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Abstract— Injection locking analysis based on classical Adler’s
equation is limited to LC oscillators as it is dependent on quality
factor. In this paper, we present the Generalized Adler’s equation
applicable for injection locking analysis on oscillators indepen-
dent of the circuit topology. The equation is obtained by averaging
the PPV phase macromodel. The procedure is considerably
simple and handy to determine the locking range for arbitrary
shape small AC injection signal. Analytical equations for injection
locking dynamics are formulated using the Generalized Adler’s
equation and validated with the PPV simulations.

I. INTRODUCTION

Injection locking is a nonlinear phenomenon observed in oscilla-
tors. A small AC injection signal of frequency within the “locking
range” entrains the oscillator at its frequency. The oscillator is thus
said to be locked and the phenomenon is known as injection locking.
Injection locking is exploited in the frequency synthesis and related
applications. For example, it is used in the design of high performance
quadrature oscillators [1], [2] and injection locked phase-locked loops
(PLLs) [3]. Injection locking also has wide applications in optics [4],
[5]. Thus, apart from its theoretical importance, study of injection
locking is of great practical interest.

Injection locking has been widely studied for LC-tank based os-
cillators [6] using the classical Adler’s equation [7]. Adler’s equation
provides quick insight into the locking dynamics. Furthermore, it
provides rapid estimation of the locking range of oscillators for a
given injection signal. The locking range is the frequency range
around the oscillator’s natural frequency for which injection locking
occurs. But, Adler’s equation is dependent on quality factor Q,
which limits its use to LC oscillators. The Q factor by its definition
is the ratio of energy preserved to energy dissipated per cycle in
the oscillator. In LC oscillators, energy is stored in inductors and
capacitors and a part of it is dissipated across the resistance. In a
ring oscillator this definition does not hold good as there is no energy
storage. There are no inductors in a ring oscillator and capacitances
are charged and discharged within each oscillator cycle.

Recently, analytical techniques to predict injection locking range
for ring oscillators have been presented in [8] and numerical tech-
niques in [9] based on the Perturbation Projection Vector (PPV) [10].
These analytical and numerical techniques to obtain the locking range
are accurate, being derived mathematically with no assumption of the
circuit topology. But, they lack simplicity of Adler’s equation which
gives quick and handy graphical insight into the injection locking
phenomenon. The alternate method is to study the injection locking
using transient simulations. The transient analysis is time consuming
as smaller time-steps are required for the accurate simulation of
oscillators. The PPV based simulations are already established to be
accurate and orders of magnitude faster over transient simulations in
predicting injection locking [9]. Furthermore, it takes simulation for
hundreds of cycles to conclusively identify the lock condition from
the quasi-lock [6].

In this paper, we derive the Generalized Adler’s (Gen-Adler’s)
equation from the PPV nonlinear phase macromodel. We apply
an averaging technique on the PPV, to average out “fast” varying
behavior and retain “slow” varying behavior, obtaining Gen-Adler’s.
Based on the analytical PPV of LC-tank oscillator [11], we illustrate
the procedure to obtain the classical Adler’s equation as a special case
of Gen-Adler’s equation. For an ideal ring oscillator, we formulate
Gen-Adler’s equation for sinusoidal, square and exponentially rising
and falling AC injection signals based on its analytical PPV [12],
giving useful insight into the injection locking phenomenon. The an-
alytical formulation is validated against numerical computations and
the locking dynamics are validated against already established PPV
methods. It is worthwhile to emphasize that Gen-Adler’s equation can
be obtained for any oscillator with arbitrary AC injection signal of
small amplitude numerically, but it is an approximation of the PPV.

This paper is organized as follows. In Section II, we briefly
review Adler’s equation and the PPV phase macromodel. Next,
in Section III, we derive Gen-Adler’s equation from the PPV by
averaging it. In Section IV, we apply Gen-Adler’s equation to analyze
injection locking phase dynamics for both the LC tank oscillator and
the ideal ring oscillator giving analytical expressions of the locking
range. In Section V, we validate the formulation of Gen-Adler’s and
compare results with the PPV based simulations.

II. BACKGROUND

In this section, we briefly review the classical Adler’s equation
[7] and the nonlinear PPV phase macromodel [10] for oscillators.
Adler’s equation is the analytical method proposed by Adler to predict
injection locking. On the other hand, the PPV is a non-linear phase
macromodel for oscillators, suitable for fast and accurate simulation
of non-linear phenomenons in oscillators. We use the PPV to derive
insightful Adler-like formulations for injection locking in oscillators.

A. Adler’s Equation

In 1946, R. Adler obtained a differential equation known as Adler’s
equation for the oscillator’s phase difference with the injection signal.
This celebrated equation describes injection locking dynamics in
LC oscillators. When a free running oscillator is perturbed by an
AC injection signal, the lock dynamics are given by the following
equation

dΔφ(t)
dt

= Δ f0 − Vi

V
f0

2Q
sin(Δφ(t)) (1)

where, Δφ(t) is the phase difference. The amplitude of the injected
signal is Vi and the output amplitude of oscillator is V while the
oscillator runs at a free running frequency of f0. The frequency
difference between the injected signal and the oscillator is Δ f0. Adler
obtained injection locking behavior and the locking range for LC
oscillators based on (1). When the oscillator is locked, the phase
difference becomes constant and (1) gives

Δ f0
f0

=
1

2Q
Vi

V
sin(Δφ(t)) (2)
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and since sin(·) lies between +1 and −1, we have

− 1
2Q

Vi

V
≤ Δ f0

f0
≤ 1

2Q
Vi

V
(3)

This immediately gives the locking range fL as

fL = 2|Δ f0|max

fL =
f0
Q

Vi

V

(4)

Next, we review the PPV phase macromodel for oscillators which we
will use to derive Adler-like equation. We start with the mathematical
equation describing oscillator and list the phase deviation equation
(7) under the effect of a perturbation signal [10].

B. The PPV phase macromodel

Let the oscillator has a state space �x(t). The differential equation
system describing it, under the effect of perturbation signal�b(t), can
be written as

d�q(�x(t))
dt

+�f (�x) =�b(t) (5)

where, q(·) and f (·) are nonlinear functions. If the perturbation signal
is small then the amplitude variations can be neglected, and the
solution �xp(t) of (5) will be

�xp(t) =�xs(t +α(t)) (6)

where, �xs(t) is the steady state T-periodic solution without any
perturbation signal. The phase deviation or the time-shift in steady
state solution , α(t), is given by a scalar equation [10]

dα(t)
dt

=�vT
1 (t +α(t)) ·�b(t) (7)

where, �vT
1 is T-periodic and is called the PPV of the oscillator. The

PPV has the same size as �x(t). The elements of the PPV gives
the phase sensitivity of the corresponding components of �x(t) to an
externally applied perturbation signal. The PPV can be calculated for
oscillators numerically in the time and the frequency domain [13].
Interestingly, the analytical PPV for the LC-tank oscillator and the
ideal ring oscillator exist in the literature [11], [12].

III. GENERALIZED ADLER’S EQUATION

In this section, we use the PPV phase macromodel reviewed in
the last section to obtain Generalized Adler’s equation. We first
change the variables in (7) from phase deviation α(t) to phase
difference Δφ(t) to obtain a modified phase equation. We then
perform averaging in the phase equation retaining the slow behavior
to derive Gen-Adler’s.

A. Modified Phase Equation

In this section, we derive the modified phase equation. Let �vT
1 (t)

be a PPV, periodic with frequency f0. We can write

�vT
1 (t) =�χ( f0t) (8)

where, �χ(·) is 1-periodic function i.e. χ( f0t) = χ( f0t +1).
Assuming the perturbation signal is periodic with frequency f1,

the PPV equation (7) is of the following form

dα(t)
dt

=�χ( f0(t +α(t))) ·�b( f1t) (9)

where, b(·) is 1-periodic function now. We can define phase difference
between the perturbation signal and the oscillator as Δφ(t) = φ(t)−
φ1(t), for φ(t) = f0(t +α(t)) and φ1(t) = f1t, to obtain

Δφ(t) = f0(t +α(t))− f1t

α(t) =
Δφ(t)

f0
+

f1 − f0
f0

t
(10)

Next, differentiating (10) and substituting the value of α̇(t) from
(9), we get

�χ( f0(t +α(t))) ·�b( f1t) =
1
f0

dΔφ(t)
dt

+
f1 − f0

f0
(11)

Substituting the value of α(t) from (10) in (11), we obtain a
modified phase equation suitable for further analysis

dΔφ(t)
dt

= −( f1 − f0)+ f0�χ((Δφ(t)+φ1(t))) ·�b(φ1(t)) (12)

In the modified phase equation (12), Δφ(t) is phase difference
between the oscillator and the perturbation signal. For the injection
locking analysis, perturbation signal is an AC injection signal with
frequency close to the oscillator’s natural frequency.

B. Gen-Adler’s Equation

We now assume that in (12), φ1(t) is “fast” varying and Δφ(t)
“slowly” varying variable. This assumption is explained below in
detail. Under this assumption, we can average out the fast φ1(t) and
retain the slow Δφ(t) variations in (12) to obtain g(Δφ(t)) as

g(Δφ(t)) =
1
T1

∫ T1

0
χ(Δφ(t)+φ1(t)) ·b(φ1(t))dφ1(t) (13)

where, T1 = φ1(
1
f1

). Hence,

g(Δφ(t)) =
1
1

∫ 1

0
χ(Δφ(t)+φ1(t)) ·b(φ1(t))dφ1(t) (14)

Therefore, after averaging out the fast variations, (12) can be
written as

dΔφ(t)
dt

= −( f1 − f0)+ f0g(Δφ(t)) (15)

This is the Generalized Adler’s equation valid for any oscillator
as compared to the original Adler’s equation (1), which is only
applicable to LC-tank like oscillators. This is of same form as original
Adler’s equation for sinusoidal g(Δφ(t)).

Under lock conditions, the phase difference between oscillator and
injected signal becomes constant, that is dΔφ(t)/dt = 0 or Δφ(t) =
Δφ0 and hence

f1 − f0 = f0g(Δφ0)

Δ f0 = f0g(Δφ0)
(16)

Let fL be the locking range of the oscillator. The maximum value of
g(·) gives the locking range of the oscillator about f0 as

|Δ f0|max = f0 [g(Δφ(t))]max

fL = 2|Δ f0|max
(17)

The locking range, fL, is typically much smaller than f1 or f0. If
the oscillator is not locked Δφ̇(t) �= 0, and the maximum value of
RHS in (15) is −( f1 − f0)+ fL/2 � f1. Thus, we have(

dΔφ(t)
dt

)
max

= −( f1 − f0)+ fL/2

dφ1(t)
dt

= f1

(18)

As f1 is close to free running frequency f0 of the oscillator and fL
is small, (

dΔφ(t)
dt

)
max

� dφ1(t)
dt

(19)

Hence, our assumption that φ1(t) is fast varying and Δφ(t) is slowly
varying is justified.
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IV. INJECTION LOCKING RANGE USING GEN-ADLER’S

EQUATION

In this section, we apply the proposed equation in Section III on
two oscillators, the LC oscillator and the ring oscillator. We obtain the
analytical formulation of Gen-Adler’s for both oscillators. To show
the general applicability, we analyze the ring oscillator for various
types of injection signals.

A. LC Oscillator

Consider a simple −Gm LC tank oscillator as shown in Fig. 1.
The state variables of this oscillator are voltage across the capacitor
v(t) and current through the inductor i(t). The analytical PPV of the
LC oscillator [11], when perturbed by a sinusoidal injection signal
b(t) = Ii cos(2π f1t) as shown in Fig. 1, is given as

vT
1 (t) = −

√
L
C

1
A

sin(2π f0t) (20)

for a steady state solution of v(t) = Acos(2π f0t).

b(t)
f(v)C RL

i(t) v(t)

Fig. 1. LC tank oscillator circuit with injection signal b(t).

The PPV can now be written in 1-periodic form using �vT
1 (t) =

�χ( f0t) as

χ(t) = vT
1 (

t
f0

) = −
√

L
C

1
A

sin(2πt)

χ(Δφ(t)+φ1(t)) = −
√

L
C

1
A

sin(2π(Δφ(t)+φ1(t)))

(21)

To evaluate g(Δφ(t)), we use χ(·) from (21) in (14) and evaluate the
integral

g(Δφ(t)) =
∫ 1

0
−

√
L
C

1
A

sin(2π(Δφ(t)+φ1(t))) ·�b(φ1(t))dφ1(t)

=
∫ 1

0
−

√
L
C

1
A

sin(2π(Δφ +φ1)) · Ii cos(φ1)dφ1

= − Ii

2

√
L
C

1
A

sin(2πΔφ)

(22)

We note that the amplitude of the current through the inductor is given

as IL = A
√

C
L and current through resistor as IR = QIL. Using this

and plugging g(Δφ) in (15), we obtain the original Adler equation
for the LC oscillator as

dΔφ

dt
= −( f1 − f0)− Ii

IR

f0
2Q

sin(2πΔφ) (23)

This is a special case of Gen-Adler’s equation, with a LC oscillator
perturbed by a sinusoidal injection signal. As we show next, we
can apply Gen-Adler’s equation to study injection locking in ring
oscillators directly unlike the original Adler’s equation.

B. Ring Oscillator

In this subsection, we derive Gen-Adler’s equation for the ring
oscillator circuit shown in Fig. 2. All resistances and capacitors are

assumed to be equal and inverters have ideal characteristics of the
following form

f (V ) =

{
A if V < 0

−A if V ≥ 0
(24)

R R
f(V3) f(V1)

C C C

V3
f(V2)

V1 R

b(t)

V2

Fig. 2. Ring oscillator circuit with injection signal b(t).

In [12], an analytical PPV for the node V 3 of ideal ring oscillator
was derived as

vT
1 (t) =

⎧⎨
⎩

1√
5

R
A e

t
τ if 0 ≤ t < T

2
R
A

(
2√
5
−1

)
e

t
τ if T

2 ≤ t < T
(25)

where, τ is the RC time constant and T = 2.88727τ = 1/ f0 is time
period of the ring oscillator. To obtain the 1-periodic form of the
PPV at node V3 we put t = f0t, which gives us

χ(t) = vT
1 (t/ f0) =

⎧⎨
⎩

1√
5

R
A e

t
f0τ if 0 ≤ t = t

f0
< T

2
R
A

(
2√
5
−1

)
e

t
f0τ if T

2 ≤ t = t
f0

< T

=

⎧⎨
⎩

1√
5

R
A e2.887t if 0 ≤ t < 1

2
R
A

(
2√
5
−1

)
e2.887t if 1

2 ≤ t < 1

(26)

For notational simplicity,

χ(ts) =

{
K1

R
A eK0ts if 0 ≤ ts < 1

2
K2

R
A eK0ts if 1

2 ≤ ts < 1
(27)

where,

K0 = 2.887, K1 =
1√
5
, K2 =

(
2√
5
−1

)
(28)

Gen-Adler’s equation for the ring oscillator is then obtained by
evaluating g(Δφ(t) from (14) for each of the injection signals. After
evaluating g(Δφ(t), we plot it for R = 2kΩ, C = 2nF and A = 1V in
each case. The lock range can be easily obtained from these graphs or
by finding the maximum of g(Δφ(t). The injection current amplitude
was taken to be Ii = 0.1mA and the frequency, f1 = 1.02 f0, where f0
is free running frequency of the ring oscillator.

1) Sinusoidal Injection Current: For a sinusoidal injection current
signal b(t) = Ii sin(2π f1t) to the ring oscillator shown in Fig. 2, we
have

b(φ1(t)) = Ii sin(2πφ1(t)) if 0 ≤ φ1 < 1 (29)

where φ1(t) = f1t.
Therefore, from (14), (27), and (29)

g(Δφ(t)) =
∫ 1

0
χ(Δφ(t)+φ1(t)) ·b(φ1)dφ1 (30)

So, g(Δφ) for the ring oscillator with sinusoidal injection signal is
obtained as

g(Δφ(t)) =
1√

4π2 +K2
0

RIi

A
sin(2πΔφ(t)+ζ )

×
[
K1(e

K0/2 +1)−K2(e
K0 + eK0/2)

] (31)
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where,

sin(ζ ) =
2π√

4π2 +K2
0

and Gen-Adler’s equation for the ring oscillator with sinusoidal
injection is

dΔφ

dt
= −( f1 − f0)+ f0g(Δφ(t)) (32)

The phase lock would occur, when dΔφ(t)
dt is 0 i.e.

( f1 − f0)
f0

=
1√

4π2 +K2
0

RIi

A
sin(2πΔφ(t)+ζ )

×
[
K1(e

K0/2 +1)−K2(e
K0 + eK0/2)

] (33)

and the locking range is given at the maximum value of g(Δφ(t)).
In this case, the maximum value of g(Δφ(t)) occurs when
sin(2πΔφ(t)+ζ ) = 1, therefore

|Δ f0|max =
f0√

4π2 +K2
0

RIi

A

[
K1(e

K0/2 +1)−K2(e
K0 + eK0/2)

]

= 0.6773 f0
RIi

A

(34)

and the locking range is fL = 2|Δ f0|max. This can be easily seen from
the Fig. 3 graphically.

The steady state phase difference, Δφ0, between the oscillator and
the injected signal is given by “stable” solution of (33). For Δ f0/ f0 =
0.02, Fig. 3 shows the plot of (33). It can be clearly seen from Fig. 3
that oscillator will lock to the injection signal only if Δ f0/ f0 line
intersects g(Δφ(t)), that is (33) has a valid solution. The line Δ f0/ f0
intersects g(Δφ(t)) twice in a period. The two intersection points
are marked as U (unstable) and S (stable). When Δφ(t) is perturbed
slightly from the unstable point, it will move away from it towards
a stable point, depending upon the sign of dΔφ(t)/dt as shown in
Fig. 3. For given g(Δφ(t)), the locking range is the maximum range
of injection signal frequency, f1, yielding a valid solution of (33).

0 0.5 1 1.5 2

−0.1

−0.05

0

0.05

0.1

0.15

Δφ(t)

g
(Δ

φ
(t

),
Δ

f 0/f
0

g(Δφ(t))
Δf

0
/f

0

SU

dΔφ(t)/dt<0

(Δf
0
/f

0
)
max

dΔφ(t)/dt>0

Fig. 3. Graphical solution of injection locking range in the ring oscillators
with sinusoidal injection signal.

2) Square Wave Injection Signal: In Section IV-B.1, we derived
Gen-Adler’s equation for sinusoidal type of injection. In this section,
we derive and analyze lock conditions for a square injection signal.
For duty cycle η and a period of T1 = 1/ f1, the characteristics of an
ideal square wave are

b(t) =

{
Ii if 0 ≤ t < ηT1

0 if ηT1 ≤ t < T1
(35)

or in its 1-periodic form we have

b(φ1(t)) =

{
Ii if 0 ≤ φ1(t) < η

0 if η ≤ φ1(t) < 1
(36)

where, φ1(t) = f1t. Without loss of generality, we choose 0 < η ≤ 0.5
and evaluate g(Δφ(t)) as

g(Δφ(t))=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

RIi
A

K1
K0

[
eK0Δφ(t)(eηK0 −1)

]
if 0 ≤ Δφ(t) < 1

2 −η

RIi
A

1
K0

[
(K1 −K2)eK0/2 + eK0Δφ(t)(K2eηK0 −K1)

]
if 1

2 −η ≤ Δφ(t) < 1
2

RIi
A

K2
K0

[
eK0Δφ(t)(eηK0 −1)

]
if 1

2 ≤ Δφ(t) < 1−η

RIi
A

1
K0

[
(K1 −K2)eK0/2 + eK0Δφ(t)(K2 −K1e(η−1)K0)

]
if 1−η ≤ Δφ(t) < 1

(37)
Similarly, g(Δφ(t)) can be evaluated for 0.5 < η < 1. To evaluate
the locking range, we observe that g(Δφ(t)) is composed of four
piecewise exponential functions and is symmetric about zero. It is
monotonically increasing for 0 ≤ Δφ(t) < 1

2 −η and decreasing for
1
2 −η ≤ Δφ(t) < 1

2 . Hence, the maximum value of g(Δφ(t)) should
occur at φ(t) = 1/2−η . Thus, the injection locking range for the
ring oscillator with square wave injection signal is gives as

fL = 2 f0
RIi

A
K1

K0

[
eK0/2(1− e−ηK0)

]
(38)

Fig. 4 shows the plot of (37) with the unstable and stable point
for one period.

0 0.5 1 1.5 2

−0.1

−0.05

0

0.05

0.1

0.15

Δφ(t)

g
(Δ

φ
(t

),
Δ

f 0/f
0

g(Δφ(t))
Δf

0
/f

0

U

dΔφ(t)/dt>0 (Δf
0
/f

0
)
max

dΔφ(t)/dt<0

S

Fig. 4. Graphical solution of injection locking range in the ring oscillators
with square injection signal, η = 0.5.

3) Exponentially rising-falling Wave Injection Signal: In this sec-
tion, we apply an exponentially rising and falling injection signal and
obtain Gen-Adler’s equation for the ring oscillator. The exponentially
rising falling wave can be represented as

b(t) =

{
Ii(1−ϕeK0t/T1) if 0 ≤ t < T1

Ii(−1+ϕe−K0(t−T1/2)/T1) if T1 ≤ t < T1
(39)

or in its equivalent 1-periodic form as

b(φ1(t)) =

{
Ii(1−ϕe−K0φ1(t)) if 0 ≤ 1 < φ1(t)

Ii(−1+ϕe−K0(φ1(t)−1/2)) if φ1(t) ≤ t < 1
(40)

525

5C-5

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on July 13, 2009 at 20:15 from IEEE Xplore.  Restrictions apply.



where, ϕ = 1.6180339889. Next, g(Δφ(t)) is evaluated to obtain Gen-
Adler’s equation. For 0 ≤ Δφ(t) < 1/2

g(Δφ(t)) = K1

[
eK0/2 −2eK0Δφ(t) +1

K0

]

−K1

[
ϕeK0Δφ(t)

(
1
2
−Δφ(t)−Δφ(t)e−k0/2

)] (41)

and a simplified expression for 1/2 ≤ Δφ(t) < 1 is as follows

g(Δφ(t)) =
RIi

A

[
(0.5283−0.4222Δφ(t))eK0Δφ(t) −1.622

]
(42)

Gen-Adler’s equation for an ideal ring oscillator with an exponen-
tial injection signal is given by (15), with g(Δφ(t)) as obtained in
(41) and (42).

To obtain the locking range of the ring oscillator in this case, we
calculate the maximum value of g(Δφ(t)) by differentiating it. The
maximum value occurs at Δφ(t) = 0.9050 and the locking range is
given as

fL = 0.744 f0
RIi

A
(43)

The plot of g(Δφ(t)) and Δ f0/ f0 is shown in Fig. 5, which also gives
insight into the locking.

Thus, we have derived Gen-Adler’s equation for the ring oscillator
with different injection signals. The locking range was calculated by
finding the maximum of g(Δφ(t)) and also graphically by plotting
the Gen-Adler’s equation. The locking range is directly proportional
to the resistance R, the injection current amplitude Ii and inversely
proportional to the amplitude of ring oscillator’s output voltage A.

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

Δφ(t)

g
(Δ

φ
(t

),
Δ

f 0/f
0

g(Δφ(t))
Δf

0
/f

0

U S

(Δf
0
/f

0
)
max

dΔφ(t)/dt<0

dΔφ(t)/dt>0

Fig. 5. Graphical solution of injection locking range in the ring oscillator
with exponential injection signal.

V. VALIDATION

In this section, we first validate the formulation of Gen-Adler’s
equation by numerically computing g(Δφ(t)) and comparing with
analytical equations obtained in Section IV-B. Next, we plot the
injection locking dynamics obtained using Gen-Adler’s together with
the PPV based simulations.

A. Numerical computation of g(Δφ)

The function g(Δφ) was computed numerically in Matlab using the
trapezoidal quadrature rule for function definitions of the PPV of the
ring oscillator and different injection signals. The plots comparing
analytical results with numerical computations are shown in Fig. 6.
The excellent match validates the analytical formulation of Gen-
Adler’s.
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(b) Square wave injection signal, η = 0.3
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Fig. 6. Numerical computation of g(Δφ) for the ring oscillator

B. Comparison with PPV based simulation

In this section, we plot injection locking dynamics of the ring
oscillator using Gen-Adler’s equation. The results obtained are com-
pared with the PPV simulations for same circuit parameters. The
phase difference obtained using Gen-Adler’s is termed as ΔφGen−Adler
in the locking dynamics plots Fig. 7, Fig. 8 and Fig. 9. The phase
deviation, α(t), is obtained using (7). The phase difference ΔφPPV (t)
is then calculated using (10) as

ΔφPPV (t) = f0t − f1t + f0α(t) (44)

For a square wave injection signal with duty cycle η = 0.3 and
frequency f1 = 1.02 f0, the locking dynamics are shown in Fig. 8
for t = 80/ f0. We start with two different values of the initial phase
difference, Δφ(0) = 1 and Δφ(0) = 1.8. As it can be clearly seen
from Fig. 8 that the simulations based on Gen-Adler’s matches with
the PPV simulations for same initial conditions. For example, starting
with Δφ(0) = 1, the phase difference converges to Δφ(t) = 1.37 in
similar fashion for both, the PPV and the Gen-Adler’s. The phase

5C-5

526
Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on July 13, 2009 at 20:15 from IEEE Xplore.  Restrictions apply.



difference Δφ0 when oscillator is locked to the injection signal can
also be seen from Fig. 4. For example, starting at the initial phase
difference Δφ(0) = 1, Fig. 4 predicts the phase difference between
the ring oscillator and the injection signal to be Δφ = 1.3735, when
in lock.

Similarly, we get close match between the transient behavior
obtained using Gen-Adler’s equation and the PPV based simulation
for sinusoidal and exponential injection signals, as shown in Fig. 7
and Fig. 9. However, it must be noted that PPV is able to capture the
strong nonlinearities in the locking dynamics waveform and is more
accurate than Gen-Adler’s equation. On the other hand, Gen-Adler’s
is useful to evaluate the locking range of oscillators and get quick
insight into it.
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Fig. 7. Transient behavior in the ring oscillator injection locking with the
sinusoidal injection signal.
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Fig. 8. Transient behavior in the ring oscillator injection locking with the
square wave injection signal, η = 0.3.
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Fig. 9. Transient behavior in the ring oscillator injection locking with the
exponential injection signal.

VI. CONCLUSIONS

In this paper, we have presented a generalized equation for in-
jection locking analysis, Gen-Adler’s. The equation provides insight
into injection locking range and analytical formulations helps in quick
injection locking analysis. The equation is derived as an approxima-
tion of the accurate PPV phase macromodel. We have formulated
analytical lock dynamics equations and locking range formulae for
the ring oscillator with sinusoidal, square and exponential injection
signals.
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