope step is (m− 1)T (time interval between
points B and C), the process of envelope following can be
described by the difference equation

x(t+mT ) = x(t) +mT
x(t+ T ) − x(t)

T
. (2)

Although this forward-Euler-based envelope following is
easy to illustrate, it is not very useful in practice since the
envelope step cannot be very large due to stability issues, just
as with the normal forward-Euler integration method [20]. A
more stable backward-Euler-based envelope-following method
is given by

x(t+mT ) = x(t) +mT
x(t+mT ) − x (t+ (m− 1)T )

T
.

(3)

When implicit methods are used, the only unknown is x(t+
(m− 1)T ); the state at t+mT can be evaluated by integrating
(1) for one fast cycle and can be written using the state transition
function φ [21]–[25] as

x(t+mT ) = φ (x (t+ (m− 1)T ), t+ (m− 1)T, t+mT ) .
(4)

Equation (3) is a boundary-value problem, shown in
Fig. 1(b), which can be solved by any nonlinear solution
method such as Newton–Raphson [26]. An initial value of
the unknown x0 is guessed, and then, a cycle of transient
simulation is performed to obtain the state x1. This information,
together with the monodromy matrix ∂x1/∂x0 [22], is used to
update x0 using Newton’s method until the boundary condition
x1 − xstart = m(x1 − x0) is satisfied.

The outlined nonautonomous envelope-following method
has met with considerable success in various disciplines, in-
cluding tracking of circuit envelopes, as reported in [7]–[11].
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B. Extensions to Oscillators

Envelope-following methods involve integrating (1) for one
cycle T . For oscillators, however, T is not known a priori, and
it is important that it is accurately calculated. All prior work on
oscillator envelope methods has focused on this problem.

Petzold [6], motivated by the observation that ‖y(t+ T ) −
y(t)‖ = 0 for T -periodic y(t), proposed that T should be
estimated for nonperiodic y(t) by minimizing

∫
‖y(t+ T ) −

y(t)‖2dt. However, as noted by Gear and Gallivan [17], per-
forming this minimization is not only expensive but also prone
to error buildup, presumably due to the explicit estimation of
the period. An alternative approach toward estimating the pe-
riod was proposed in [17] using zero crossings of the waveform
levels or their derivatives.

However, estimation of the envelope step is left to the time-
stepping algorithm, just as in normal numerical solution of
differential equations, in both aforementioned methods. This
can be a cause of reduced robustness when the time period
is varying, because the envelope step may not exactly be an
integer number of cycles. It is critical that this envelope step
be accurately estimated, for essentially the same reason that T
needs to be found accurately, i.e., in order to properly “line up”
points A, B, and C in Fig. 1(a) and to obtain a smooth envelope.
For this reason, prior envelope methods have been limited to
taking relatively small envelope timesteps, since not accounting
for the cumulative phase error appears as a lack of smoothness
in the envelope calculated.

III. MPDE-BASED ENVELOPE METHODS

In this section, we review envelope methods based on mul-
titime concepts, including the nonautonomous (MPDE) and
autonomous (WaMPDE) cases, and touch on the problem of
finding good ICs.

A. MPDE Methods for Widely Separated Time Scales

In the MPDE formulation, artificial time scales are intro-
duced to decouple slow and fast time scales [4], [16]. Each rate
of variation is represented by its “own” time scale so that it can
be solved using its “own” timestep size. Thus, the envelope, i.e.,
the slow component in a signal, can efficiently be solved since
large timesteps can be used for its time scale. Consider two time
scales: one fast and one slow. The MPDE form corresponding
to (1) is

∂q(x̂)
∂t1

+
∂q(x̂)
∂t2

+ f(x̂) = b̂(t1, t2) (5)

where x̂(t1, t2) and b̂(t1, t2) are the bivariate forms of x(t) and
b(t), respectively. Here, without loss of generality, we choose
t1 to be the slow time scale and t2 to be the fast time scale.

The envelope equation that results from the MPDE [19] is
essentially a DAE in the slow envelope time scale. Taking
a timestep along the envelope time scale involves solving a
steady-state problem with periodic boundary conditions along
the fast time scale [16]. To start the DAE solution along the
envelope time scale, however, a periodic solution along the fast

Fig. 2. Solution process of the MPDE.

time scale needs to be given at t1 = 0 (the initial starting point
of the envelope simulation) along the envelope time scale. It has
been shown [19] that proper choice of this envelope IC, which
involves heuristics, is crucial to the efficiency of the MPDE-
based and Fourier envelope solution.

In the numerical solution of the MPDE, the fast time scale is
first discretized by either time-domain methods, such as finite
difference (FD) time-domain method, or frequency-domain
methods, such as HB. A DAE in the slow time scale is then
formed and can be solved using any time integration method
such as backward-Euler. Single time solutions can be recovered
from MPDE solutions by interpolating solutions along the
“diagonal” lines, i.e., solutions at t1 = t2. The envelope solu-
tions are the solutions along the slow time scale.

Fig. 2 shows the solution process of the MPDE. As can
be seen, N (the number of points used to discretize the fast
time scale) ICs (along t1 = 0) are required to solve the slow
time DAE. Only the IC at t1 = t2 = 0 is “free” since it is the
IC for the transient simulation. Other N − 1 ICs need to be
chosen properly; otherwise, envelope solutions (along the slow
time scale) will show rapid oscillations which compromise the
efficiency of the MPDE methods [19]. Techniques to alleviate
this problem are also proposed in [19].

B. Warped MPDE (WaMPDE)

The MPDE is not well suited for analyzing FM in oscil-
lators. To remedy this situation, the WaMPDE formulation
was devised in [18]. In the WaMPDE, the fast time scale is
dynamically rescaled (or warped) to undo FM and make the fast
undulations uniform. The resulting warped multivariate wave-
forms can compactly be represented (as for circuits without
FM), while the rescaled fast time scale captures the effects of
FM. At the equation level, the WaMPDE is formed by adding
an extra unknown (representing the instantaneous frequency) to
the MPDE as [18]

∂q(x̂)
∂t1

+ ω(t1)
∂q(x̂)
∂t2

+ f(x̂) = b̂(t1, t2) (6)

where t1 is the unwarped (slow) time scale, and t2 is the warped
(fast) time scale.

To solve the WaMPDE, an extra equation must be added
to the system since there is one more unknown than there are
equations. We note that (6) is autonomous in the t2 scale, i.e.,
a time shift in t2 from any solution x(t1, t2) is also a valid
solution. Uniqueness of the solution is enforced by adding
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a phase condition, which fixes the phase of one variable at,
e.g., t2 = 0. For example, the phase condition can be spec-
ified to be

dx̂l(t1, t2)
dt2

∣∣∣∣
t2=0

= 0 (7)

where x̂l(t1, t2) is one of the state variables. The WaMPDE can
then be solved with numerical methods similar to those for the
MPDE.

The DAE solution can be recovered using the following
relations:

x(t) = x̂ (t, φ(t)) (8)

where

φ(t) =

t∫
0

ω(t1)dt1. (9)

By adding one unknown and equation, the WaMPDE
achieves efficiency as in the MPDE without much extra com-
putational expense.

The WaMPDE also faces the same problem of finding good
envelope ICs, just as for the MPDE. Finding good envelope
ICs for oscillators is, indeed, typically more difficult due to the
unknown period of the oscillator. The techniques in [19] are not
immediately extensible to oscillators.

IV. MPCENV METHOD

In this section, we propose an MPCENV for oscillators. The
connection between MPCENV and WaMPDE is also discussed.

A. Extra Unknowns and Phase-Condition Equations

In MPCENV, we introduce two extra unknowns: T to repre-
sent the changing period of the oscillator and Tenv (the envelope
step) to capture the effect of FM—since periods of small cycles
will typically vary, although slowly, within an envelope step.
In other words, the envelope step will, in general, no longer
remain an integer number of the period T (at any given time
point). With these two extra unknowns, the envelope-following
equation system [for example, the backward-Euler-based one
(3)] becomes under-determined since the number of unknowns
becomes more than that of equations.

Our solution to this is directly motivated by our goal of
keeping the phases at the beginning and at the end of a fast cycle
(also the beginning of the next cycle) the same. Recall that, for
the nonoscillatory case, this is automatically satisfied because
the period of the fast oscillation is known (and a fixed constant
over the simulation). For the oscillator case, since the period
is unknown and changing, these conditions must be enforced.
For example, we can use a phase condition similar to (7) at
both the beginning and the end of the fast cycle, over which
a standard transient simulation is performed during envelope
following. Only the phase of one of the state variables needs to

be fixed. Using the backward-Euler-based envelope-following
method as an example, we add these two phase conditions to
x0 and x1, as shown in Fig. 1(b).

We now have a well-determined system with equal numbers
of equations and unknowns, which can be solved by nonlinear
solvers such as Newton’s method. The augmented backward-
Euler-based envelope-following equation system is

x(t+ Tenv + T ) − x(t+ Tenv)
T

=
x(t+ Tenv) − x(t)

Tenv

dxl

dt

∣∣∣∣
t+Tenv

= 0

dxl

dt

∣∣∣∣
t+Tenv+T

= 0 (10)

where xl is the state variable to which the phase constraints are
applied.

Note that the IC xl(0) should be chosen such that it also
satisfies the phase condition applied. This is not difficult to
achieve; for example, a transient simulation can be run for a
few initial cycles to choose an appropriate point for this IC. In
our implementation, we first use transient simulation to locate
the time interval on which signs of the derivative of xl change.
We then halve the timestep and perform transient simulation on
this short time interval. This procedure is repeated until the IC
satisfies the phase condition with the chosen accuracy.

B. Numerical Solution of MPCENV

MPCENV is a boundary value problem with two more phase
constraints and can be solved by using Newton’s method. At
each MPCENV step, the unknowns are x(t+ Tenv), T , and
Tenv. We denote the unknown state variables x(t+ Tenv) with
x0, the corresponding time point as t0 (t0 = t+ Tenv), and the
starting states x(t) (which are either ICs, given at t = 0, or
known from the previous step) as xs. We can rewrite (10) using
a state transition function notation as

φ(x0, t0, t0 + T ) − x0

T
=
x0 − xs

Tenv

dx0l

dt
= 0

dφ(x0, t0, t0 + T )l

dt
= 0. (11)

Note that the phase-condition equations in (10) and (11) are
based on derivatives, which detect peaks/troughs in a particular
circuit waveform, and use them to aid in the determination of T
and Tenv. Derivative-based phase conditions are not the only
ones possible; indeed, value-based or other phase conditions
can also be used for MPCENV and may be better suited for
certain kinds of circuits. For example, if the waveform of a
circuit variable (normally the inductor current in an oscillator)
is symmetric about a certain value (e.g., zero), we can use the
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phase condition xl|t=tc
= C, where C is a constant. Then, the

backward-Euler-based MPCENV system becomes

φ(x0, t0, t0 + T ) − x0

T
=
x0 − xs

Tenv

x0l =C

φ(x0, t0, t0 + T )l =C. (12)

Indeed, value-based phase conditions can work better than
derivative-based ones when waveforms of interest feature large
“flat” sections (e.g., for relatively ideal ring oscillators). The
value-based phase condition is also somewhat easier to solve
numerically than derivative-based ones because derivative-
based phase constraints (11) are approximated by FD methods.
In our implementation, since the phase constraints are applied
to the derivatives of both ends of a period, it is natural to
use the backward difference method at t0 + T and the forward
difference method at t0. The phase constraints approximated by
FD can be difficult to satisfy, making the whole system difficult
to solve. One can also approximate both phase constraints by
centered difference, with a little change in the first equation of
(11). However, the phase constraints approximated by centered
difference are still difficult to satisfy. In our experiment, only
very simple circuits (e.g., circuit in Section V-A) can be solved
using (11). Better numerical handling of phase constrains (11)
and their corresponding stability property are currently under
investigation.

We can reorganize the MPCENV system (12) in order to
apply Newton’s method

(φ(x0, t0, t0 + T ) − x0)Tenv − (x0 − xs)T =0

x0l − C =0

φ(x0, t0, t0 + T )l − C =0. (13)

This is a system of n+ 2 equations and n+ 2 unknowns, where
n is the number of circuit variables. φ(x0, t0, t0 + T ) can be
evaluated by integrating one cycle T starting from x0.

The Jacobian matrix is given by

J=




∂φ()
∂x0

Tenv−(Tenv+T )In
∂φ()
∂T Tenv−(x0−xs) φ()−x0

In|l 0 0
∂φ()
∂x0

|l ∂φ()
∂T |l 0




(14)

where In is an identity matrix of size n× n, In|l is the lth row
of In, and [∂φ()/∂x0]|l is the lth row of ∂φ()/∂x0.

The calculation of the Jacobian matrix involves the eval-
uation of the derivative of the state transition function, also
known as the sensitivity matrix. It represents the sensitivity of
φ(x0, t0, t0 + T ) to changes of both x0 and T . The evaluation
of the sensitivity matrix is performed during transient simula-
tion, with a little additional computation, just as for the shooting
method [28]. Indeed, if we assume that the sampled envelope
does not change with time, then the boundary condition in

(10) becomes a simple periodic one, resulting in the shooting
method.

We apply the trapezoidal integration method (better suited
for oscillators since overly stable methods like backward-Euler
can damp out oscillations) to integrate (1) from t0 to t0 + T .
Both dφ/dx0 and dφ/dT can be derived as described in [23]. If
xn is the state at tn (t0 ≤ tn−1 < tn ≤ t0 + T ), then

dxn

dx0
=

(
Cn

hn
+
Gn

2

)−1 (
Cn−1

hn
− Gn−1

2

)
dxn−1

dx0
(15)

whereCi = dq(xi)/dxi,Gi = df(xi)/dxi, and hi = ti − ti−1.
Note that Cn/hn +Gn/2 is the Jacobian matrix of (1) during
the integration and is already available from transient simu-
lation. Starting from dx0/dx0 = I , dφ/dx0 can be found by
repeatedly applying (15) until t0 + T is reached.

Similarly, dφ/dT can be found by repeatedly applying

dxn

dT
=

(
Cn

hn
+
Gn

2

)−1

×
[(

Cn−1

hn
− Gn−1

2

)
dxn−1

dT
+
q(xn) − q(xn−1)

T

]

(16)

starting from dx0/dT = 0.

C. Relationship With WaMPDE

The relation between MPCENV and WaMPDE is shown in
Fig. 3. As mentioned in Section III-B, the solution of DAE
(1) is available along the characteristics, i.e., x(t) = x̂(t, φ(t)).
Note that the WaMPDE solution is periodic along t2 time
scale. The shape of φ(t) represents the effect of FM in os-
cillators. If φ(t) = t, then the oscillator frequency is the free-
running frequency of an oscillator. If φ(t) becomes sharp, then
the oscillator frequency is high. For illustration purposes, we
still use backward-Euler-based MPCENV. We start from x0 and
then perform a transient simulation for one fast cycle to obtain
solution x1. This is equivalent to tracking the solution along
t1 = t, t2 = φ(t) starting from (t0, φ(t0)) to (t0 + T, φ(t0 +
T )) in the WaMPDE solution. Due to the periodic boundary
condition along t2, x′1 = x1. In the WaMPDE, we apply a phase
constraint on all t2 = 0. This automatically applies to both
x0 and x1. We achieve the same effect by adding two phase
constraints on both x0 and x1.

As shown in Fig. 3, the solution obtained from MPCENV is
actually the WaMPDE solution along t2 = 0. That is the reason
why we only need ICs at t1 = t2 = 0 in MPCENV. On the
other hand, by introducing more information in the system, the
WaMPDE has the freedom to take any length of step size along
t1, with phase conditions applied on all t2 = 0. MPCENV takes
the envelope step size of integer number of cycles, with phase
conditions explicitly added on some specific points.
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Fig. 3. Relation between MPCENV and WaMPDE.

Fig. 4. Circuit schematic of an LC VCO.

Fig. 5. LC VCO: FM.

V. APPLICATIONS AND VALIDATION

In this section, we apply and validate MPCENV on a va-
riety of oscillators. We investigate FM, as well as amplitude
envelopes, and also simulate startup transient envelopes in a
high-Q crystal-based oscillator. MPCENV results show excel-
lent matches with those from traditional SPICE-like transient
simulation while delivering speedups of one to two orders of
magnitude. All simulations were performed using MATLAB on
a 2.4-GHz PC running Linux.

Fig. 6. LC VCO: Solution of the inductor current from MPCENV and
comparison with transient simulation. (a) MPCENV solution. (b) Detailed
comparison with transient simulation.

Fig. 7. WaMPDE solution of the inductor current.

A. LC VCO

A simple LC VCO from [18] is shown in Fig. 4 and
is simulated using MPCENV. The oscillator contains an LC
tank, with the capacitance controlled by a voltage source. The
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Fig. 8. WaMPDE solution from good ICs. (a) Inductor current. (b) FM.

Fig. 9. Circuit schematic of a ring VCO.

element values are R = 1 kΩ, Cd = 0.3 uF, C = 1/2π10−7 F,
L = 1/2π10−7 H, and Cm = 1/4π10−7 F. The nonlinear neg-
ative resistor characteristic is given in [18] as

i = f(ν) = (G0 −G∞)Vk tanh
(
ν

Vk

)
+G∞ν (17)

where G0 = −0.1, G∞ = 0.25, and Vk = 1. The oscillator has
a nominal frequency of 10 MHz.

Fig. 10. Ring VCO: FM.

Fig. 11. Ring VCO: Envelope solution of the output of the third stage.

Fig. 12. Circuit schematic of a Pierce crystal oscillator.

We start the envelope simulation from the oscillator’s steady
state. ICs are chosen so that they satisfy the phase condition in
(10). The controlling voltage is a sinusoid with the frequency
104 times slower than the oscillator’s free-running frequency
(Vc = 0.6 sin(2π103t)). The main purpose of this simulation
is to illustrate strong FM in VCOs and show how MPCENV
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Fig. 13. Waveform at the collector of the BJT in the pierce crystal oscillator. (a) MPCENV solutions. (b) Envelope solution.

Fig. 14. Waveform at the base of the BJT in the Pierce crystal oscillator. (a) MPCENV solutions. (b) Envelope solution.

Fig. 15. Steady-state solutions. (a) Base of the BJT. (b) Collector of the BJT.

captures it. Fig. 5 shows the frequency change due to the
variation of the capacitance in an LC tank. The solution of
the inductor current from MPCENV is shown and compared
with full transient simulation result in detail in Fig. 6. As
can be seen, the MPCENV result with 100 timesteps per fast
cycle matches the transient simulation result with 400 timesteps
per fast cycle. This is because our MPCENV only performs
transient simulation for a few selected fast cycles and skips
a large number of fast cycles in each envelope step, thus
avoiding phase error accumulation, which could have happened

in oscillator transient simulation. In this example, MPCENV
takes envelope steps of about 200 fast cycles each, solving the
Newton equations with only two to three iterations at each step.
A speedup of more than 160× over full transient simulation
with similar accuracy is obtained for this example.

For comparison, we also solve the circuit using the WaMPDE
method [18]. In our implementation, HB is used to discretize
the fast time scale. This is equivalent to a Fourier envelope
type of method [12]–[14]. As mentioned in Section III-B, the
WaMPDE faces the problem of finding good ICs [19], as shown
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in Fig. 7. In this experiment, we start from ICs which are very
close to the good ICs, as we will show later. However, we obtain
a wrong envelope solution with many undulations along the
slow time scale. In comparison, we also show the WaMPDE
results from slightly different envelope ICs. As shown in Fig. 8,
the solutions from these ICs provide correct envelopes, as
shown along the slow time scale. However, as we demonstrated,
the WaMPDE methods are sensitive to envelope ICs, and it is
not always easy to find good ICs.

B. Three-Stage Ring VCO

A three-stage ring VCO is shown in Fig. 9. Each stage is
identical in this VCO. The resistance is varied by changing
the controlling voltage; this changes the period/frequency of
the oscillator. The oscillator has a free-running frequency of
100 MHz.

We choose a point in the oscillator’s steady state as the IC
for MPCENV, i.e., we start the simulation from steady state.
The VCO’s controlling voltage is 10 + 2 sin(2π104t). The
simulation interval is 0.3 ms. A nominal envelope timestep of
200 cycles is used in this example. Fig. 10 shows the variation
of the oscillation frequency as it responds to the controlling
voltage. The MPCENV solution of the amplitude variation at
the output of the third stage is shown in Fig. 11 and compared
against transient simulation results. They are in good agree-
ment. We do not show the transient simulation result here due
to the density of the waveform. We obtain speedups of about
135× for this example.

C. Startup-Transient Pierce Crystal Oscillator

Fig. 12 shows a Pierce crystal oscillator from [29] and
[30]. The element values are R1 = 100 KΩ, R2 = 2.2 KΩ,
C1 = 100 pF, C2 = 100 pF, Cp = 25 pF, Cs = 99.5 fF,
Rs = 6.4 Ω, and Ls = 2.55 mH, resulting in a high quality
factor Q about 2.5 × 104. The bipolar transistor has a current
gain β = 100, and the oscillator’s nominal frequency is around
10 MHz. Due to its high Q, the crystal oscillator takes many os-
cillatory cycles to reach its steady state from power-on startup.

In the simulation, we use variable envelope step sizes based
on a very simple convergence criterion: If the envelope Newton
converges in a few iterations, we increase the envelope step;
otherwise, if Newton takes too many iterations, we shorten the
step. Figs. 13 and 14 show waveforms obtained by MPCENV
at the base and the collector of the bipolar junction transistor
(BJT). As can be seen, the envelope step is small at the begin-
ning due to a relatively fast-changing envelope. The envelope
step gets larger as the oscillator approaches its steady state
and the waveform stabilizes. Over the simulation, MPCENV
takes an average envelope step of about 91 fast cycles. For a
full transient simulation, it takes about 1 ms (10 000 cycles)
to approach the steady state and about another 2 ms (20 000
cycles) to actually reach the steady state. We obtained speedups
of 45 over the transient for this simulation.

Thus, we note in passing that MPCENV can also be used as
a means for finding the steady-state solution of high-Q oscil-
lators (e.g., [11]) since it accelerates the simulation of startup

transients—although this is of course not its only capability.
The steady-state solutions at both the base and the collector of
the BJT are shown in Fig. 15; the frequency found by MPCENV
is 9.995 × 106 Hz. Both the startup and the steady state solved
by MPCENV perfectly match with the full transient simulation.

VI. CONCLUSION AND FUTURE DIRECTIONS

We have presented MPCENV, a robust and efficient algo-
rithm for oscillator envelope following, which is able to capture
dynamic frequency changes with unprecedented accuracy and
robustness compared to prior methods. MPCENV’s flexibility
with regard to different types of phase-condition equations
enables it to work effectively on many different classes of
oscillators. We have obtained speedups of one to two orders
of magnitude over transient simulation.

At this point, what type of phase condition to use is decided
manually, taking into account the type of oscillator being simu-
lated. We are actively investigating extensions that remove the
need for the user to specify phase-condition types. To better
solve systems with flat waveforms, which can cause problems
in solving MPCENV if derivative-based phase conditions are
used, we are also investigating extensions that remove the
need for phase conditions [27]. In addition, although we have
not observed any stability-related problems with MPCENV in
practice, rigorous theoretical analysis of MPCENV’s stability
properties remains a future topic for investigation.
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