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Abstract— Previous model order reduction methods fit into the frame-
work of identifying the low-order linear subspace and using the linear
projection to project the full state space into the low-order subspace.
Despite its simplicity, the macromodel might automatically include
redundancies.

In this paper, we present a model order reduction approach, named
maniMOR, which extends the linear projection framework to a general
nonlinear projection framework. The two key ideas of maniMOR are
(1) it explicitly separates the construction of the low-order subspace
and projection operation; (2) it constructs a nonlinear manifold which
captures important system responses and defines the corresponding
nonlinear projection operator.

The low-order manifold subspace in maniMOR is identified by stitching
together the low-order linear subspaces around a set of sample points
on the manifold. After the manifold is determined, it is embedded
into a global nonlinear coordinate system. The projection function is
defined in a piece-wise linear manner, and the model evaluation is
conducted directly in the manifold subspace using cheap matrix-vector
product computations. As a result, a compact model is generated by pre-
computing all the functions and Jacobians and storing them in a look-up
table.

We apply maniMOR on two analog circuits and a bio-chemical system to
validate its correctness. Extensive comparisons with the results of the full
model and other macromodels are provided. Experimental results show
that maniMOR manages to obtain a huge reduction – e.g., from 52 to 5 for
the I/O buffer circuit and from 304 to 30 for yeast pheromone pathway
system. This is less than half of the size of the TPWL model with the same
accuracy. With great promise to capture important system responses,
maniMOR presents a novel and powerful paradigm for nonlinear model
reduction, and casts inspirations for further researches.

I. INTRODUCTION

Model order reduction (MOR) has been an active research topic in

CAD area for a long time. The goal of model order reduction is to au-

tomatically extract a smaller macromodel for a subcircuit/subsystem,

thus enabling fast simulations/verifications of large complex systems.

MOR for bio-chemical systems is also of great importance and has

received much more concern than ever. Those systems have the

feature that even a very small system has hundreds of reactants

reacting with each other. Therefore the size of the corresponding

differential equations describing the chemical reaction kinetics [1] is

extremely large. In this context, macromodels enable the simulation

of large higher-level chemical systems.

So far, MOR techniques for linear time invariant systems have

been well-developed and widely used, such as Krylov subspace

methods [2], [3], TBR methods [4], [5], and the combination of the

two [6], [7]. On the other hand, nonlinear systems present a lot of

challenges for MOR, and much less robust, efficient, and generally-

applicable methods are available. Some of the most influential works

include the TVP method [8] for time varying systems, projection-

based methods based on linearization or bilinearization [9] for weakly

nonlinear time-varying systems, and trajectory-based methods [10]–

[13]. Almost all existing methods are based on the idea of projecting

the full state space on a linear subspace, where the system dynamics

evolve. However, macromodels generated under this framework seem

not to achieve the most reduction in size.

In this paper, we present an approach, named maniMOR, to nonlin-

ear model order reduction, based on nonlinear manifold projection.

Employing nonlinear projection of the full state space into a low-

order nonlinear manifold/subspace, instead of linear projection into

linear subspace in previous works, maniMOR is able to extract a

smaller macromodel of a nonlinear system. maniMOR first constructs

the nonlinear manifold in a way such that it captures the main

behavior of the original system. (e.g., asymptotic DC response, small

signal AC response, frequency conversion and distortion effects, etc.)

In the course of the manifold construction, a coordinate system

in the manifold subspace is built up. Accordingly, the nonlinear

projection/mapping between the original space and the manifold

subspace is defined – since the projection operator becomes nonlinear,

it is defined and stored in a piece-wise linear fashion, rather than

a single projection matrix in the linear case. Finally, in order to

achieve computation reduction of the model, compact computation

of the macromodel directly in the manifold coordinate is ensured by

simplifying the function computation to cheap matrix-vector product

operations.

The first main contribution of this paper is to extend the linear

projection framework of previous methods to a general nonlinear

projection framework, and to demonstrate that through nonlinear

projection into a nonlinear manifold, more reduction can be obtained

than its linear counterpart. In this view point, methods based on

linear projection can be regarded as a special case in the nonlinear

projection framework.

The second main contribution of this paper is that we propose to

explicitly split the MOR procedure into two sub-problems, i.e., (1)

the construction/parameterization of the nonlinear manifold where

system dynamics evolve; (2) projection between the original state

space and the manifold subspace. To the best of our knowledge,

previous literatures have not brought into attention the concept

of separating the construction of subspace and projection into the

subspace, although this is implicitly done in linear-projection-based

methods (where the projector defines the low-order subspace). This

separation gives a better understanding of MOR methods.

The third main contribution of this paper is that we present a

procedure to identify the nonlinear manifold, define the manifold

coordinate system, and generate a compact model for fast simulation.

The procedure identifies the nonlinear manifold and the coordinate

system in a correct-by-construction manner – i.e., we ensure that

the major system responses do lie on the nonlinear manifold we

construct. Since the manifold is nonlinear, it is approximated by

stitching together the local tangent subspaces around a set of sample

points on the manifold, and the coordinate system is built along non-

linear axes. Accordingly, the nonlinear projection/mapping function

is also defined by a piece-wise linear approximation around several

nearest sample points. The generated compact model enables us to

convert function and Jacobian computations into efficient matrix-

vector products, by employing a piece-wise linear approximation.

This is similar but distinguishable to the technique used in previous

trajectory-based approaches.

The rest of the paper is organized as follows. In Section II, we

briefly review the projection framework of existing MOR methods,

and the trajectory-based methods. In Section III, we discuss in detail

the procedure of maniMOR, together with some implementation

details. Three examples of application of maniMOR are presented

in Section IV. Finally, Section V concludes the paper, and proposes

future research directions.
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II. BACKGROUND

In this section, we first review the general MOR framework based

on linear projection of the full state space into a low-order linear

subspace, and the trajectory-based methods. Then we discuss prob-

lems/limitations in those methods, to motivate ideas in maniMOR,

which are presented in Section III.

A. Projection Framework

Consider a system described by differential equations (1), where

~x∈R
n are state variables1, and ~u(t) are the inputs. For linear systems,

q(~x) = C~x, f (~x) = G~x.

d

dt
q(~x)+ f (~x)+B~u(t) = 0 (1)

Most previous methods boil down to identifying a low-order

linear subspace of size q (q ≪ n), which is defined by q bases

V = [~v1~v2 · · ·~vq], such that the main system response lie on this

linear subspace. After the projection, the state variable in the low-

order subspace ~z ∈ R
q satisfies equation ~z = V T~x. The differential

equations for the reduced system, shown in (2), are obtained by

projecting the differential equations into another linear subspace

spanned by columns of W = [~w1~w2 · · ·~wq], so that the residual, defined

by~r ≡ d
dt q(V~z)+ f (V~z)+B~u(t), is orthogonal to this linear subspace,

i.e., W T~r = 0. [9]

W T

(

d

dt
q(V~z)+ f (V~z)+B~u(t)

)

= 0 (2)

Different projection-based methods differ by using different pro-

jection matrices V and W , and in many cases, V =W is used. Without

loss of generality, we assume V = W throughout this paper.

The projection-based methods are efficient for linear systems since

the linear function, f (~x) = G~x, can also be written in the form

of matrix-vector products in the reduced system, i.e., f̂ (~z) = Ĝ~z,

where Ĝ = V T GV .2 This avoids projections during the simulation,

and reduces computational cost.

B. Trajectory-based Methods

However, for nonlinear functions, there is no easy way to express

f̂ (~z) = V T ( f (V~z). Trajectory-based methods come into play in the

sense that they express the nonlinear function in a piece-wise linear

(polynomial) fashion, so that compact model can be generated to

achieve computation reduction.

In trajectory-based methods, as shown in (3), the nonlinear function

is first linearized at several sample points ~xi,(i = 1,2, · · ·), which are

sampled along the trajectories corresponding to a set of “training”

inputs. This enables the compact model for each linearized system to

be generated in the same way as in linear systems, as shown in (4).

f (~x) = f (~xi)+Gi(~x−~xi) (3)

f̂ (~z) = f̂ (~zi)+ Ĝi(~z−~zi)

= V T f (V~zi)+V T GiV (~z−~zi)
(4)

Finally, the nonlinear function is approximated by a weighted sum-

mation (interpolation) of compact models for all linearized systems,

as shown in (5). 3

f̂ (~z) = ∑
i

wi(~z)
(

f̂ (~zi)+ Ĝ(~z−~zi)
)

(5)

1Specifically, ~x represent node voltages and branch currents in circuit
differential algebraic equations.

2The same operations are done for function q(~x). Therefore, in the rest of
the paper, we provide derivations only in terms of f (~x).

3Several improvements on robust and efficient function computation have
been proposed by several authors, such as kernel methods [14], interpolation
among k-nearest neighbors [11], [12], etc..

Since the low-order subspace should include the low-order sub-

spaces for all the linearized models, the projection matrix V in

trajectory-based methods is generated by (1) calculating the projec-

tion matrix Vi for each linearized system; (2) aggregating all the

projection matrices Vagg = Union(Vi)(i = 1,2, · · ·); (3) performing an

SVD on the aggregated projection matrix V = SVD(Vagg); (4) picking

up the q column vectors in V that correspond to q largest singular

values. The key idea behind this procedure is that if the low-order

subspace for each linearized system can capture system responses

around the linearization point, then the union of all those low-order

subspaces should capture all system responses.

C. Limitations of Linear-projection-based Trajectory-based Methods

While the trajectory-based methods show reasonable reduction of

the system and good match to the full model, they also cast a variety

of questions. Several authors have paid attention to several aspects

of the method [11]–[14], and we just list the problems that have not

been noticed/published/well-solved.

Firstly, and maybe the most importantly, the DC operating points

are modeled in trajectory-based methods by a simple heuristic, which

can be problematic in practice. It includes the state variables, which

are sampled from the training trajectories, into the projection matrix.

This is exactly to force those states to be embedded in the low-order

subspace. There are three main problems with this heuristic:

• For the sample states that are not DC operating points, they do

not need to be added into the projection matrix, because they

could travel in the full space, and not essentially in the low-

order subspace we want to construct. Even for a LTI system,

the trajectory could go off the reduced subspace, such as its

low-order Krylov-subspace. So incorporating those states into

the low-order subspace is unreasonable, and will lead to a much

larger model.

• For the sample states that are DC operating points, the heuristic

is good since it exactly matches the DC response. However, it is

not perfect, and sometimes bad, since the DC operating points

could potentially be anywhere in the state space. An illustrative

example is a chain of two inverters, as shown in Fig. 1. Fig.

1(b) shows the DC operating points plotted in the state space

– merely DC operating points span the full state space. Using

this heuristic, no reduction can be obtained in this particular

example. Another obvious example is an N-bit ADC. Since the

N outputs need to span at least an N-D linear subspace, we

could at most reduce the system size to N, while only capture

DC response. Therefore, linear projections can lead to a large

model.

Secondly, the generation
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(b) DC operating points.

Fig. 1. A chain of two inverters.

of the final projection

matrix is questionable.

In the trajectory-based

methods, the final

projection matrix is

generated by aggregating

the projection matrices

for all linearized systems,

followed by an SVD,

and selection of column

vectors corresponding to

singular values larger than

some threshold ε. Two

arguments can be made to

this heuristic:

• The aggregation leads to large model. Consider the circuit of a

ring mixer shown in Fig. 2(a). At different DC bias, different
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transistors in the circuit are on/off. So the local subspaces at

different DC operating points do not share a common linear

subspace. This can be observed in Fig. 2(b), which plots a

trajectory obtained from a transient simulation of the circuit. In

Fig. 2(b), locally around a DC operating point, the trajectory is

confined in a low-order subspace (plane in this case). However,

the size of the common linear subspace is larger than each local

low-order subspace.

• The aggregation could kill important bases generated for lin-

earized systems. The first few bases in each Vi are always

important – they correspond to the first few derivatives of the

transfer function (moments) in Krylov-subspace methods, or the

largest few Hankel singular values in TBR methods. However,

after the aggregation, this information is lost! What is worse, the

less useful bases, which correspond to higher-order derivatives

of the transfer function or smaller Hankel singular values,

could duplicate or be highly-correlated in different linearized

systems. As a result, the SVD of the aggregated projection

matrix will first pick up those unimportant columns, and filter

out important ones, thus losing important system characteristics.

Also highly possibly, the DC operating points, characterized

using the previous heuristic, can again be lost in this step.

This is observed in our experiments – specifically, in the yeast

pheromone pathway example, as shown in Section IV-C, almost

no reduction can be obtained. We also demonstrate later in

Section IV-C another heuristic trying to get around this problem,

but the model generated is still not efficient.

(a) Circuit diagram.
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(b) Trajectory in state space.

Fig. 2. A simple CMOS ring mixer. The red curve is the DC operating
points. The blue trajectory is from a transient simulation.

Thirdly, one recent big improvement of trajectory-based methods,

based on localized linear reductions [13] was proposed. The local

linear subspaces are identified beforehand for clusters of points. This

approach could outperform far more better than previous variants.

However, still some problems need to be addressed carefully.

• Since all the computations are computed locally, the algorithm

does not have a global view of where the state variable is

unless it is projected back to the aggregated subspace. Therefore,

although the model evaluations are performed in the local

smaller reduced subspace, the equation solver is applied in

the common aggregated subspace. Otherwise, the local reduced

subspace must be chosen more conservatively such that two

consecutive states (in transient analysis, for example) fall in the

same local subspace.

• The search for the nearest neighbor is performed in the aggre-

gated subspace, whose size is much larger than local subspaces.

The computational cost for evaluating pair-wise distance metric

and searching the nearest neighbors might become comparable

to function computations.

• Generally, it also suffers from some common problems of

trajectory-based methods, as mentioned before.

In a brief summary, the linear-projection-based methods and the

aggregation in trajectory-based methods generally lead to redundant

models, and trajectory-based methods intrinsically suffer from some

fragility. We try to address those problems in maniMOR model in

section Section III.

III. MANIMOR

In this section, we present our maniMOR model order reduction

procedure. We start by introducing the notion of separating the

subspace construction and projecting operation in MOR procedure.

Under this framework, we give a high-level algorithm description

of maniMOR, followed by detailed explanations and derivations in

several sub-sections.

The key difference of maniMOR algorithm from existing algo-

rithms is that maniMOR constructs a low-order nonlinear manifold

subspace and uses nonlinear projection to project the full state space

into this manifold subspace, while previously almost all methods are

based on low-order linear subspace and linear projection operation.

As we will demonstrate, the low-order nonlinear manifold we build

does remove many redundancies that are present in its linear counter-

part, as well as capturing important system responses. We also show

that the the nonlinear projection could be performed in a piece-wise

linear manner, which enables fast computation of the model. Equally

important is that the pre-computation and storage of the maniMOR

model does not grow too high – a compact nonlinear macromodel

will finally be generated.

A. Separation of Subspace Construction and Projection

As discussed in Section II, previous MOR methods try to find a

projection matrix V , whose columns span a low-order subspace, and

define the projection operation ~z = V T~x. Implicitly in this equation,

the construction of the low-order subspace and projection operation

are mixed – both of them are are defined by V .

By definition, the low-order subspace is the subspace that captures

main system responses. The projection is generally defined by the

point in the subspace that is closest to the point in the original

space. For example, in Krylov subspace method, the bases of the

subspace are chosen such that the first few moments of the transfer

function are matched. Then the projection operation coincides with

the left multiplication of V T . In retrospect, we find that existing

MOR methods do fit into this concept of separation. Table I lists

the subspace construction schemes and projection methods used in

Krylov-subspace, TBR and trajectory-based methods.

The separation of the two procedures helps us better understand

MOR methods, and provides us more freedom and insights to do

model order reduction – they do not need to be defined by the linear

projection matrix. Next, we presents an attempt to construct a non-

linear reduced-order manifold and to employ nonlinear projections in

the maniMOR model.

B. maniMOR Outline

The outline of maniMOR macromodel generation is shown below,

followed by several subsections discussing the details.

1) Trajectory sampling

• For different training inputs, perform simulations of the

full system, such as DC, TRAN, HB, etc..

• Sample a few points on those trajectories, using certain

criterion. (e.g., assign a minimum distance between any

two samples.)

2) Manifold construction and coordinate assignment

• Construct the nonlinear manifold in a correct-by-

construction manner, i.e., try to match the system responses

observed in training trajectories.

• Embed the low-order nonlinear manifold in a nonlinear

coordinate system.

3) Reduced-order model generation

• For each sampled point on training trajectories, find its

projection in the manifold coordinate.

• For each projected sample point, calculate the low-order

subspace of the system linearized at that point. (e.g., the

Krylov-subspace)
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TABLE I

SEPARATION OF SUBSPACE CONSTRUCTION AND PROJECTION
Methods Subspace construction guideline Projection

Krylov-subspace matches first few derivatives of the transfer function ~x = V~z
TBR matches largest few Hankel singular values ~x = V~z
Trajectory-based the union of subspaces at all sampled points ~x = V~z

• Precompute the functions, Jacobians, local projection ma-

trices at all samples, and store the model, which is essen-

tially a look-up table.

C. Construction of the Nonlinear Manifold and Its Coordinate

System: From Linear Subspace to Nonlinear Manifold

Intuitively motivated in Section II-C and Fig. 1(b), we see that a

nonlinear manifold contains more information than linear subspaces,

and therefore has the potential ability to exploit more reduction of

the model. Here we present the detailed procedure to construct such

a nonlinear manifold.

1) The first dimension: The first intuition to construct our nonlin-

ear manifold is motivated by the inverter example we mentioned in

Section II-C, i.e., a 1-D (size 1) model should be enough to capture

the DC response of the system. In the linear case, the DC operating

points constitutes a straight line going through the origin in the state

space, which is defined by G~x+Bu = 0. For a nonlinear system, the

DC operating points are x’s that satisfy f (~x)+Bu = 0, which represent

a curve in the state space. This curve can be easily computed by

performing a DC sweep simulation.

Now that we have obtained a “DC curve”, we regard it as a

nonlinear axis. Suppose the state variable in the reduced space is

~z = [z1,z2, · · · ,zq]
T , we designate the coordinates of z1 along this “DC

curve”. Doing so, we ensure the DC response of the full system be

exactly matched in the reduced-order model. This simple coordinate

designation scheme is a natural generalization of the linear case to the

nonlinear case. In linear-projection methods, z1 is along the direction

of ~v1, the first column of the projection matrix V . Specifically, in

Krylov-subspace methods, ~v1 = G−1B, which exactly matches the

equation for DC operating points G~x+Bu = 0.

One important question is that what should the value z1 be at

different points on the “DC curve”. We formulate the procedure as

follows: (1) arbitrarily choose a DC operating point, and let z1 for

this point to be 0; (2) choose the point ~x j that is closest to points that

have been designated a coordinate, among which the closest point to

~x j is ~xi, choose its z1 value z1 j such that (6) is satisfied, where the

sign is determined by their relative position along the “DC curve”.

||z1 j − z1i||2 = ||~x j −~xi||2 (6)

Since locally a curve can be approximated by a straight line, the

distance between two nearby points along the curve could reasonably

approximated by the distance between the two points. We claim

this procedure is valid because it preserves the distance information

between nearby points – in other words, it preserves the geodesic

distance information between pairs of points.

2) Beyond the first dimension: The second thing to be captured

in the nonlinear manifold is the small signal response at each DC

operating point. Since locally around each DC operating point, the

low-order subspace is linear, and this linear subspace can be effi-

ciently calculated, (e.g., Krylov-subspace methods), we approximate

the nonlinear manifold by stitching the low-order linear subspace

around each DC operating point together. Thus, all the small signal

responses are captured exactly in the model.

In this case, all the axes except for the first one are linear, and the

coordinates are trivially chosen, just as the linear case.

This idea could be examined in view of model order reduction for

time-varying systems. Suppose the input of a time varying system is

decomposed into a large signal uL(t) and a small signal uS(t), i.e.,

u(t) = uL(t)+uS(t). Each value of uL corresponds to an equilibrium

point and a local low-order linear subspace. Suppose q is size of

the reduced model, and Krylov-subspace methods are used for each

linearized system. The first q moments of the transfer function are

matched. In trajectory-based methods, all the q-D linear subspaces at

different equilibrium points are aggregated together. Therefore they

render a more redundant model than maniMOR.

The last thing to be included in the manifold is the large signal

response. It can naturally be extrapolated from the previous two ideas

that we need to make the rest q−1 axes nonlinear. Obviously, this

is a hard problem since there is no easy simulation such as the DC

sweep simulation that could give us the manifold.

Based on the fact that at each point on the nonlinear manifold, the

tangent linear subspace is a good approximation to the local manifold,

we could say that a point on this tangent linear subspace and close

to the expansion point is also on the manifold. Therefore, starting at

any DC operating point x0, we first calculate its Krylov subspace,

and the corresponding projection matrix V0 = [v1,v2, · · · ,vq]. Then,

we can go an Euler step along any of the q−1 directions from x0,

and claim that the new point is also on the manifold.

For example, the simplest way is the forward Euler method in (7),

where xi−1 is the known point on the manifold, xi is the new point,

~v j is the j-th Krylov basis, h is the step size.

xi = xi−1 +h~v j (7)

Accordingly, the z coordinate is chosen by increasing the corre-

sponding z element by h. For example, if a size h step is performed

along v j direction, z j is increased by h. When the Euler step is small

enough, our assumption that the new point does lie on the nonlinear

manifold is correct.4

D. Projection Between the Nonlinear Manifold and the Full State

Space

Similar to the linear-projection-based methods [10], there are two

projection operations: projection of the state space ~x = fV (~z) and the

projection of the differential equations W T (~z). After the projection,

the differential equations in the reduced-order subspace is (8).

W T (~z)

[

d

dt
~q( fV (~z))+~f ( fV (~z))+B~u(t)

]

= 0 (8)

1) Nonlinear projection of the state space: We express the nonlin-

ear projection between~x∈R
n and~z∈R

q by a nonlinear equation~x =
fV (~z). However, since there is no particular form (e.g., polynomial)

for this nonlinear equation, we use a piece-wise linear function as an

approximation.

At any sample point~zi, we write the first-order Taylor expansion of

fV (·) in (9). In (9), fV (~zi) is exactly~xi, and the term
∂ fV
∂~z

is essentially

the projection matrix Vi of the linearized system at ~xi, which can be

efficiently computed (e.g., by Krylov subspace methods). So (9) can

be simplified to (10).

~x = fV (~z) ≃ fV (~zi)+
∂ fV

∂~z
(~z−~zi) (9)

~x ≃~xi +Vi(~z−~zi) (10)

4The problems are also obvious in this heuristic: (1) the number of points
needed to be visited on the manifold could increase exponentially; (2) there is
no theoretical proof that such a nonlinear manifold could capture large signal
responses. We have been trying some other heuristics combined with this one,
and some of them do give good experimental results. Though, we seek more
theoretically sound manifolds to be used here.
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So, the nonlinear function can be approximated by (11), a weighted

summation of the functions linearized at different samples, where

the weight function wi(~z) represents certain distance metric (kernel)

between ~z and ~zi, and sum up to unity, i.e., ∑i wi(~z) = 1. The

parameter k in (11) is used to select k nearest samples around ~z, so

that the computation does not increase with the number of samples.

Similarly, the projection from ~z to ~x is derived in (12).

~x ≃
k

∑
i=1

wi(~z)(~xi +Vi(~z−~zi)) (11)

~z ≃
k

∑
i=1

wi(~x)
(

~zi +V T
i (~x−~xi)

)

(12)

2) Nonlinear projection of the differential equations: Generally

we could define any function of the projection matrix W (~z) which

depends on ~z (or ~x). For simplicity, we could just use the term ∂~x
∂~z

as the projection matrix, as shown in (13).5 Since the second term

in (13) is always small, we could reasonably remove that term for

computational speedups.

W (~z) ≃
∂~x

∂~z
=

k

∑
i=1

wi(~z)Vi +
k

∑
i=1

∂wi(~z)

∂~z
(~xi +Vi(~z−~zi))

≃
k

∑
i=1

wi(~z)Vi

(13)

We stress that (11) and (12) represent nonlinear projections be-

tween the original state ~x and reduced state ~z, and (13) represents

the nonlinear projection of the residual/differential equations. In

comparison, previous works such as [10], use a linear projection~z =
V T~x for both the state space and residual. This important difference

enables the nonlinear manifold concept, and leads to a different model

generation scheme, as described in Section III-E.

E. Compact Model Generation

From previous two subsections, we see that the nonlinear function

in the reduced manifold subspace is in the form of W T (~z) f ( fV (~z)).
Given a state variable~z, the naive way to compute this function is to

project ~z to ~x, evaluate the function f (~x), and project back to f (~z).
However, this leads to prohibitively expensive computational cost,

such that the reduction does not bring speed-ups.

As a recipe for that, we seek to use simple matrix-vector product

computations to calculate W T (~z) f ( fV (~z)) directly in the nonlinear

manifold subspace. Similar to what is mentioned in trajectory-based

methods [10], f (~x) is approximated by the weighted summation of

linearized functions at different samples ~xi, as shown in (14).

f ( fV (~z)) = f (~x) ≃ ∑
i

wi(~z)( f (~xi)+GiVi(~z−~zi)) (14)

Therefore, multiplying (13) with (14), we obtain (15).

f (z) = W T (~z) f ( fV (~z))

=
k

∑
j=1

w j(~z)V
T
j

k

∑
i=1

wi(~z)( f (~xi)+GiVi(~z−~zi))

=
k

∑
j=1

k

∑
i=1

w j(~z)wi(~z)(V
T
j f (~xi)+V T

j GiVi(~z−~zi))

(15)

Similar equations can be derived for q(~z) and B(~z). Finally, for

each pair i, j, we store the matrices/vectors in the macromodel, as

shown in table Table II. This means that if we take m samples

5This approximation is valid because when x is near xi, wi is nearly 1,
and it matches the projection matrix at xi. However, it is noticed that when
x is not near any sample point, this approximation will render a projection
matrix whose columns are not orthonormal. So, some modifications should
be applied to handle this problem. But our current implementation uses (13).

to construct the manifold, O(m2) matrices/vectors are required for

storage. However, it is worthwhile to mention that in practice we do

not need to generate a size O(m2) LUT, because a pair of two points

far away from each other will never be used for function evaluation.

Thus we can eliminate many such pairs. Hence the actual size of

the LUT is of the order of m. For example, if we only store pairs

which are in the k-nearest neighbor, k times of the storage in TPWL

method is required in maniMOR. Although the total storage is larger

than previous trajectory-based methods, it grows gracefully, and is

affordable in practice.
TABLE II

LOOK-UP TABLE STORED IN THE REDUCED MODEL
Variable Meaning Size

f̂ i j V T
j f (~xi) q x 1

q̂i j V T
j q(~xi) q x 1

B̂i V T
i B q x 1

Ĝi j V T
j GiVi q x q

Ĉi j V T
j CiVi q x q

F. Simulation of maniMOR model

We discuss two most common simulations, DC and TRAN, of

the maniMOR model. Similar procedures can be adapted to other

simulations, such as harmonic balance simulation.

1) DC simulation: As mentioned before, the DC analysis could

be performed directly using the 1-D model. Doing so, not only huge

speedups is obtained, but also can we avoid some DC convergence

problems, as a side benefit. Since maniMOR has trained all the

possible equilibrium points, it also automatically eliminates possible

multiple unrealistic/non-physical DC solutions. Continuation methods

[15], which is well known to deliver global DC convergence, is also

easier to apply because of the fact that we are only search in a 1-D

subspace.

2) Transient simulation: The transient simulation of the maniMOR

model is summarized below.

• Project the initial condition ~x0 into the nonlinear manifold

subspace, and get ~z0 as the new initial condition of reduced

system;

• Search the k nearest points around ~z0, among sampled points

stored in the LUT in maniMOR;

• Compute the function values using equation (15), feed into any

nonlinear solver to solve the transient integration equations, e.g.,

backward Euler equations;

• Repeat the above two steps until time t = tend;

• Project the solutions back to the full state space.

IV. VALIDATION

In this section, we apply maniMOR method to macromodel a

nonlinear transmission line circuit, an I/O buffer circuit, and the yeast

pheromone signaling pathway system. We validate the maniMOR

model by comparing the results of simulations using maniMOR

model and the full model. We also show comparisons of maniMOR

to existing methods, mainly against trajectory-based methods, to

gauge the accuracy and efficiency of maniMOR. All simulations were

performed using a MATLAB/C/C++-based circuit/system simulation

environment, on a 2.4GHz Athlon XP-based PC running Linux.

A. Nonlinear Transmission Line

An early example in TPWL papers is the nonlinear transmission

line circuit [16], [17]. To verify maniMOR, we apply both maniMOR

and TPWL on the nonlinear transmission line circuit with 100 nodes.

Using the same training set and model size in [16] (i.e., TPWL

model is of order 10; training input is the step input i(t) = u(t −3)),
we apply a test input of i(t) = 0.8u(t −3) to see how TPWL model

behaves. As shown in Fig. 3, since the DC solution corresponding
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Fig. 3. Comparison of of the transient simulation of maniMOR model and
TPWL model. (Nonlinear transmission line circuit [16])

to i = 0.8 is not trained, an observable error, compared to the full

simulation, is present in the result.

Accordingly, a maniMOR model of order 4 is generated, and the

results are plotted in Fig. 3. We can see that (1) the error is less than

that of TPWL model, even if the model size is almost halved; (2)

despite the initial transient error, the solution converges to the exact

steady state solution finally.

B. CML Buffer

The second example is a current-mode logic (CML) buffer chain

[18] (Vdd = 1.8V), the circuit diagram of which is shown in Fig. 4.

We use the BSIM3 [19] model for MOSFETs through the simulation,

and the size of differential algebraic equations for the full circuit is

52.
Vdd

Vbias

Vin

Vout

Rload

Fig. 4. Circuit diagram of a current-model logic (CML) buffer.

1) Macromodel generation: Applying maniMOR, a size 5 model is

generated for this circuit. When generating the reduced-order model,

the local Krylov-subspace projector is calculated by applying Arnoldi

algorithm on the linearized system at each sample point. This means

that for each DC operating point, 5 moments of the transfer function

of the linearized system is matched.

Fig. 5. Visualization of the low-order manifold subspace generated by
maniMOR. The axes represent three node voltages in the circuit. The red
curve consists of the DC operating points; the black dashed lines are the
second local subspace bases; the transparent yellow manifold is generated
by stitching together all the local linear subspaces. The blue circled points
are on a transient trajectory simulated using the full model.

The nonlinear manifold we constructed is visualized in Fig. 5 (only

first two bases are plotted) by picking three node voltages as axes.

Clearly, the manifold is nonlinear, and blue circled points, which are

sampled on a transient trajectory of the full model, do stay close

to this nonlinear manifold, which confirms that the manifold is the

low-order subspace that captures system responses.

In contrast, TPWL [10] aggregates all the samples and all projec-

tion matrices into the final pro-

jection matrix. We used 20 DC

operating points for training –

by aggregating those state vari-

ables, we obtain a matrix of 20

columns. The singular values of

this matrix are plotted in Fig. 6.

Therefore, to get a set of bases

which approximate all the DC

operating points with an overall

accuracy of 0.01, first 8 bases
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Fig. 6: Singular values of the matrix
containing 20 equilibrium points.

must be used! Only to capture the DC response of the circuit, TPWL

has to use a model of size at least 8.

When generating the TPWL model, we use the same method (i.e.,

Arnoldi algorithm), the same linear subspace size (i.e., 5), to calculate

the local linear projector as in maniMOR. As a result, a size 12 TPWL

model is generated in order to match all the DC operating points, and

the first 5 moments of the transfer functions for all the linearized

systems.

2) Transient simulation with small signal inputs: We first test the

case when the input is a small signal superimposed on a DC bias. A

two tone input u(t) = 0.005sin(2π0.5×109t)+0.0025sin(2/3π0.5×
109t) is applied. Not surprisingly, since the amplitude of the input

is small, the transient trajectory is always near the DC operating

point, and the reduced-order model of the system linearized at the

DC operating point captures the small signal response quite well, as

shown in Fig. 7(a). The result of the maniMOR model also matches

that of the full model – when inspecting the simulation of the model,

the local region chosen at each transient step is always the DC

operating point.
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(a) Small signal input.
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(b) Large signal input.

Fig. 7. Comparison of maniMOR model with linearized reduced-order model.
The waveforms of one output voltage using different models are plotted.

3) Transient simulation with large signal inputs: When the input

includes a large signal, the trajectory will not be only around a DC

operating point, but travel among different regions. So the small

signal model, which works fine in the previous experiment, fails to

match the waveforms of the full model.

In this experiment, we first apply a sinusoidal input u(t) =
0.25sin(2π0.5×109t). As shown in Fig. 7(b), there is some distortion

happening in the output waveform (The waveform of the full model

(blue) is almost overlapped with that of maniMOR model (red)).

The small signal model, because it takes the linearity assumption,

still generates a sinusoidal output waveform, and fails to capture

the distortion effect. Though, maniMOR model matches the true

waveform, since it uses different local models when the state variable

travels to different regions in the state space.

We then apply a step input as shown in Fig. 8. We manually choose

the input so that the output voltage will traverse four DC operating

points.

As shown in Fig. 9, without the heuristic to handle the equilibrium

points, TPWL model with model size 10, fails to converge back to

the correct DC operating points. After including the DC operating
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points into the projection matrix, The TPWL model of size 10 still

leads to some error. During experiments, we find that the model size

must be at least 12 in order to match the original trajectory. And this

result is obtained by using a training input to be the same as the test

input – potentially an even larger model will be needed.

In comparison, maniMOR model with size 5 renders an out-

put waveform almost indistin-

guishable from that of the full

model – less than half of the size

of the TPWL model to reach

the same accuracy. We conclude

that the redundancy in TPWL

model is because of the “ag-

gregation” and SVD step. The

aggregation and SVD step has

to embed all the DC operating
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Fig. 8: Input signal.

points and all the local Krylov subspaces into a linear subspace.

Under the linear subspace constraint, it is very possible that much

less reduction can be obtained.
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Fig. 9. Comparison of maniMOR model with TPWL model. The waveforms
of one output voltage using different models are plotted.

C. Yeast Pheromone Signaling Pathway

In this example, we show the application of maniMOR macro-

modelling method on a Bio-chemical system. We have found that

maniMOR model reduces the system size by a large amount for this

example, and works far more better than TPWL model. We provide

the simulation results of maniMOR and TPWL model, and explain

why TPWL model fail to achieve any reduction in this example.

d

dt
~x = f (~x,~k,u(t)) (16)

The chemical kinetics are modeled accurately by a set of

differential equations, which

are in the form of (16). In

(16), ~x are the concentrations

of all reactants in the system,
~k are constants representing

the reaction rates, u(t) is

a time-varying input to the

system, which is usually

controllable in experiments.

The function f (~x,~k) usually

contains terms such as

ki jx
a
i xb

j (i, j,a,b ∈ N). As

a result, chemical reactions

always show a lot of

nonlinearities.

Fig. 10: Components of the pheromone
response pathway in yeast. [20] Each
arrow represents a type of reaction.

In a chemical reaction, the number of reactants is usually huge. For

example, yeast pheromone signaling pathway [20] contains a chain

of chemical reactions, as shown in Fig. 10. For each reaction, several

reactants participate. Shown in [21], [22], the differential equation

model models 304 reactants in this pathway. But bio-chemical

engineers almost only care how input changes can affect certain

output of the system, and this is where MOR can play an important

role. Reduced-order models also makes it possible to simulate “very

large scale” bio-chemical systems.

1) Macromodel generation: The equilibrium states in chemical

systems are extremely important. Some engineers/scientists in biolog-

ical domain run a very long time transient simulation to get the equi-

librium state. Although it is a smart idea to suggest performing a “DC

analysis” on the chemical systems, we find that it is very hard to make

the DC analysis converge, unless continuation/homotopy/limiting

methods, which are computationally expensive, are applied. We also

find that even if the “DC analysis” converges, since there are a lot of

DC solutions to those equations, most of which unrealistic (negative

concentration makes no sense in reality), we have difficulty to identify

the real solution.

In the training course of maniMOR model, we carefully simulate

the DC operating points due to a wide range of input values, as

plotted in Fig. 11(a). The maniMOR model then captures all those

equilibrium points exactly, based only on a 1-D model! In the process

of building the maniMOR model, we also implicitly eliminates all

the useless equilibriums, which makes the DC convergence of the

macromodel much better than the full model.
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Fig. 11. Concentrations of x1 at equilibrium corresponding to different inputs,
and the singular values for the DC matrix.

In contrast, TPWL model has to generate a matrix containing all

the equilibrium points. We picked up 20 equilibrium points into a

matrix. The singular values of this matrix is again plotted in Fig.

11(b). Setting the threshold of the singular value to be 1×10−10, we

have to include 8 bases into the projection matrix, which renders at

least a size 8 model. And, this only ensures the overall error among

all equilibrium points – it is extremely possible that large error occurs

for a certain equilibrium point.

2) DC and small signal analysis: The results are very similar to

the CML buffer example, so we omit the simulation results here.

3) Transient simulation with large signal inputs: We also test

the maniMOR model using a large signal input u(t) = 0.003 +
0.002sin(2π 1

72000 t). As plotted in Fig. 12, we observe a relatively

good match between the maniMOR model (size 30) and the full

model. Even with a size 3 model, the error is quite small.

In contrast, TPWL method is quite inefficient in this case. A

plain implementation of TPWL (including DC operating points, and

the local subspace size is 6, set the training input to be the test

input) renders a model of size 300 (almost the same as the full

model). Even though, it cannot match correct system dynamics. Our

explanation is that it results from the problems brought by aggregation

of projection matrices – trivial bases kill the non-trivial ones. By
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Fig. 12. Transient simulation of the yeast pheromone pathway. The
concentration of one reactant is plotted.

employing a heuristic,6 TPWL method works for this example, with

order reduction from 304 to 144. But even with model size 144, the

simulation results of TPWL model, as shown in Fig. 12, is not better

than maniMOR model with q = 3.

Obviously, maniMOR model out-performs TPWL model in this

example. We also see that the drawbacks in TPWL method, as

discussed in Section II, can sometimes be significant in practice, and

those problems are very hard to be tackled if the common aggregated

linear subspace assumption is applied on the reduction procedure.

V. CONCLUSION

In this paper, we have presented maniMOR, a nonlinear model re-

duction approach via nonlinear projection framework. We believe that

the framework introduced here is a natural extrapolation of a sequence

of model reduction formulations proposed by various authors, starting

from methods for LTI systems, through methods for time-varying

weakly-nonlinear systems, to methods for highly-nonlinear systems.

In this light, maniMOR uses the nonlinear manifold and nonlinear

projection to integrate together the advantages of many methods –

local tangent subspace is constructed using Krylov-subspace methods;

the “DC curve” in the manifold construction is similar to methods

for time-varying systems; the compact model is stored in a similar

way to trajectory-based methods.

We have applied maniMOR to three practical systems. Through

the three examples, we have shown several drawbacks of previous

methods, and demonstrate how maniMOR attacks those problems and

achieves more reduction.

Obviously, many questions may arise with regard to many details

of our algorithm. For example, is there any error bound estimation

of this model? How to make sure that there is a unique projection of

a state into the manifold subspace? We have been working on those

problems, and have some preliminary results, which are not included

in this paper because of the page limit. With this paper, we hope to

motivate further researches in the model order reduction community.
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