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Independent and Interdependent Latch Setup/Hold
Time Characterization via Newton–Raphson

Solution and Euler Curve Tracking of
State-Transition Equations

Shweta Srivastava and Jaijeet Roychowdhury

Abstract—Characterizing setup/hold times of latches and reg-
isters, which is a task crucial for achieving timing closure of
large digital designs, typically occupies months of computation
in semiconductor industries. We present a novel approach to
speed up latch characterization by formulating the setup/hold
time problem as a scalar nonlinear equation h(τs, τh) = 0; this
nonlinear algebraic formulation is derived from, and embeds
within it, the state-transition function of the latch. We first present
a technique to characterize setup and hold times independently
of each other: by decoupling h(τs, τh) = 0 into two equations
h(τs) = 0 and h(τh) = 0 and solving each equation using the
Newton–Raphson method. Next, we also present a method for
interdependent characterization of latch setup/hold times—a core
component of techniques for pessimism reduction in timing analy-
sis. We achieve this by solving the underdetermined nonlinear
equation h(τs, τh) = 0 using a Moore–Penrose pseudoinverse-
based Newton method. Furthermore, we use null-space infor-
mation from the Newton’s Jacobian matrix to efficiently find
constant-clock-to-q contours (in the setup/hold time plane) via an
Euler–Newton curve-tracing procedure. We validate fast conver-
gence and computational advantage for independent characteri-
zation on transmission gate and C2MOS latch/register structures,
obtaining speedups of 2.5−10×, at high levels of accuracy, over
the current standard of binary search. We validate the method
for interdependent characterization on true single-phased clock
and C2MOS, obtaining speedups of more than 10× for tracing
17–24 points, over prior approaches while achieving superior
accuracy; this speedup linearly increases with the precision with
which curve tracing is desired. We also apply our method for
interdependent characterization on a transmission gate register to
illustrate limitations of our method.

Index Terms—Characterization, Euler–Newton, hold time,
interdependence, Newton–Raphson, setup time.
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I. INTRODUCTION

F INDING the setup and hold times of latches and registers
is a crucially important prerequisite for static and dynamic

timing analysis of digital circuits [1]–[3]. As devices shrink,
clock speeds become ever faster, and design margins become
increasingly squeezed in high-speed digital systems, it becomes
important to determine these quantities with high accuracy to
ensure that timing analysis makes neither unduly optimistic nor
pessimistic predictions [1], [4]. Optimism in setup/hold times
can cause failure in fabricated circuits, whereas pessimism
leads to inferior performance. As a result, full SPICE-level
transient analysis of latch/register circuits, using the best and
most detailed device models available, has been emerging as
the only reliable means of timing characterization for cutting-
edge industrial designs.

The computational expense of these SPICE-level simulations
in current industrial practice is extremely high. Setup/hold
times need to be characterized for every register/cell of every
standard cell library, each typically containing hundreds or
thousands of cells, for all process–voltage–temperature (PV T )
corners or statistical process samples. Characterization typi-
cally takes weeks or months even on large dedicated computer
clusters. Therefore, even relatively modest improvements in
core characterization procedures can have a large impact on
reducing the time taken to achieve timing closure and on the
quality of designs achieved.

In general practice today, setup and hold times are indepen-
dently determined, i.e., it is assumed that the two quantities are
not correlated with each other. However, the fact that setup and
hold times are interdependent is, in fact, well known (e.g., [1]);
that is, multiple pairs of setup and hold times are possible,
which result in the same clock-to-q delay.1 Flexibility in trading
off setup versus hold time is important for reducing violations
in static timing analysis [1] without sacrificing performance.
As will be described in more detail later in this paper, finding
interdependent pairs of setup/hold times via the new characteri-
zation method presented here results in speed improvements of
some 10× over prior approaches. More importantly, the tech-
nique can be used to find independent setup/hold times, with
speedups of 2.5−10×, depending on the accuracy required. In

1See Section II for an explanation of setup/hold times, clock-to-q delay, and
other relevant concepts.
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Sections I-A and -B, we review the independent and interdepen-
dent setup/hold problems, outline our differential contributions,
and summarize the key points and features of our approach.

A. Independent Setup/Hold Times

The prevalent technique for finding independent setup/hold
times is to find clock-to-q delays for various trial setup/hold
skews via a series of transient simulations embedded in a binary
search process. In contrast, in this paper, we adapt ideas from
mixed-signal/RF simulation [5]–[7] to propose a new technique
for finding setup/hold times, by expressing them as the solution
to a scalar nonlinear equation h(τ) = 0, where τ can be the
setup or the hold time. Our formulation uses the nonlinear
state-transition function [8], [9] of the differential equations
describing the latch and incorporates a threshold condition to
detect onset of metastability.

We numerically solve the equation h(τ) = 0 using the well-
known Newton–Raphson (NR) method [10]. Because NR has
the property of quadratic convergence as it approaches the
solution, it is able to “zoom in” on the correct solution (i.e.,
increase accuracy) much more rapidly than binary search. As
a result, it provides significant computational advantage over
binary search in higher accuracy regimes, as we demonstrate
in Section V. Computational advantage can result in spite of
the fact that NR on h(τ) = 0 requires computation of the
derivative dh/dτ—indeed, this extra gradient information is a
core differentiator against binary search and is crucially respon-
sible for NR’s convergence. (Readers familiar with RF/mixed-
signal simulation will note connections with shooting methods
[5]–[7] and with transient sensitivity computation [11], [12] in
Section IV and Appendix A, which contains mathematical and
algorithmic details of the technique.)

We validate the new method in detail using two prototypical
register designs: 1) a transmission-gate-based master–slave reg-
ister and 2) a C2MOS edge-triggered register. Our experiments
confirm that NR’s gradient-directed quadratic convergence re-
sults in speed advantages (of ∼2.5−10×), particularly at higher
accuracies.

B. Interdependent Setup/Hold Times

The currently prevalent method [1] for finding interdepen-
dent pairs of setup/hold times is to first obtain (using many
transient simulations of the latch) the clock-to-q delays corre-
sponding to many trial combinations of setup and hold skews,
i.e., a clock-to-q delay surface. This is followed by extraction
of a contour in the setup/hold time plane that contains all
points that result in a prescribed increase (e.g., 10% is typical)
in the clock-to-q delay. Alternatively, interdependent pairs of
setup/hold times can be found by determining the register’s
output level at a particular time tf ,2 again for many trial
combinations of setup and hold skews, to obtain a surface.
This is again followed by contour extraction; all points in the
setup/hold time plane for which the output reaches, for exam-
ple, 50% of the final value at time tf are found—this contour
has a constant clock-to-q delay, which is degraded by 10%.

2tf is the time at which clock-to-q delay increases by, for example, 10%.

Fig. 1. (a) Q output surface as a function of setup and hold skews. (b) Contour
corresponding to a 10% increase in the constant clock-to-q delay.

One such surface for a register output Q versus setup/hold
skews is shown in Fig. 1(a); the setup/hold contour obtained
is shown in Fig. 1(b). The contour shown in Fig. 1(b) has a
constant clock-to-q delay, which is degraded by 10%, hence
represents interdependent setup/hold time pairs of interest for
timing analysis.

A bottleneck limiting the use of interdependent setup/hold
time information in timing analysis flows is the cost of gen-
erating constant clock-to-q delay contours, typically obtained
by postprocessing output surfaces such as the one shown in
Fig. 1(a). Automated generation of output surfaces involves
a much larger number of transient simulations than for the
already expensive task of characterizing setup and hold times
independently of each other.

Again, adapting ideas from mixed-signal/RF simulation and
also from homotopy/numerical continuation [5]–[7], [13], [14],
we devise a technique for directly finding interdependent
setup/hold time contours without the need for generation of
output surfaces. The first step in our approach is to formulate
the interdependent setup/hold time problem as an underdeter-
mined scalar nonlinear equation h(τs, τh) = 0, where τs and
τh are setup and hold skews, respectively. h(·, ·) is obtained by
computing the nonlinear state-transition function [8], [9] of the
differential equations describing the latch or register, as will be
discussed in more detail later in this paper. We then use a mod-
ified Moore–Penrose pseudoinverse-based Newton–Raphson
(MPNR) method [10], [13] to numerically solve the equation
h(τs, τh) = 0 for one pair of interdependent setup/hold times.
Once this point is found, our algorithm proceeds to efficiently
determine other points on the constant clock-to-q contour by an
Euler–Newton (EN) curve-tracing procedure [13], [15].

EN curve tracing operates by using information from a given
solution point on the clock-to-q delay curve to efficiently solve
for a neighboring point on the curve. It leverages null-space
information from the Jacobian matrix of h(τs, τh) to first find
a tangent to the curve at the known solution point. It then
extrapolates along this tangent to predict a good approximation
to a neighboring solution, which it then rapidly3 refines to any
desired accuracy, using the same MPNR nonlinear solution
method used to obtain the first solution point. This process is
repeated to find the entire constant clock-to-q delay contour.

The key property that makes this curve-tracing procedure
more efficient than surface generation is that the computation

3That is, two to three MPNR iterations are typical.
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of irrelevant points on the surface is totally avoided. As a result,
the number of latch simulations involved in curve tracing is
linear in the number of points n desired for characterizing the
constant clock-to-q contour, as opposed to O(n2) for brute-
force output surface generation.

Hence, EN curve tracing provides speedups of about n times
over output surface generation, where n, which is the number of
points on the curve, also constitutes a measure of the precision
to which the setup/hold time contour is desired.

In validations of the curve-tracing technique on true single-
phased clocked (TSPC) and C2MOS registers (Section VII), we
obtain speedups of about 10–12× for n = 17−24 points on the
curve. Additionally, the points obtained on the curve by the EN
method are “exact” (i.e., refined to any prescribed accuracy by
MPNR), whereas the brute-force technique uses interpolation at
the postprocessing stage to extract the contour from the output
surface. We also provide results on a transmission-gate-based
register, which features very sharp transitions in its Q output
and results in no appreciable speedup. Our results illustrate that
the setup/hold tradeoff curves of different latch architectures
have different qualitative properties, which can potentially be
exploited at higher levels of timing analysis.

C. Organization of Paper

The remainder of this paper is organized as follows: We
first provide further background on the register setup/hold time
problem in Section II. In Section III, we develop the new
state-transition equation-based formulation, using the nonlin-
ear differential algebraic equations (DAEs) of latches/registers
to express the problem of finding setup/hold times as
h(τs, τh) = 0. Section IV is divided into two subsections:
Section IV-A decouples the equation h(τs, τh) = 0 for indepen-
dent setup/hold problem into equations h(τs)=0 and h(τh)=0;
Section IV-B presents a detailed description of our NR-based
numerical algorithm to individually solve these decoupled
equations. In Section V, we validate the new method for
independently characterizing setup/hold times on prototypical
register structures and provide detailed comparisons against
binary search techniques.

Section VI is divided into three subsections: Section VI-A
develops the procedure for solving h(τs, τh) = 0 by MPNR,
focusing on a single point on the curve; Section VI-B outlines
the EN method for tracing the solution curve of h(τs, τh) = 0;
finally, Section VI-C puts together the complete EN curve-
tracing algorithm for interdependent setup/hold times using a
pseudocode description. In Section VII, we validate the new
technique for interdependently characterizing setup/hold times
on practical latch/register circuits and compare against brute-
force output surface generation, confirming that EN success-
fully traces the constant clock-to-q delay curve accurately and
with large speedups. We also illustrate, using the example of a
transmission gate register, the limitations of our method when
the Q output is extremely sensitive to setup/hold skews.

II. TERMINOLOGY AND BRIEF BACKGROUND

Latches and edge-triggered registers are crucial and ubiq-
uitous building blocks in all digital designs. Typically, each

Fig. 2. Clock/data waveforms.

register has a clock line and a data line [16]. For a reliable
transfer of data through the register, the data line must be stable
for a certain amount of time (known as the setup time) prior to
the active clock edge. Similarly, the data input line must be held
stable for a certain amount of time (known as hold time) after
the active clock edge as well, to avoid problems in sampling
the data. The active clock edge is defined as the transition
edge of the clock at which data transfers occur; it is the low-
to-high/high-to-low transition for a positive-triggered/negative-
triggered register.
Clock-to-q delay is a term commonly used in the context of

latches/registers; it refers to the delay from the 50% transition
of the active clock edge to the 50% transition of the Q (output)
of the latch/register. Setup skew is the delay from the 50%
transition of the data line to the 50% transition of the active
clock edge; similarly, hold skew is the delay from the 50%
transition of the active clock edge to the 50% transition of the
data line. These concepts are illustrated in Fig. 2, where setup
and hold skews are denoted by τs and τh, respectively.

As already noted, setup and hold times are not independent
quantities, but can strongly depend on each other. Typically,
the setup time decreases as the hold skew increases, and the
hold time decreases as the setup skew increases. The tradeoff
between setup and hold skews is a strong function of register
architecture. Because of this interdependence, a constant clock-
to-q delay occurs for many pairs of setup and hold skews, as
shown in Fig. 1(b).

III. NONLINEAR STATE-TRANSITION FORMULATION FOR

REGISTER SETUP AND HOLD TIME DETERMINATION

In this section, we establish the formulation of finding
setup/hold times as an equation and then give a detailed pro-
cedure of solving the formulated problem, first, for ignoring
the interdependence of setup and hold times and considering
them as independent quantities and, second, for taking the
interdependence of setup and hold times into account.

A. Setup/Hold Time Problem Formulation

Any nonlinear circuit or system can be represented by the
following vector DAE [9]:

d

dt
�q(�x) + �f(�x) +�b(t) = 0. (1)

Equation (1) is a size n system; �x ∈ R
n is the state vector of

internal node voltages and branch currents; �q ∈ R
n and �f ∈ R

n
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Fig. 3. Behavior of the output waveform for different setup skews. (a) Output
for τh1 > τh2 > τh3 > τh4 > τh5. (b) Clock-to-q delay.

are the charge/flux and the current terms, respectively; and
�b(t) ∈ R

n represents all the input source voltages and currents.
A typical register consisting of many transistors has a clock

line and one or more data lines as input. It is a nonlinear circuit
system and can be represented by (1).

Without loss of generality, we assume positive-edge-
triggered registers and denote the clock waveform by uc(t) and
the data waveform by ud(t, τs, τh), as shown in Fig. 2. τs and
τh represent setup and hold skews, respectively. Clearly, the
shape of the data waveform depends on τs and τh; therefore, it
is denoted as ud(t, τs, τh) to explicitly bring out its dependence
on τs and τh.

Once the clock and data inputs (refer to Fig. 2) are separated
as aforementioned, the differential equations of the register can
be written as follows:

d

dt
�q (�x(t, τs, τh)) + �f (�x(t, τs, τh))

+�bcuc(t) +�bdud(t, τs, τh) = 0. (2)

To detect a pair of setup and hold skews (τs, τh) for which
the clock-to-q delay increases by 10%, we need to monitor an
output waveform, which is given by �cT �x. Here, �c will typically
be a unit vector that selects an output node. The typical behavior
of the output waveform for different values of τs and τh is
shown in Fig. 3(a). Note from Fig. 3(a) that for a constant
value of setup skew τs1, the clock-to-q delay increases as the
hold skew τh decreases. Note also that two pairs of different
setup and hold skews (τs1, τh2) and (τs3, τh3) can result in
the same clock-to-output delays. Typically, if setup and hold
skews both become larger than certain threshold values, the
clock-to-q delay becomes independent of setup and hold skews,
approaching the characteristic clock-to-q delay of the register.

We are interested in finding those pairs of setup and hold
skews (τs, τh) for which the clock-to-q delay increases by 10%

from the characteristic clock-to-q delay—this is a typical crite-
rion for defining setup and hold times. Let tc denote the time
at which the output reaches the characteristic clock-to-q delay;
tf , the time when the clock-to-delay increases by 10%; and r,
the value of the output at the 50% transition. These quantities
are graphically depicted in Fig. 3(b)—tC−Q1 represents the
characteristic clock-to-q delay, and tC−Q2 represents a 10%
increase in tC−Q1. The setup/hold skew pairs that lead to a 10%
degradation in the clock-to-q delay in the second waveform are
defined to be setup and hold times.

Let the state transition matrix of (2) be denoted by �φ(t; �x0,
t0 = 0, τs, τh), and let the initial condition �x0 = �x(t = t0)
be fixed to a given value. The setup/hold time determination
problem consists of seeking (τs, τh), given r, tf , and �x0, such
that the output is at value r at time tf , i.e.,�cT �x(tf ) = r. Writing
this in terms of the state transition function, we obtain

�cT �φ(tf ; �x0, 0, τs, τh)−r=0 or �cT �φτ (τs, τh)−r=0 (3)

where �φτ (τs, τh)≡ �φ(tf ; �x0, 0, τs, τh). Hence, the nonlinear
equation that we need to solve to obtain (τs, τh) is

h(�τ) ≡ h(τs, τh) ≡ �cT �φτ (τs, τh) − r = 0 (4)

where �τ = [τs, τh].

IV. NR-BASED INDEPENDENT CHARACTERIZATION

A. Specialization for Independent Characterization

Note that a simplification of (4) can be used to find either the
setup or the hold time by assuming a fixed unchanging value
for the other. For example, for a fixed value of τh, (4) can be
written as follows [17]:

h(τs) ≡ �cT �φτ (τs) − r = 0. (5)

Equation (5) is a scalar equation with one scalar unknown τs;
hence, it can be solved using the standard NR method [10].4

To solve it via NR, we need to be able to do two things:
1) evaluate h(τ) given any τ and 2) evaluate dh(τ)/dτ for
any τ . Evaluation of h(τ) can be done by running a transient
simulation with the given τ and then evaluating (5). dh(τ)/dτ
can be computed by performing sensitivity analysis, which
is a well-established method [11], [12], on (2). The direct
sensitivity method adapted to compute dh(τ)/dτ is given in
Appendix A.

B. NR for Independent Setup/Hold Time Characterization

In this section, we outline the application of the NR algo-
rithm to solve (5), as follows:

1) Initialize τ , �x, and �m (see Appendix A for the definition
of �m).
a) Set τ = τ0.

τ0 is an initial guess for setup (or hold) time.

4For further analysis of (5), we will drop the subscript “s” from τs and,
similarly, for hold time.
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b) �x(t = 0, τ0) = �x0(τ0).
This is the initial condition from which the simulation
starts; starting from the dc operating point is typical.

c) �m(t = 0, τ0) = �m0(τ0).
As explained in Appendix A, �m0(τ0) can be initialized
to �0 if the initial condition �x0 does not depend on the
setup (or hold) skew; this is typical.

2) Start the NR procedure. At the jth iteration:
a) Divide the interval t = 0 to tf in N points: t0, t1,

. . . , tN−1. For each i ∈ {0, . . . , N − 1}, compute the
following:
τj is the value of τ being used for the iteration index j.

i) Compute �xji using (21).
Here, �xji denotes the fact that the quantity �x is being
evaluated at time ti for the iteration index j. This
terminology will also hold for other quantities.
Equation (21) can be solved using any integration
method, such as BE, TRAP, etc. [8], [9].

ii) After having obtained �xji’s, compute the following:

Cji =
d�q(�x)
d�x

∣∣∣∣
�x=�xji

and Gji =
d�f(�x)

d�x

∣∣∣∣∣
�x=�xji

. (6)

iii) Compute �mji using (26) as follows:

�mji =
(

Cji

ti−ti−1
+Gji

)−1

×
(

Cj(i−1)

ti−ti−1
�mj(i−1)−�bdu

′
d(ti, τj)

)
. (7)

We have now obtained �xj(N−1) and �mj(N−1).
b) Calculate h(τj) defined in (5) as follows:

h(τj) = �cT �xj(N−1) − r. (8)

c) Check the convergence of NR using reltol and
abstol [18].
If NR has converged, then we have obtained the optimal
value of τ as τj . Stop here.
Otherwise, calculate dh(τ)/dτ defined in (27) as
follows:

dh(τ)
dτ

∣∣∣∣
τ=τj

= �cT �mj(N−1). (9)

d) Calculate τj+1 and increment j, i.e.,

τj+1 = τj −
h(τj)

dh(τ)
dτ

∣∣∣
τ=τj

and j = j + 1. (10)

Go to step (a) for the next iteration of NR.

The previously described procedure will be applied for the
computation of τs in the next section.

Fig. 4. Setup skew versus clock-to-output delay.

V. APPLICATION OF NR METHODOLOGY FOR

INDEPENDENT SETUP/HOLD TIME

CHARACTERIZATION AND RESULTS

In this section, we will first review the existing method for
the independent setup/hold time characterization. We will then
show how NR is useful for fast and more precise computation
of the setup time. At the end of this section, we will compare the
results obtained from the NR method against the binary search
method to emphasize the usefulness of NR-based methodology
for latch/register characterization.

In one of the currently existing methodology for the inde-
pendent setup time characterization, the clock-to-output delay
is first plotted against the setup skew [a typical plot of tC−Q

versus setup skew is shown in Fig. 4]; then, the setup skew for
which the clock-to-q delay increases by a certain amount, e.g.,
by 10%, is measured and considered as the setup time. We must
note here that the clock-to-q delay changes very rapidly near the
setup time, making it very sensitive to small setup skew changes
in the neighborhood of the setup time; therefore, capturing the
setup time with high accuracy requires many simulations to run
in the vicinity of the setup time τ ∗

s .
If we have identified the region around the setup time, i.e., we

have found two nearby setup skews such that it contains τ ∗
s , then

we can refine the search for the setup time (using the criteria of
a 10% increase in tC−Q) by applying the binary search method
in that interval. One such interval is shown in Fig. 4, which
contains the setup time point τ ∗

s .
We propose here to apply the NR method in the previously

identified setup skew interval to quickly narrow down to the
setup time. Since NR has quadratic convergence near the solu-
tion, we expect to get to the result much faster as compared to
the binary search method, which has linear convergence.

A. Transmission-Gate-Based Master–Slave Register

We have chosen the simple transmission gate master–slave
positive-edge-triggered register for the verification purpose.
The transmission gate master–slave register is shown in Fig. 5.

The clock waveform (uc(t)) used in the register is chosen
such that it makes the transition between 0 and 2.5 V with a
period of 10 ns. It has a rise/fall time of 0.1 ns and has an initial
delay of 1 ns. Therefore, the active clock transition edge starts at
1 ns, 11 ns, 21 ns, etc. The data waveform (ud(t, τs)) is centered



822 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 5, MAY 2008

Fig. 5. Transmission-gate-based positive-edge-triggered master–slave
register.

around the active clock edge, which starts at 11 ns. τh has been
kept fixed, and therefore, the data waveform changes its shape
depending on the value of τs.

At first, to determine the nominal (characteristic) clock-to-
q delay, the register is simulated for a very large value of τs,
and the output is monitored. The output waveform rises to its
50% value, i.e., 1.25 V at tc = 11.625 ns; hence, the nominal
tC−Q is equal to 575 ps. The clock-to-q delay corresponding to
a 10% increase in the nominal tC−Q becomes equal to 632.5 ps,
and it allows us to set tf = 11 ns + (rise time/2) + 632.5 ps =
11.682 ns and r = 1.25 V in (5) [tc, tf , and r used here
correspond to the same symbols in Fig. 3(b)].

After having set the value for r and tf , we need a suitable
initial guess of τs to start the NR method. The initial guess of
τs proves to be critical for the convergence of NR and should be
chosen near the solution within the convergence range of NR.

To find a good initial guess of τs, we first start with a setup
skew interval [τsL, τsR], where the register properly latches the
data for τsL and fails to latch for τsR. Therefore, this interval
will contain τ ∗

s . We then narrow down the setup skew interval
surrounding τ ∗

s [as shown in Fig. 4] using the binary search
method until the interval length falls in the convergence range
of NR.

The convergence range of NR varies with the types of
registers, the rise/fall time of data and clock waveforms, etc.
The sensitivity of the output waveform to the changes in the
setup skew considerably affects the convergence range of NR.
The convergence range will be small for a more sensitive output
and large for a less sensitive output.

For the circuit in Fig. 5, NR has a very small convergence
range, approximating to 5–8 ps. Therefore, we narrowed down
the setup skew interval to 5 ps before applying NR on it. We
can then take the initial guess of τs either as τsR or τsL to start
the NR method. After having the values for τs0 (initial guess),
r, and tf , we apply NR (following the algorithm described in
the previous section) to reach the solution τ ∗

s .
We first calculate the solution τ ∗

s using NR that is accurate up
to double precision and use this result as a baseline to estimate
errors in the solution (τ ∗

s ) of lower digits of accuracy, which
is obtained either by NR or by the binary search method. We
then plot the number of iterations needed in the NR and binary
search methods against the percentage of error in the solution
relative to double-precision accuracy.

The plots in Fig. 6(a) show the number of iterations needed
by NR to reduce the error by about an order of magnitude and
compare this number with those needed by binary search. As
expected, the NR procedure requires fewer iterations.

Fig. 6. %Error (log10): NR versus binary search method. (a) Number of
iterations versus %Error (log10). (b) Computation time versus %Error (log10).

The computation time per iteration of NR is typically more
than the binary search due to the evaluation of (7) in each
iteration. Equation (7) involves the inverse computation of
matrix ((Cji/ti − ti−1) + Gji) and appears to be expensive in
terms of time consumption. However, effectively, the inverse
computation of this matrix is of the order O(na) (a ∈ [1, 2])
because of the sparsity.

For the circuit shown in Fig. 5, NR took 160.5 s per itera-
tion, whereas binary search took 137.2 s. The plots shown in
Fig. 6(b) give the comparison of computation time for the NR
and binary search methods. Clearly, NR consumes less time
than binary search for an equal amount of reduction in the error,
in spite of its larger computation time per iteration. The vertical
difference between the plots shown in Fig. 6(b) becomes bigger
and bigger, validating our assumption that NR will perform
better with each additional bit of accuracy.

B. C2MOS Positive-Edge-Triggered Master–Slave Register

To further validate the use of NR as a fast characterization
method, we extracted the setup time information for the circuit
shown in Fig. 7 using NR. We have taken the same clock and
data waveform (uc(t) and ud(t, τs)) as used for the previous
register. The output of this register rises to its 50% value,
i.e., 1.25 V at 11.171 ns, for a large setup skew. As we did in
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Fig. 7. C2MOS positive-edge-triggered master–slave register.

Fig. 8. %Error (log10): NR versus binary search method. (a) Number of
iterations versus %Error (log10). (b) Computation time versus %Error (log10).

the previous example, we set r = 1.25 V and tf = 11.183 ns
in (5).

The convergence range of NR for this register is found to
be approximately 120–150 ps, indicating that the output of this
register is less sensitive to the changes in setup skews as com-
pared to the output of the transmission-gate-based master–slave
register. Therefore, the initial value of τs for this register
can be chosen anywhere within the setup skew interval of
length 120–150 ps containing τ ∗

s (setup time). After having
the numerical values for r, tf , and τ0, we apply NR and first
compute the setup time of the register that is accurate up to
16 digits for estimating the errors in the solution of lower digits
of accuracy. The plots shown in Fig. 8(a) and (b) show the num-

ber of iterations and computation time against the percentage
of error in the solution, relative to double-precision accuracy.
Once again, it is evident from the plots that NR becomes more
and more efficient than binary search with every incremental
reduction (on a logarithmic scale) in the error of the solution.

Our results clearly suggest that NR is useful only for higher
accuracies, and one may wonder about how many relevant
digits are actually needed in the value of the setup/hold time
during the characterization process. Since the convergence
range of NR forces the solution to be accurate up to two to three
digits of accuracy to begin the NR process to obtain a more
accurate solution, the proposed method is not useful when one
needs only up to three to four digits of accuracy. However, in
general, a computer-aided design (CAD) company typically
characterizes latches to about seven digits of accuracy; hence,
we believe that the NR method will be of practical importance
in the industrial characterization flows.

The usefulness of NR will also be more prominent if we
already have some ideas of the setup skew interval surrounding
τs; then, it only requires us to run few iterations of NR to
extract the setup time of high accuracy. It turns out that we,
in fact, have a fair idea of such setup skew interval from the
previous characterization of the standard cell library containing
similar registers. Hence, NR can be less time consuming and,
thus, very useful as it features more accuracy in less number of
iterations, in the characterization of the setup/hold time.

VI. INTERDEPENDENT SETUP/HOLD

TIME CHARACTERIZATION

We have already established in the previous section how
setup/hold times can be found using the simple NR method with
higher accuracy when their interdependence is ignored. In this
section, we take the interdependence of setup and hold times
into consideration and show how to solve the underdetermined
scalar (4) using a Moore–Penrose pseudoinverse Newton proce-
dure. We then develop an EN curve-tracing procedure for this
equation.

A. Solving for Interdependent Setup/Hold Times via MPNR

Since (4) is an underdetermined scalar nonlinear equation
with two unknowns τs and τh, NR, which is the method
of choice for the numerical solution of “square” nonlinear
systems, cannot be directly applied. However, a modifica-
tion, which is based on the application of the Moore–Penrose
pseudoinverse [13] during the linear solution step, can be
applied instead, as described in this section. Intuitively, MPNR
starts with an initial guess of (τs0, τh0) and converges to a
solution (τ c

s , τ c
h) of (4), which lies on the constant clock-to-q

delay curve, as shown in Fig. 9. A denotes the initial guess,
whereas B denotes the point on the solution curve (Fig. 9)
that MPNR converges to. It can be proven that under the
right circumstances, MPNR will converge to a point B on the
solution curve that is closest to A.

To solve (4) using MPNR, it is necessary to perform
three tasks: 1) evaluate h(τs, τh) given any (τs, τh); 2) eval-
uate [dh(�τ)/d�τ ] = [dh(�τ)/dτs, dh(�τ)/dτh], which is a 1 × 2
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Fig. 9. Convergence of a point via NR on a constant clock-to-q delay curve.

Fig. 10. Curve tracing using the EN method.

matrix; and 3) compute the Moore–Penrose pseudoinverse of
[dh(�τ)/d�τ ].

h(τs, τh) is simply evaluated by running a transient simula-
tion with the given (τs, τh) and then evaluating (4). Compu-
tation of [dh(�τ)/d�τ ] is done by sensitivity analysis [11], [12]
on (2). Refer to Appendix B for the detailed description of
computing [dh(�τ)/d�τ ].

Finally, denoting the matrix [dh(�τ)/d�τ ] by H(�τ), its
Moore–Penrose pseudoinverse [13] can be expressed as

H(�τ)+
∣∣∣(τs,τh)=(τ∗

s ,τ∗
h)=H(�τ)t

(
H(�τ)H(�τ)t

)−1
∣∣∣
(τs,τh)=(τ∗

s ,τ∗
h)

(11)

where H(�τ)+ and H(�τ)t represent the pseudoinverse and
transpose of matrix H(�τ), respectively.

The MPNR algorithm is given in detail in Section VI-C.

B. Constant Clock-to-q Delay Contour Tracing by EN

In the previous section, we provided the key computational
details of the MPNR procedure, which is used to find a single
point on a constant clock-to-q delay curve when an initial guess
of setup and hold skews is given. In this section, we outline
an EN-based method for tracing the entire constant clock-to-q
contour in the τs−τh plane [as shown in Fig. 1(b)], i.e., the set
of all solutions of (4).

The EN curve-tracing [13] method used here follows a stan-
dard predictor–corrector methodology [8], using Euler steps
as predictors and MPNR steps as correctors. Taking an Euler
predictor step involves computing the tangent vector to the
solution curve at a previously known point on the curve and
extrapolating to a new point along the tangent. The MPNR
procedure is then used as a corrector that uses this new point
as its initial guess and converges to a nearby solution point
on the curve. The EN curve-tracing procedure is graphically
depicted in Fig. 10, where the blue and red arrows denote

the Euler predictor steps and the MPNR corrector steps,
respectively.

The previous section has already provided details regarding
the computation of all quantities needed to perform MPNR. For
the Euler step, the key quantity we need to evaluate is a unit
tangent vector at any given point (τ c

s , τ c
h) on the curve. The unit

tangent vector at point �τ c = (τ c
s , τ c

h), denoted by T (H(�τ)) (and
called “the tangent vector induced by H(�τ)”), can be computed
as follows [13]:

T (H(�τ))|�τ=�τc =
(−dh(�τ)

dτh

dh(�τ)
dτs

)
1√(

dh(�τ)
dτs

)2

+
(

dh(�τ)
dτh

)2

∣∣∣∣∣∣∣∣
�τ=�τc

.

(12)

The rectangular matrix in (12) is simply the MPNR Jacobian
matrix at the current solution point; hence, it is already avail-
able; since it is of size 2, the computation involved in finding
the tangent vector is trivial.

C. Euler–MPNR-Based Curve-Tracing Algorithm for
Interdependent Setup/Hold Time Characterization

We now outline the overall procedure of finding all the pairs
(τ c

s , τ c
h) such that they satisfy (4). Equation (4) needs to be

evaluated at time t = tf . We again note that the curve obtained
as the solution set of (4) will be a constant clock-to-q delay
curve in the plane of setup and hold skews, and therefore, each
point on the curve represents a setup/hold time pair.

The complete algorithm for tracing the constant clock-to-q
delay curve is shown in the following.

Note: Superscript “c” will be used to denote quantities that
lie on the constant clock-to-q delay curve.

1) Initialize τs, τh, �x, �ms, and �mh (see Appendix B for the
definition of �ms and �mh).
a) (τs, τh) = (τs0, τh0).

τs0 and τh0 are initial guesses for setup and hold times,
respectively.

b) �x(t = 0, �τ) = �x0(�τ).
This is the initial condition from which the simulation
starts; starting from the dc operating point is typical.

c) �ms(t=0, �τ0)= �ms0(�τ0) and �mh(t=0, �τ0)= �mh0(�τ0).
As explained in Appendix B, �ms0(�τ0) and �mh0(�τ0)
can be initialized to �0 if the initial condition �x0 does not
depend on the setup and hold skews; this is typical.

2) Start the EN procedure.
For an Euler iteration index k.
Note: k − 1 essentially represents the number of points
that has already been computed on the curve.
a) Start the NR procedure. For an iteration index j

inside NR:
i) Divide t = 0 to tf in N points: t0, t1, . . . , tN−1. For

each i ∈ {0, . . . , N − 1}, compute the following:
�τkj = [τskj , τhkj ] is the value of �τ being used for the
NR iteration index j and Euler index k.
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A) Compute �xkji using (2).
Here, �xkji denotes the fact that the quantity �x is
being evaluated at time ti for the NR iteration
index j and Euler index k. This terminology will
also hold for other quantities. Equation (2)
can be solved using any integration method,
such as BE, TRAP, etc. [8], [9].

B) After having obtained �xkji’s, compute the
following:

Ckji =
d�q(�x)
d�x

∣∣∣∣
�x=�xkji

and Gkji =
d�f(�x)

d�x

∣∣∣∣∣
�x=�xkji

. (13)

C) Compute (�ms)kji using (32) as follows:

(�ms)kji =
(

Ckji

ti − ti−1
+ Gkji

)−1

×
(

Ckj(i−1)

ti − ti−1
(�ms)kj(i−1) −�bdzs(ti, �τkj)

)
. (14)

Compute (�mh)kji similarly.

We have now obtained �xkj(N−1), (�ms)kj(N−1), and
(�mh)kj(N−1).

ii) Calculate h(�τkj) defined in (4) as follows:

h(�τkj) = �cT �xkj(N−1) − r. (15)

iii) Check the convergence of NR using reltol and abstol
[19]. If NR has converged, then we have obtained the
optimal value of �τ as �τkj . Jump to step (b) to com-
pute the Euler step at �τkj .
Also, we will denote this optimal value of �τkj , which
essentially lies on the curve, as �τ c

k outside the NR
procedure.
Otherwise, calculate dh(�τ)/dτ defined in (33) as
follows:

dh(�τ)
dτs

∣∣∣∣
�τ=�τkj

=�cT (�ms)kj(N−1)

dh(�τ)
dτh

∣∣∣∣
�τ=�τkj

=�cT (�mh)kj(N−1). (16)

iv) Calculate τk(j+1) and increment j. Therefore

τk(j+1) = τkj − h(�τkj)
(

dh(�τ)
dτ

)+
∣∣∣∣∣
�τ=�τkj

and j = j + 1.

(17)

In (17), (dh(�τ)/dτ)+ is the Moore–Penrose pseudo-
inverse of dh(�τ)/dτ , which can be calculated using
(11) as follows:

(
dh(�τ)

dτ

)+

=
(

dh(�τ)
dτ

)t
[

dh(�τ)
dτ

(
dh(�τ)

dτ

)t
]−1

(18)

where (dh(�τ)/dτ)t is the transpose of dh(�τ)/dτ .

Go to step (i) for the next iteration of NR.
b) Compute the following tangent unit vector induced by

dh(�τ)/d�τ using (12) for �τ = �τ c
k :

T

(
dh(�τ)

dτ

)
=

(−dh(�τ)
dτh

dh(�τ)
dτs

)
1√(

dh(�τ)
dτs

)2

+
(

dh(�τ)
dτh

)2
. (19)

c) Compute the new pair of (τs0, τh0) along the unit tan-
gent vector: (predictor step)

�τ(k+1)0 = �τ c
k + α.T

(
dh(�τ)

dτ

)∣∣∣∣
�τ=�τc

k

and k = k + 1

(20)

where α is the step used in the direction of tangent. Go
to step (a) of the EN procedure and keep repeating until
the traversing is stopped.

VII. APPLICATION OF EULER–NEWTON METHODOLOGY

FOR INTERDEPENDENT SETUP/HOLD TIME

CHARACTERIZATION AND RESULTS

In this section, we first validate the interdependent setup/hold
time characterization algorithm developed in this paper using
two types of registers: 1) a TSPC register and 2) a C2MOS
positive-edge-triggered master–slave register. We describe the
validation procedure in some details. Our results, which we
compare against brute-force output surface generation, confirm
that the new curve-tracing method accurately finds constant
clock-to-q contours in computation linear in the desired num-
ber of contour points. We obtain speedups of about 10–12×
over surface generation5 for 17–24 curve points (representing
excellent precision for timing analysis purposes). Additionally,
we have chosen reltol/abstol for MPNR such that the points
obtained on the curve are accurate up to five digits.

We then present a case using a static transmission-gate-based
register exhibiting a very sharp behavior in the Q output, where
EN methodology does not feature any speedup against the
brute-force method. This example illustrates a limitation of our
proposed EN method in terms of efficiency, which is the main
attraction of this method.

Our current implementation uses a fixed Euler step length α
in (20). α is analogous to the time step in transient simulation;
as such, it can be made to change dynamically, depending on
the curvature of the curve, sensitivity of the Q output with
respect to (w.r.t.) setup/hold times (i.e., the rate of Newton
convergence), etc., for more efficient traversal of the curve.
Such improvements will improve the efficiency of EN-based
characterization as compared to the brute-force technique.

5Speedup numbers are obtained via apples-to-apples comparisons on an
AMD Athlon 64 3000+-based PC, with 512-MB RAM, running Linux kernel
2.6.12. All algorithms are implemented in a MATLAB/C/C++ simulation
prototyping environment.
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Fig. 11. Positive-edge-triggered register in TSPC.

Fig. 12. Constant clock-to-q delay curve obtained by the EN method.

A. TSPC Register

The positive-edge-triggered TSPC register shown in Fig. 11
features positive setup and hold time constraints. The clock
waveform uc(t) used in the register has a period of 10 ns, with
logic 0 at 0 V and logic 1 at 2.5 V. The clock input has an initial
delay of 1 ns; rise/fall times are both 0.1 ns. Therefore, its active
clock edges are located at 1 ns, 11 ns, 21 ns, etc. The chosen
data waveform ud(t, τs, τh) is centered around the active clock
edge, which starts at 11 ns. The data waveform changes its
shape (variable pulse width, refer to Fig. 2) depending on the
values of τs and τh.

At first, to determine the characteristic clock-to-q delay, the
register is simulated for very large values of τs and τh, and the
output is monitored. The output waveform reaches 1.25 V (50%
of its final value) at tc = 11.348 ns; hence, the characteristic
clock-to-q delay equals 298 ps (the distance from the 50%
active clock transition to the 50% transition of the output). Here,
we use a standard definition for setup and hold times, which
led to an increase of 10% over the characteristic clock-to-q
delay. Hence, the constant clock-to-q delay value for contour
generation equals 327.8 ps. Accordingly, we set tf = 11 ns +
(rise time/2) + 327.8 ps = 11.3778 ns and r = 1.25 V in (4)
[tc, tf , and r used here correspond to the same symbols in
Fig. 3(b)].

Determination of the first point on the curve involves starting
with a good guess for (τs0, τh0) to seed NR. To find one, we
make the hold skew τh0 very large, so that the setup time will
become largely independent of the hold skew. We start with
a setup skew interval [τsL, τsR], where the register properly
latches the data for τsL and fails to latch data for τsR. Hence,
this interval will contain the setup time point τ c

s . We then

Fig. 13. Constant clock-to-q delay curve obtained by the EN method. The
curve represents the pairs of setup and hold skews, which increases the
characteristic clock-to-q delay by 10%.

Fig. 14. Q output surface as a function of independent setup and hold skews.

narrow down the setup skew interval using a coarse binary
search, until the interval length falls in the convergence range
of NR.

Either τsL or τsR can be used as the initial guess τs0 for
MPNR solution. Then, we start the EN process, as previously
outlined. MPNR typically converges very quickly (two to three
iterations) as the curve is traced since the Euler steps provide
excellent initial guesses. The constant clock-to-q delay contour
obtained by the procedure is shown in Fig. 12. The curve
in Fig. 12 flattens out at the extreme edges. To understand
its behavior in the middle corner, which can be exploited
for setup/hold tradeoffs, we have plotted a part of this curve
in Fig. 13.

To verify the correctness of this curve, we also extract the
10% degraded constant clock-to-q delay curve for this register
using the brute-force output surface generation technique. An
output surface is generated at time tf = 11.778 ns by inde-
pendently varying setup and hold skews, as shown in Fig. 14.
A plane at a “height” of 1.25 V is then drawn to obtain the
intersection contour of the output surface. This intersection
curve represents the set of all setup/hold skew pairs, which
results in a 10% increase in the clock-to-q delay. The top view
of the curve obtained by this intersection procedure is shown
in Fig. 15. The contour from EN curve tracing (Fig. 13) is
overlaid on the intersection of the plane and the output surface
in Fig. 15. It is apparent from Fig. 15 that the curve obtained
by EN methodology exactly matches the constant clock-to-q
delay curve obtained from the surface, thereby verifying the
correctness of the new method.
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Fig. 15. Top view of the intersection curve of the plane and the output surface
and the superimposition of the curve obtained by the EN method.

Fig. 16. Output waveform fails to complete the transition even after reaching
80% of its true value.

In our implementation, EN curve tracing took 30 min to trace
24 points on the contour, whereas brute-force output surface
generation consumed 6 h 14 min (for 24 × 24 simulations)
to obtain 24 points on the curve, representing a speedup of
about 12.5×.

B. C2MOS Positive-Edge-Triggered Master–Slave Register

To further validate the EN curve-tracing method, we apply it
to the C2MOS register shown in Fig. 7. The clock uc(t) and the
data ud(t, τs, τh) used here are the same as for the previous
register. The register shown in Fig. 7 has zero hold time if
there is no overlap between the clk and clk inputs. To obtain
a positive hold time for this register, we delay the clk input
line by 0.3 ns w.r.t. the clk input line. As a result, a 0–0 and
1–1 overlap occurs between clk and clk, which imposes a hold
time constraint on the data line for a reliable transfer of data.
Also, due to the overlap between clk and clk, for some values
of τh, the output reverts to the wrong logic value even after
reaching 80% of the correct logic value, as shown in Fig. 16.
To ensure that we are not capturing false transitions, we set the
setup/hold criterion to 90% of the final output (as opposed to
50%) to calculate clock-to-q delays for this register. Hence, for
a high (2.5 V) to low (0 V) transition in the data input line,
we set r = 0.25 V in (4). The simulated value of tc (i.e., the
time at which the output reaches 90% of its final value for
large setup and hold skews) was found to be equal to 12.055 ns,
and therefore, tf (i.e., the time corresponding to a 10% increase

Fig. 17. (a) Contour for a 10% increase in the constant clock-to-q delay, as
obtained by EN curve tracing. (b) EN curve overlaid on the intersection curve
of the plane and the output surface (top view).

in the clock-to-q delay) was set to 12.155 ns in (4). The constant
clock-to-q delay curve thus obtained by running EN curve
tracing on (4) is shown in Fig. 17(a).

As in the previous example, we also plot the curve obtained
by intersecting a plane at a height of 0.25 V with the output
surface generated at time tf in Fig. 17(b). The curve shown in
Fig. 17(a) is also plotted on top of the intersection of the surface
and the plane in Fig. 17(b). The close match is evident, again
validating the correctness of EN curve tracing. Once again, EN
curve tracing results in a speedup of 10.5× over brute-force
output surface generation (for 17 points on the constant clock-
to-q delay curve).

C. Transmission-Gate-Based Master–Slave Register

For further validation, we try to find the constant clock-to-q
delay curve for the static transmission-gate-based master–slave
register (Fig. 5). The clock uc(t) waveform is the same as it
was in the previous two registers. This register exhibits no hold
time constraint if there is no overlap between clk and clk inputs.
To enforce the hold time constraint for this register, we delay
the clk input line by 0.3 ns w.r.t. the clk input line. For a high
(2.5 V) to low (0 V) transition in the data input line, we set r =
0.15 V (94% of the final output) in (4) to calculate the clock-
to-q delay for this register. For very large setup and hold skews,
the output reaches 0.15 V at tc = 12.591 ns; hence, tf was set
equal to 12.745 ns, representing the time corresponding to a
10% increase in the clock-to-q delay. The constant clock-to-q
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Fig. 18. (a) Q output surface as a function of independent setup and hold
skews. (b) Intersection of a plane at a height of 0.15 V with the Q output
surface.

delay curve obtained by the EN method is shown in Fig. 19(a).
This curve obtained by the EN method displays very high
sensitivity w.r.t. the setup skew, as compared to the hold skew.
To validate the curve, we plot the Q output surface [Fig. 18(a)]
for this register at time tf . The Q output surface in Fig. 18(a)
is not very smooth and sharply changes its shape for some
combinations of setup and hold skews. It can be noted from
Fig. 18(a) that the Q output stays either at high (almost at
2.5 V) or at some extremely low values (near 0 V). Hence, the
constant clock-to-q delay curve that we are computing using
the EN method, with the criterion of the Q output at 0.15 V,
actually tries to approximately match the curve that separates
the extremely high and low values of the Q output surface.
Therefore, to accurately trace the constant clock-to-q curve
using the EN method, we need to take very small Euler steps
due to the sharp transition in the Q output surface; moreover, to
retain accuracy, every Newton step requires five to six iterations
to converge.

The intersection curve of the Q output surface and a plane
at a height of 0.15 V is shown in Fig. 18(b), and its top view
is shown in Fig. 19(b). We have also overlaid the curve shown
in Fig. 19(a) on top of the intersection of the surface and
the plane in Fig. 19(b). As can be seen, the curve obtained
by the EN method matches the intersection curve of the
Q surface and the plane, even for this highly sensitive non-
smooth surface. However, for this static register, the EN method
is not very efficient as compared to the brute-force technique,
as every Newton step took five to six iterations and very

Fig. 19. (a) Contour for a 10% increase in the constant clock-to-q delay, as
obtained by EN curve tracing. (b) EN curve overlaid on the intersection curve
of the plane and the output surface (top view).

small Euler steps were needed to trace the curve for avoiding
nonconvergence. Therefore, EN requires a large number of
transient simulations for this particular register and gives no
speedup over the brute-force method. In this case, EN does not
result in any appreciable speedups over the brute-force method.

VIII. CONCLUSION AND FUTURE DIRECTIONS

We have presented a new method that directly solves for
latch independent setup and hold times by expressing them as
solutions to a scalar nonlinear equation and solving this equa-
tion by exploiting the quadratic convergence properties of NR.
We have also presented a novel method that directly solves for
interdependent setup/hold time contours via EN curve tracing
on a state-transition equation formulation. Our methods are
generally applicable to any kind of latch or register. We have
validated the methods on TSPC and C2MOS register structures,
demonstrating speedups of 2.5–10× for independent character-
ization and 10–12× for interdependent characterization over
prior surface generation/intersection methods. We have also
characterized a challenging transmission gate register featuring
a very sharp output Q behavior and verified the correctness of
the results of the new interdependent characterization method,
although with no appreciable speedup in this case. We believe
that the proposed interdependent characterization technique
can be a crucial enabler for pessimism reduction techniques
in timing analysis flows that exploit interchangeable pairs of
setup/hold times [1].
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APPENDIX A
COMPUTATION OF dh(τ)/dτ FOR SOLVING FOR

INDEPENDENT SETUP/HOLD TIMES VIA NR

To compute dh(τ)/dτ , we need to evaluate (d/dτ)�φ(tf ;
�x0, 0, τ). We next develop the procedure to do this.

First, we write out (2) with all dependences on τ explicitly
shown for clarity (Note here that τ represents τs, and the
equation will be independent of τh as it has been set to a fixed
value.). Therefore

d

dt
�q (�x(t, τ)) + �f (�x(t, τ)) +�bcuc(t) +�bdud(t, τ) = 0. (21)

Next, noting that d�φ/dτ is simply d�x(t, τ)/dτ , we differ-
entiate the entire equation w.r.t. τ , interchanging the order of
differentiation w.r.t. t and τ in the first term, i.e.,

0 =
d

dt

[
d�q(t, τ)

d�x

d�x

dτ

]
+

d�f(t, τ)
d�x

d�x

dτ
+�bdu

′
d(t, τ). (22)

Since we want to evaluate dh(τ)/dτ at any given value of
τ , e.g., at τ ∗, we can define the following terms for ease of
understanding:

C†(t) =
d�q(t, τ)

d�x

∣∣∣∣
τ=τ∗

, G†(t) =
d�f(t, τ)

d�x

∣∣∣∣∣
τ=τ∗

,

and �m†(t) =
d�x(t, τ)

dτ

∣∣∣∣
τ=τ∗

. (23)

Rewriting (22) for τ = τ ∗, we obtain

d

dt

(
C†(t)�m†(t)

)
+ G†(t)�m†(t) +�bdu

′
d(t, τ

∗) = 0. (24)

The solution of (24) can easily be obtained using any integration
method (e.g., BE and TRAP) [8], [9]. We write the solution of
(24) using BE as

C†(ti)�m†(ti) − C†(ti−1)�m†(ti−1)
ti − ti−1

+ G†(ti)�m†(ti) +�bdu
′
d (ti, τ ∗) = 0 (25)

which can be simplified as

�m†
i =

(
C†

i

∆t
+ G†

i

)−1 (
C†

i−1

∆t
�m†

i−1 −�bdu
′
d (ti, τ ∗)

)
. (26)

The subscript i denotes the fact that the corresponding quantity
has been evaluated at t = ti; ∆t = ti − ti−1 is the time step
used in the integration.

We need to know the value of �m†
0 to start the integration

process, and it turns out that we can safely take �m†
0 to be equal

to �0. The reason for this choice is that �x0 = �x(t = t0) will not
change for any particular value of τ , thus enabling �m0 to take
the value �0.

Evaluating (26) from t = t1 to t = tf (i.e., i ∈ 1, 2, . . . , f )
will give �m†

f = d�φτ/dτ |t=tf ,τ=τ∗ .

Finally, we can obtain the scalar

dh(τ)
dτ

∣∣∣∣
t=tf ,τ=τ∗

= �cT d�φτ

dτ

∣∣∣∣∣
t=tf ,τ=τ∗

. (27)

APPENDIX B
COMPUTATION OF [dh(�τ)/d�τ ] FOR SOLVING FOR

INTERDEPENDENT SETUP/HOLD TIMES VIA MPNR

To compute [dh(�τ)/d�τ ], we need to evaluate [(d/dτ)�φ(tf ;
�x0, 0, τs, τh)], which is achieved as follows.

Next, noting that [d�φ/d�τ ]= [(d�x(t, τs, τh)/dτs), (d�x(t, τs,
τh)/dτh], we first evaluate d�x(t, τs, τh)/dτs; computation of
d�x(t, τs, τh)/dτh follows a similar procedure.

To compute d�x(t, τs, τh)/dτs, we differentiate (2) w.r.t. τs

and interchange the order of differentiation w.r.t t and τs in the
first term, thus obtaining

0=
d

dt

[
d�q(t, τs, τh)

d�x

d�x

dτs

]
+

d�f(t, τs, τh)
d�x

d�x

dτs
+�bdzs(t, τs, τh).

(28)

In (28), (d/dτs)ud(t, τs, τh) is denoted by zs(t, τs, τh). Since
we want to evaluate dh(�τ)/dτs at any given value of (τs, τh)
(e.g., at (τ ∗

s , τ ∗
h)), we define the following terms for notational

convenience:

C†(t)=
d�q(t,τs,τh)

d�x

∣∣∣∣
(τ∗

s ,τ∗
h)

, G†(t)=
d�f(t,τs,τh)

d�x

∣∣∣∣∣
(τ∗

s ,τ∗
h)

,

�m†
s(t) =

d�x(t, τs, τh)
dτs

∣∣∣∣
(τ∗

s ,τ∗
h)

. (29)

Rewriting (28) for (τs, τh) = (τ ∗
s , τ ∗

h), we obtain

d

dt

(
C†(t)�m†

s(t)
)

+ G†(t)�m†
s(t) +�bdzs (t, τ ∗

s , τ ∗
h) = 0. (30)

Equation (30) can be discretized using any integration method
(e.g., BE and TRAP) [8], [9]. The discretization of (30) using
BE, for example, is

C†(ti)�m†
s(ti) − C†(ti−1)�m†

s(ti−1)
ti − ti−1

+ G†(ti)�m†(ti) +�bdzs (ti, τ ∗
s , τ ∗

h) = 0 (31)

which can be simplified to

�m†
si

=

(
C†

i

∆t
+ G†

i

)−1 (
C†

i−1

∆t
�m†

s(i−1)
−�bdzs (ti, τ ∗

s , τ ∗
h)

)
.

(32)

Note that the subscript i denotes the fact that the corresponding
quantity has been evaluated at t = ti; ∆t = ti − ti−1 is the time
step used in the integration.
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To start the integration process, we set �m†
s0 to �0 (the reason

for this choice is that �x0 = �x(t = t0) does not change with τs

or τh).
Evaluating (32) from t = t1 to t = tf (i.e., i ∈ 1, 2, . . . , f),

we obtain �m†
sf = (d�φτ/dτs)|(t,τs,τh)=(tf ,τ∗

s ,τ∗
h
). From these

quantities, we obtain the scalar

dh(�τ)
dτs

∣∣∣∣
(t,τs,τh)=(tf ,τ∗

s ,τ∗
h)

=�cT d�φτ

dτs

∣∣∣∣∣
(t,τs,τh)=(tf ,τ∗

s ,τ∗
h)

. (33)
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