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ABSTRACT
We present a new projection-based nonlinear model order reduction
method, named QLMOR (MOR via quadratic-linear systems). QL-
MOR employs two novel ideas: (1) we show that DAEs (differential-
algebraic equations) with many commonly-encountered nonlinear
kernels can be re-written equivalently into a special format, QL-
DAEs (quadratic-linear differential algebraic equations, i.e., DAEs
that are quadratic in their state variables and linear in their in-
puts); (2) we adapt the moment-matching reduction technique of
NORM[1] to reduce these QLDAEs into QLDAEs of much smaller
size.
Because of the generality of the QLDAE form, QLMOR has sig-

nificantly broader applicability than Taylor-expansion based meth-
ods [2, 3, 1]. Importantly, QLMOR, unlike NORM, totally avoids
explicit moment calculations (AiB terms), hence it has improved
numerical stability properties as well. Because the reduced model
has only quadratic nonlinearities (i.e., no cubic and higher-order
terms), its computational complexity is less than that of similar
prior methods[2, 3, 1]. We also prove that QLMOR-reduced mod-
els preserve local passivity, and provide an upper bound on the size
of the QLDAEs derived from a polynomial system.
We compare QLMOR against prior methods [2, 3, 1] on a cir-

cuit and a biochemical reaction-like system, and demonstrate that
QLMOR-reduced models retain accuracy over a significantly wider
range of excitation than Taylor-expansion based methods [2, 3, 1].
Indeed, QLMOR is able to reduce systems that Taylor-expansion
based methods fail to reduce due to passivity loss and impracti-
cally high computational costs. QLMOR therefore demonstrates
that Volterra-kernel based nonlinear MOR techniques can in fact
have far broader applicability than previously suspected, possibly
being competitive with trajectory-based methods (e.g., TPWL [4])
and nonlinear-projection based methods (e.g., maniMOR [5]).

1. INTRODUCTION
Model order reduction (MOR) has been an active research area

for the past two decades. It refers to the procedure of reducing
a large dynamical system to a much smaller one which captures
the dominant dynamics of the original system. MOR thus enables
higher-level modeling and simulation of large systems, and is im-
portant in many engineering domains, e.g., circuit design and anal-
ysis, chemical kinetics, mechanical systems (or MEMS), ecosys-
tems, building design, and so forth.
Most applications are fundamentally nonlinear in nature (although

linear time-invariant (LTI) or linearized systems constitute an im-
portant special case on which much research has been conducted
[6, 7, 8, 9, 10, 11, 12]). However, MOR for nonlinear systems is
much more difficult than for LTI systems. One source of the dif-
ficulty stems from that nonlinear systems (even very simple ones)
can exhibit complex behaviors that linear systems are incapable of,
which means that reduced models for nonlinear systems need to

preserve much richer behaviors than for the linear case. For exam-
ple, multiple equilibria (e.g., bistability) and stable oscillations can
only appear in nonlinear systems; the Lorenz system [13] (which
only has quadratic nonlinearities) and Chua’s circuit [14] (which
has only one piecewise-linear nonlinear element), exhibit surpris-
ingly complicated chaotic behaviors – they are hard to characterize
and reduce.
The second difficulty is that nonlinear systems lack a general,

universal input-output representation analogous to transfer func-
tions for LTI systems. Transfer functions H(s) of LTI systems
constitute a powerful tool for MOR – for example, a fundamental
underlying concept in LTI MOR, moment-matching [6, 7, 8, 9],
relies centrally on LTI transfer functions. (Moments refer to the
coefficients of 1, s, s2, · · · of the Taylor expansion ofH(s).)
For nonlinear systems, useful generalization of the transfer func-

tion concept is only possible for special cases. Specifically, for
polynomial nonlinear systems, Volterra theory [15] establishes that
the I/O relationship can be represented by a series of Volterra ker-
nels, or high-order transfer functions, as detailed in Section 2.1.
Given these high-order transfer functions, the concepts of moments
and moment-matching have been extended to reduce polynomial
systems [2, 3, 1]. In particular, NORM [1] provides a systematic
way to construct the minimum subspace for matching high-order
moments.
In order to derive a polynomial system from a general nonlinear

system, [2, 3, 1] perform a Taylor approximation of the original
system around its steady state solution. Due to the local conver-
gence of Taylor approximation, these methods are only applica-
ble to “weakly nonlinear” systems, or systems with “small” inputs.
Moreover, Taylor expansions can lead to stability/passivity loss,
and can generate reduced systems that are more computationally
expensive than the original one. These issues frequently preclude
wide applicability of Taylor-expansion based methods, as discussed
in Section 2.1.
To avoid the weakly nonlinear constraint, a class of nonlinear

MOR methods known as trajectory-basedmethods (e.g., POD[16],
TPWL[4, 17, 18, 19], maniMOR[5]) has been proposed. The term
trajectory refers to a path in state space when the system is ex-
cited by a given input. Along each section of a trajectory, the sys-
tem is locally approximated as a linear/polynomial system, and is
reduced using methods for linear/polynomial systems. The local
reduced models are then joined together to form an overall non-
linear reduced model. Evaluation of the reduced model can still
be expensive since it depends not only on the number of local ap-
proximations used, but also on the polynomial order of each local
reduced model.
In this paper, we propose a new method, named QLMOR (model

order reduction via quadratic-linear systems), to reduce nonlinear
systems that are quadratic-linearizable. The method first converts a
nonlinear system into an equivalent quadratic-linear differential al-
gebraic equation (QLDAE) system, in which the differential equa-
tions are quadratic in their state variables and linear in their inputs.
QLMOR then reduces this QLDAE into a smaller QLDAE system
by matching moments of high-order transfer functions.
A key difference between QLMOR and prior Taylor-expansion

based methods is that we can re-write the original system in an
exact equivalent QLDAE representation, i.e., without any approxi-
mations. Therefore, the QLDAE representation serves as sort of a
“canonical form” of the original system, except for its non-uniqueness.
The utility of QLMOR stems from that many common nonlinear
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kernels appearing in dynamical systems are quadratic-linearizable
– e.g., ex is common in electronic device models (such as diodes
and BJTs) as well as biochemical ion channel models; polyno-
mial nonlinearities (particularly quadratic nonlinearities) are com-
mon in MOSFET models and are also basic to chemical rate equa-
tions; x

1+x
is useful for modeling smoothing functions, as well as

in Michaelis-Menten kinetics.
This key difference makes QLMOR-reduced models valid for

“large” inputs. It also circumvents the passivity/stability loss that
results from Taylor approximation, and makes the passivity/stability
preservation problem more tractable. Indeed, we prove that the re-
duced model, when locally linearized, is a congruence transforma-
tion of the corresponding linearization of the full system. There-
fore, passivity of the linearized model is preserved if certain condi-
tions are satisfied (Section 5.4).
The “price paid” for this equivalent QLDAE representation is

that the system size must be increased before it is reduced. This
is similar to MOR for linear periodic time-varying systems [2] and
MOR based on bilinear forms [3]. We prove an upper bound on
the size of the equivalent QLDAE representation derived from a
polynomial system. However, in applications, the size of QLDAEs
often does not hit the upper bound, and is, indeed, much smaller
than that of a reasonable bilinear representation.
We reduce the QLDAE system by extending and generalizing the

NORM technique [1]. Since QLDAEs have terms that are products
of state variables and inputs, we need to re-derive and modify both
the theory and the algorithm in [1] so that they can apply to QL-
DAEs. As a result, we identify the minimum subspace that guaran-
tees matching any number of specified moments. Also, unlike [1],
we are able to completely avoid explicit evaluation of AiB terms,
leading to better numerical stability over [1]. Our derivation also
unifies methods based on bilinear and quadratic forms, which turn
out to be just special forms of QLMOR.
We show that projection of the original system onto the identified

subspace results in a reduced system that is also in QLDAE form.
This represents another advantage of QLMOR over methods based
on Taylor expansion. The computational cost of the QLMOR-
reduced model is dominated by terms of the form Ĝ2z⊗z, which is
O(q3) – q is the (small) size of the reduced model. In contrast, prior
polynomial reduced models typically have cubic and higher order
terms, resulting in a computational complexity of at least O(q4).
The remainder of the paper is organized as follows. In Section 2,

we reviewmodel order reduction methods for weakly nonlinear and
general nonlinear systems. We then provide an overview of the
QLMOR method (Section 3), and discuss details of the quadratic-
linearization procedure (Section 4) and the model reduction algo-
rithm of QLDAEs (Section 5). We validate QLMOR on a nonlinear
transmission line circuit and a biochemical reaction-like system,
and provide comparisons to prior methods in Section 6.

2. BACKGROUND
In this paper, we focus on SIMO dynamical systems in the form

of
Cẋ(t) = f(x(t)) + Bu(t), y(t) = ET x(t), (1)

where x ∈ N are the state variables, y ∈ no are the outputs, and
u ∈ is the input. Note that all the derivations can be straightfor-
wardly extended to MIMO systems, time-varying systems, param-
eterized systems and the general DAE formulation d

dt
q(x(t)) =

f(x(t), u(t)).

2.1 Previous Volterra-Series Based Methods
Previous Volterra-series based MOR methods [2, 3, 1] are de-

rived from the theorem that the response of a nonlinear system can
be decomposed into responses of a series of homogeneous non-
linear systems, i.e., the system response x(t) can be written as
the summation of responses all n-th order homogeneous nonlin-
ear systems xn(t), as shown in (2). In (3) and (4), hn(σ1, · · · , σn)
is the Volterra kernel of order n, and Hn(s1, · · · , sn), the trans-
fer function of order n, is the multi-variable Laplace transform of
hn(σ1, · · · , σn) [15].

x(t) =
∞

n=1

xn(t), (2)

xn(t) =
∞

−∞

· · ·
∞

−∞

hn(σ1, · · · , σn)

u(t − σ1) · · ·u(t − σn) dσ1 · · · dσn,

(3)

Hn(s1, · · · , sn) =
∞

−∞

· · ·
∞

−∞

hn(σ1, · · · , σn)

e
−(s1σ1+···+snσn)

dσ1 · · · dσn.

(4)

Volterra-series based methods generally consist of four steps:
(1) Perform a Taylor expansion of the nonlinear function f(x), i.e.,
expand f(x) in a series of multidimensional polynomials, and trun-
cate the expansion to a predefined order (e.g., 3, as shown in (5),
where symbol ⊗ denotes the Kronecker product1).

Cẋ = G1x + G2x ⊗ x + G3x ⊗ x ⊗ x + Bu (5)

(2) For methods based on bilinear forms, perform a Carleman bi-
linearization on (5) to obtain a bilinear approximation (6).

Cẏ = Gy + Dyu + Bu (6)

(3) Construct the projection matrix V ∈ N×q (q � N is the
size of the reduced system), to match the moments of Hn, n =
1, 2, 3, · · · up to a given order. E.g., to match up to the second
order moments of H2(s1, s2) means to match the coefficients of
terms 1, s1, s2, s

2
1, s1s2, s

2
2 in the Taylor expansion of H2(s1, s2)

[1].
(4) Construct the projected reduced system. E.g.,

Ĉż = Ĝ1z + Ĝ2z ⊗ z + Ĝ3z ⊗ z ⊗ z + B̂u (7)

by defining x = V z, Ĉ = V T CV , B̂ = V T B, Ĝ1 = V T G1V ,
Ĝ2 = V T G2(V ⊗ V ), Ĝ3 = V T G3(V ⊗ V ⊗ V ).
The common step in [2, 3, 1] is Taylor approximation. This

results in three major drawbacks that limit the wide applicability
of these methods. Firstly, the convergence of the Volterra system
representation is only valid when |u| ≤ ε, for some small ε >
0, i.e., for “small” inputs, or the “weakly nonlinear” case. This
constraint stems from the fact that the Taylor series only converges
in a small region around the expansion point. Incorrect behavior
of the reduced model due to large inputs was reported in [3], and
similar results are reproduced in Section 6.2.
Secondly, Taylor expansion typically destroys important global

properties of the system, such as passivity and stability2. For exam-
ple [3], the quadratic approximation for ex (part of the I-V function
of a diode) can generate energy. As a result, the reduced model,
which is created using the Taylor approximated system as a start-
ing point, will typically not be passive/stable.
Thirdly, the computational cost for third-order terms such as

Ĝ3 z ⊗ z ⊗ z and higher order terms dominates the computational
cost of the reduced model. Since z ∈ q , Ĝ3 ∈ q×q3

, and
with Ĝ3 usually dense, the computational cost is O(q4). (It is
possible to make Ĝ3 of a smaller size by combining terms in z ⊗
z ⊗ z, but the computational complexity does not change.) More-
over, it is generally difficult to accurately extract the high-order
matricesG2, G3, · · · , which also constrains applications of Taylor-
expansion based methods.

2.2 Trajectory and Nonlinear Projection Based
Methods

To reduce strongly nonlinear systems, trajectory-based methods
[16, 4, 17, 18, 19] have been proposed. These methods follow
the linear projection framework[20] (i.e., finding a projection x =
V z, and projecting the original system onto the subspace defined
by the column span of V .). A basic concern is the computational
cost of V T f(V z)which can be so expensive that no computational

1For notational simplicity, we will sometimes use x 2© to denote
x ⊗ x, x 3© to denote x ⊗ x ⊗ x, etc..
2Definitions for passivity and stability are not universally agreed
upon, but broadly speaking, a device is passive if it does not gener-
ate energy, and a system is input-output stable if the outputs of the
system are bounded given that the inputs are bounded.
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efficiency over the original model is obtained, despite the smaller
model size.
To address this problem, special forms for f(·) can be exploited.

For example, TPWL uses piecewise linear approximations to f(·)
(i.e., compute f(·) on a per region basis) such that the projections
V T and V can be “passed through” f(·), i.e., pre-computed during
the reduction step. However, with the increase of the number of
piecewise regions, the computational cost increases. Even if local
projection[17] is used, the computational time for distance evalua-
tion and nearest-neighbor search can be large.3
An extension of this projection framework for nonlinear systems

is to construct a nonlinear manifold in the state space, and project
the original system onto that manifold – this has been proposed in
maniMOR [5] recently. However, since the manifold and projec-
tions are also computed on a per region basis, it shares a similar
model computation problem as in trajectory-based methods.
Note that MOR based on bilinear forms [3] actually defines a

nonlinear projection – e.g., by explicitly writing out the differential
equations for x ⊗ x, x ⊗ x ⊗ x, the final projection is defined by
z = V T [xT , xT ⊗xT , xT ⊗xT ⊗xT ]T , which is a polynomial pro-
jection function. It will be seen in Section 4 that QLMOR indeed
allows a richer set of projections than Carleman bilinearization.

To briefly summarize this section, we list in Table 1 the main
drawbacks and difficulties that have not been solved in existing
MOR methods. We also indicate how well QLMOR addresses
these drawbacks.

Table 1: Main Drawbacks of Existing Methods
Existing methods Drawbacks QLMOR

Valid only for small-signal re-
sponse

Solved

Volterra series based Stability, passivity loss Partially solved
Expensive computation
if higher-order terms are
included

Improved

Trajectory based Expensive V T f(V z) com-
putation

Improved

3. QLMOR OVERVIEW
In this section, we outline the key ideas of QLMOR. Details are

provided in Section 4 and Section 5.
From the discussion in Section 2, the drawbacks of previous Volterra

series based methods are mainly caused by Taylor expansion step,
in which “information” about the system is lost.
In contrast, QLMOR achieves a polynomial system that is equiv-

alent to the orignal system without losing any information. By
doing so, QLMOR avoids the “small” input assumption, and pre-
serves properties of the original system in the first step.
We further show that any polynomial system can be converted

into quadratic-linear differential algebraic equations (QLDAE)
Cẋ = G1x + G2x ⊗ x + D1xu + D2(x ⊗ x)u + Bu (8)

i.e., the differential equations are quadratic in state variables x and
linear in the input u. This QLDAE system is another equivalent
representation of the original system, and therefore no approxima-
tion is involved in this step, either.
Then QLMOR reduces this QLDAE system to produce a smaller

model that is also in the QLDAE form, as opposed to the polyno-
mial form in prior methods. The important advantage here is that
higher-order terms beyond quadratic terms are absent in QLMOR-
reduced model. Therefore, it avoids the expensive computational
cost (e.g., z ⊗ z ⊗ z) in a high-order polynomial reduced model,
and quadratic terms dominates the computational complexity.
To generate the reduced model, we use a projection-based ap-

proach. To obtain the minimum subspace in the sense of moment
matching, we analyze the transfer functions of systems in the QL-
DAE form, and results related to prior methods are derived. For
example, it turns out that the moments of H2(s1, s2) of a QL-
DAE system are a summation of the moments of H2(s1, s2) of
3However, apple-to-apple comparisons of trajectory-based meth-
ods to Volterra-series based methods are complicated, not only
because there are heuristics involved in TPWL (e.g., in function
evaluations and nearest neighbor search), but also because defini-
tions of accuracy vary. (E.g., TPWL is usually accurate in regions
that are modeled, and Volterra-series based methods are accurate in
modeling the first few harmonic distortions.)

a quadratic system and a bilinear system – direct application of ex-
isting codes are possible. In our algorithm, we also avoid explicit
moment evaluations, and therefore the algorithm has better numer-
ical stability properties.
Another point to note is that QLMOR serves as a new core method

that can be combined with any trajectory-based methods. For ex-
ample, in TPWL method, to generate reduced models along a tra-
jectory, previous Krylov-subspace methods or TBR methods can
be replaced with QLMOR straightforwardly, potentially leading to
a more accurate model and less number of regions along the trajec-
tory. For another example, POD method can be directly applied to
the transformed QLDAE system, which results in a reduced model
whose computational cost is lower than the usual POD reduced
model if the reduced model size remains the same.
We chart in Fig. 1 the basic flow of QLMOR, as well as the

flow of MOR based on polynomial systems and bilinear systems.
In what follows, Section 4 presents the quadratic-linearization pro-
cedure, and Section 5 discusses the reduction step, i.e., how to gen-
erate the minimum subspace.

Figure 1: QLMOR flow (yellow), with comparison to MOR
based on polynomial form (green) and bilinear form (gray).

4. QUADRATIC-LINEARIZATION
There are two steps in the quadratic-linearization procedure:
1. convert the original system (1) into a polynomial system;
2. convert the polynomial system into QLDAEs (8).

To begin with, the polynomial system of order M is defined as
follows:
Definition 4.1 (Polynomial system of orderM ). A polynomial

system (9) is said to be of orderM , if the highest order of monomial
of x isM , i.e.,M = maxk,i

N

l=1 βi,k,l,
N

l=1 γi,k,l .

k

ci,kẋk =
k

αi,kx
βi,k,1
1 · · · xβi,k,N

N
+

k

ηi,kx
γi,k,1
1 · · · xγi,k,N

N
u

i = 1, · · · , N, βi,k,j ≥ 0, γi,k,j ≥ 0, βi,k,j ∈ Z, γi,k,j ∈ Z, ∀k, j
(9)

We now present two approaches to convert a nonlinear system
where f(x) can be written as a linear combination of some set of
simple functions, i.e.,

ẋ = a0x + a1g1(x) + a2g2(x) + · · · + akgk(x) + Bu, (10)

into a polynomial system in the form of (9). We call this procedure
polynomialization.
Notice that this form of differential equations is prevalent in cir-

cuit simulation, as well as other engineering problems. For exam-
ple, in circuit MNA equations, each gi(x) represents the current
flowing into a node from a specific device; in chemical rate equa-
tions, each gi(x) represents the reaction rate according to a specific
reaction; in mechanical applications, gi(x) are the forces to the
system.

4.1 Polynomialization by Adding Polynomial
Algebraic Equations

The first approach is only applicable to certain nonlinear func-
tions, e.g., 1

k+x
. The procedure is quite straightforward – one just
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needs to make a variable change yi = gi(x), and add the polyno-
mial algebraic equation derived from yi = gi(x) into the original
system.
For example, if ẋ = x+x2 + 1

k+x
, we make the variable change

y = 1
k+x

, and then the system is converted to

ẋ = x + x
2

+ y, 0 = −ky − xy + 1. (11)

The assumption is that the variable change can lead to a poly-
nomial algebraic equation. For example, any variable change to a
rational function leads to a polynomial algebraic equation. Con-
strained by this assumption, this approach cannot deal with nonlin-
ear functions such as y = ex.

4.2 Polynomialization by Taking Lie Deriva-
tives

To polynomialize a larger set of nonlinear functions, one can also
add differential equations, instead of algebraic equations.
Given (10), if we make the variable change yi = gi(x), i =

1, · · · , k, and write out the differential equations for yi by taking
its Lie derivative with respect to ẋ, we obtain an expanded system

ẋ =a0x + a1y1 + · · · + akyk + Bu,

ẏi =Lẋgi(x) = g
′

i(x)(a0x + a1y1 + · · · + akyk + Bu),
(12)

where g′
i(x) = dgi(x)

dx
. Hence, if g′

i(x) is a polynomial function in
x and yis, (12) is in the form of (9).
It turns out that g′

i(x)s are polynomial functions in many cases.
We enumerate several commonly encountered uni-variable func-
tions (i.e., functions of only one variable) and their derivatives to x
in (13).

y = e
x ⇒ (e

x
)
′
= e

x
= y

y = 1/(k + x) ⇒ (1/(k + x))
′
= −1/(x + k)

2
= −y

2

y =
√

x ⇒ (
√

x)
′
= 1/(2

√
x) = 1/(2y)

(13)

It is seen that for y = ex and y = 1/(k + x), the derivatives
y′ = g′(x) map to a polynomial function of y. For y =

√
x, the

derivative maps to a function of the form y = 1/(k+x), and there-
fore, a further variable change of z = 1/y will make the derivatives
be polynomials of x, y, z.
Some other uni-variable functions also need to be handled by

two variable changes. For example, if ẋ = sin(x), let y1 =
sin(x), y2 = cos(x), we obtain

ẋ = y1, ẏ1 = cos(x)ẋ = y2y1, ẏ2 = − sin(x)ẋ = −y
2
1 . (14)

Furthermore, if g(x) is a composition of several uni-variable
functions, e.g., g(x) = (g2 ◦ g1)(x) = g1(g2(x)), similar pro-
cedure can be conducted to make the differential equations of form
(9). (As shown in (15), since ∂y1

∂y2
is a polynomial function of y1

and y2; ∂y2
∂x
is a polynomial function of y2 and x; ẋ is a polynomial

function of x, y1.)

Let y1 = g1(y2), y2 = g2(x) ⇒ ẏ1 =
∂y1

∂y2

ẏ2, ẏ2 =
∂y2

∂x
ẋ (15)

For example, if ẋ = 1
1+ex , then by letting y1 = 1

1+y2
and y2 =

ex, we obtain a polynomial system

ẋ = y1, ẏ1 = −y
2
1 ẏ2 = −y2y

3
1 , ẏ2 = y2ẋ = y2y1. (16)

All the above derivations are also valid when x is a vector, in
which case g′

i(x) is a row vector instead of a scalar. Therefore,
Theorem 4.1 follows:
Theorem 4.1. By iteratively applying polynomialization by adding

polynomial algebraic equations and taking Lie derivatives, a non-
linear system with nonlinear functions being compositions of func-
tions in Table 2 can be polynomialized into a polynomial system in
the form of (9).

Notice that because of the function composition, the nonlinear
functions in Table 2 actually covers a rich set of nonlinear functions
that are almost enough for engineering problems (e.g., smooth-
ing functions such as the hyperbolic tangent function tanh(x) =
ex−e−x

ex+e−x ).

Table 2: Commonly Used Nonlinear Functions
Function Usage
x

β1
1 · · · xβN

N
chemical rate equations
MOSFET in saturation mode (x2, xα[21], α is rational)

x
k+x

chemical rate equations, smooth functions
ex diodes, BJTs, ion-channel models, smooth functions
sin(x), cos(x) control systems (e.g., x is the angle to be steered)

Another remark is that the polynomialization of a nonlinear sys-
tem is not unique. Indeed, there should exist a minimum polyno-
mial system that corresponds to the original system. The algorithm
to find this minimum polynomial system could be devised by sym-
bolic computational tools. Methods in logic synthesis might also
be applicable. Though, this topic is out of the scope of this paper.
Despite the non-uniqueness, however, as long as the existence

and uniqueness conditions of solutions to differential equations are
satisfied, the polynomial system is equivalent to the original system
since they have the same solution.

After the polynomialization, we obtain (9), a polynomial system
of orderM . Now we present two approaches to convert a polyno-
mial system (9) to a QLDAE system (8).

4.3 Quadratic-Linearization by Adding
Quadratic Algebraic Equations

Similar to the polynomialization procedure, we iteratively define
new variables y, such that

y = xβ1
1 · · · xβN

N /x̂ (17)

is satisfied, and we add (17) into the original system. In (17), x̂ is a
variable chosen from the state variables of the expanded system at
each iteration – they include all the original state variables, as well
as the newly added state variables up to that iteration.
After several iterations, all the equations in the form of (17) can

be re-written in a quadratic algebraic equation. In other words, a
polynomial system can always be quadratic-linearized, as proved in
the following theorem. As a byproduct, the theorem also provides
an upper bound on the size of the QLDAE system derived from a
polynomial system.
Theorem 4.2. For a polynomial system of order M , the maxi-

mum number of state variables in the resulting QLDAE system does
not exceed the number of state variables of
[xT , (xT ) 2©, (xT ) 3©, · · · , (xT )(�

M
2

�)]T , by adding quadratic al-
gebraic equations,
PROOF. Let y = [xT , (xT ) 2©, · · · , (xT ) p©]T , p ∈ +, then

QLDAEs in y can generate any nonlinear functions of the form
G1y + G2y ⊗ y, which is essentially all the polynomial functions
in x of order not greater than 2p.
So,M ≤ 2p, i.e., p = 	M

2

.

4.4 Quadratic-Linearization by Taking
Lie Derivatives

Similarly, taking Lie derivatives of polynomial differential equa-
tions can also lead to a QLDAE system, as proved in Theorem 4.3.
However, the theoretical upper bound on the size of the resulting
QLDAE system is more than that by adding quadratic algebraic
equations, as shown in the following theorem.
Theorem 4.3. For a polynomial system of order M , the maxi-

mum number of state variables in the resulting QLDAE system does
not exceed the number of state variables of
[xT , (xT ) 2©, (xT ) 3©, · · · , (xT )M© ]T , by adding differential equa-
tions that are derived by taking Lie derivatives of changed vari-
ables.
PROOF. Let y = xi1

1 · · · xiN
N , where N

k=1 ik ≤ M . So y ∈
[xT , (xT ) 2©, (xT ) 3©, · · · , (xT )M© ]T . Then the differential equa-
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tion of y is derived by taking its Lie derivative

d

dt
(x

i1
1 · · · xiN

N
) = Lẋ(x

i1
1 · · · xiN

N
) =

N

k=1

x
i1
1 · · · ikx

ik−1

i

d

dt
xi · · · xik

N
.

(18)

Since d
dt

xi is a polynomial function of maximum orderM in x

and linear in u, therefore from (18), ẋ(xi1
1 · · · xiN

N ) is a polyno-
mial function of maximum order 2M − 1 in x and linear in u, i.e.,
this is a QLDAE system in [xT , (xT ) 2©, · · · , (xT )M©]T .

5. QLMOR
In this section, we focus on the reduction step for QLDAEs (8).

We start by performing a variational analysis to show the validity
of applying Krylov-subspace methods. We also derive the moments
of transfer functions of (8), which provides a guideline of how to
choose the proper Krylov subspace for generating a smallest re-
duced model in the sense of moment-matching. The derivations
in this section unifies previous works on polynomial systems and
bilinear systems [3, 1], although they look similar.

5.1 Variational Analysis
The variational analysis [15] starts by assuming the QLDAE sys-

tem is a combination of a series of homogeneous nonlinear sub-
systems, whose responses to u(t) are x1(t), x2(t), etc.. That is,
when input is αu(t), the response x(t) is (19)

x(t) = αx1(t) + α2x2(t) + α3x3(t) + α4x4(t) + · · · (19)
Therefore, by plugging (19) into (8), and equating the terms cor-

responding to αi, i = 1, 2, · · · , we obtain
Cẋ1 =G1x1 + Bu,

Cẋ2 =G1x2 + G2x1 ⊗ x1 + D1x1u,

Cẋ3 =G1x3 + G2(x1 ⊗ x2 + x2 ⊗ x1) + D1x2u + D2(x1 ⊗ x1)u,

Cẋ4 =G1x4 + G2(x1 ⊗ x3 + x2 ⊗ x2 + x3 ⊗ x1)

+ D1x3u + D2(x1 ⊗ x2 + x2 ⊗ x1)u.
(20)

From (20), if in the i-th set of differential equations (i.e., equa-
tions where LHS is ẋi), we lump the terms without xi to be pseudo
inputs, then the original system can be viewed as a series of linear
systems. Therefore, the Krylov subspace that guarantees that the
projected system matches the moments of these linear systems is
K (G−1

1 C, G−1
1 ([B, G2, D1, D2])), if G1 is non-singular. How-

ever, the size of this subspace can easily exceed the size of the
original system. Therefore, care must be taken to choose a useful
subspace.

5.2 Matrix Transfer Functions
Following [15], we can show that transfer functions for (8) can

be written as follows. (Only first three transfer functions are listed.)

H1(s) = (sC − G1)
−1

B

H2(s1, s2) = ((s1 + s2)C − G1)
−1 1

2
G2(H1(s1) ⊗ H1(s2)

+ H1(s2) ⊗ H1(s1)) + D1(H1(s1) + H2(s2))

H3(s1, s2, s3) = ((s1 + s2 + s3)C − G1)
−1

1

6
G2 H1(s1) ⊗ H2(s2, s3) + H1(s2) ⊗ H2(s1, s3) + H1(s3) ⊗ H2(s1, s2)

+ H2(s2, s3) ⊗ H1(s1) + H2(s1, s3) ⊗ H1(s2) + H2(s1, s2) ⊗ H1(s3)

+ D1 H2(s1, s2) + H2(s2, s3) + H2(s1, s3)

+ D2 H1(s1) ⊗ H1(s2) + H1(s1) ⊗ H1(s3) + H1(s2) ⊗ H1(s1)

+ H1(s2) ⊗ H1(s3) + H1(s3) ⊗ H1(s1) + H1(s3) ⊗ H1(s2)

(21)

Based on (21), the Taylor expansion of these transfer functions
can be derived. Correspondingly, we obtain the moments of the
transfer functions, i.e., coefficients of sk forH1(s), sk

1sl
2 forH2(s1, s2),

etc.. For example,

H1(s) =
∞

k=0

M1,ks
k

=
∞

k=0

A
k

R1s
k

H2(s) =
∞

k=0

∞

l=0

M2,k,ls
k
1s

l
2 =

∞

k=0

A
k

R1(s1 + s2)
k

G
−1
1

1

2
G2

∞

k=0

A
k

R1s
k
1 ⊗

∞

k=0

A
k

R1s
k
2

+

∞

k=0

A
k

R1s
k
2 ⊗

∞

k=0

A
k

R1s
k
1 + D1

∞

k=0

A
k

R1s
k
2 +

∞

k=0

A
k

R1s
k
2 ,

(22)

where A = G−1
1 C, R1 = −G−1

1 B, andM1,k,M2,k,l are the mo-
ments for H1(s) and H2(s1, s2), respectively. Similar derivations
can be performed for higher order moments.
An interesting point to note is that H2(s1, s2) is the same as the

summation of the H2(s1, s2) of a bilinear system Cẋ = G1x +
D1xu+Bu and theH2(s1, s2) of a quadratic systemCẋ = G1x+
G2x ⊗ x + Bu.

5.3 Subspace Basis Generation
To illustrate how QLMOR generates the projection matrix, we

derive the theorem and algorithm for H2(s1, s2) in the following.
But they can be easily extended for higher-order moment-matching.
From (22), we can derive the vectors that are the coefficients

for an n-th order moment. (E.g., for H2(s1, s2), the n-th order
moments refers to the set of coefficients for sk

1sl
2, k + l = n.) As

an example, those vectors for H2(s1, s2) are listed in Table 3. We
then have the following theorem:
Theorem 5.1. Given a QLDAE system (8), suppose

R(V ) ={A
i
R1, i ≤ q} {A

i
G

−1
1 D1A

j
R1, i + j ≤ q}

{A
i
G

−1
1 G2(A

j
R1) ⊗ (A

k
R1), i + j + k ≤ q, k ≤ j}

(23)

Then if

x = V z, Ĉ = V
T

CV, B̂ = V
T

B,

Ĝ1 = V
T

G1V, Ĝ2 = V
T

G2V ⊗ V,

D̂1 = V
T

D1V, D̂2 = V
T

D2V ⊗ V,

(24)

the reduced system (25) matches the moments ofH2(s1, s2) of the
original system up to q-th order.

Ĉż = Ĝ1z + Ĝ2z ⊗ z + D̂1zu + D̂2(z ⊗ z)u + Bu (25)

PROOF. The proof is similar to that in [1].
Notice that the second and the third set of basis vectors in Theo-

rem 5.1 count for the moments of the corresponding bilinear system
and quadratic system, respectively – this result also follows from
the above theorem by setting G2 = D2 = 0 and D1 = D2 = 0 in
the QLDAE system.
A naive generation of the above subspace might lead to numer-

ical stability problem because of the explicit computation of Ai

terms. For quadratic systems, [1] computes the starting vectors di-
rectly and suggests to perform an orthogonalization between start-
ing vectors. However, that can still lead to numerical stability prob-
lems since the starting vectors are computed explicitly.
Here we present a new algorithm to generate the basis for this

subspace, as shown in Algorithm 1. The elementary operation
in the algorithm is to generate an orthonormal projection matrix
V = [v0, · · · , vq] for a Krylov subspaceKq+1(A, R). We employ
Arnoldi algorithm[22] in our implementation.
In this algorithm, we avoid the direct computation of Ai in the

starting vector for each Krylov subspace. We useG−1
1 D1vi instead

ofG−1
1 D1A

iR1, andG−1
1 G2vi ⊗ vj instead ofG−1

1 G2(A
iR1)⊗

(AjR1), where vi is the i-th vector in the Krylov subspaceK (A, R1).
We can prove thatR1(V ) = {AiR1, i ≤ q} {AiG−1

1 D1A
jR1, i+

j ≤ q} {AiG−1
1 G2(A

jR1)⊗(AkR1), i+j+k ≤ q, k ≤ j} and
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Table 3: Moments of H2(s1, s2)

Moments Bilinear system Quadratic system
0th order G

−1
1 D1R1 G

−1
1 G2R1 ⊗ R1

1st order AG
−1
1 D1R1 AG

−1
1 G2R1 ⊗ R1

G
−1
1 D1AR1 G

−1
1 G2(AR1) ⊗ R1

2nd order A2G
−1
1 D1R1 A2G

−1
1 G2R1 ⊗ R1

AG
−1
1 D1AR1 AG

−1
1 G2(AR1) ⊗ R1

G
−1
1 D1A2R1 G

−1
1 G2(A2R1) ⊗ R1

G
−1
1 G2(AR1) ⊗ (AR1)

3rd order A3G
−1
1 D1R1 A3G

−1
1 G2R1 ⊗ R1

A2G
−1
1 D1AR1 A2G

−1
1 G2(AR1) ⊗ R1

AG
−1
1 D1A2R1 AG

−1
1 G2(A2R1) ⊗ R1

G
−1
1 D1A3R1 G

−1
1 G2(A3R1) ⊗ R1

AG
−1
1 G2(AR1) ⊗ (AR1)

G
−1
1 G2(A2R1) ⊗ (AR1)

R2(V ) = {vi, i ≤ q} {AiG−1
1 D1vj , i+j ≤ q} {AiG−1

1 G2vj⊗
vk, i+ j +k ≤ q, k ≤ j} span the same subspace (proof by induc-
tion). Therefore, in the computation of the starting vector, no Ai

terms are involved.
We can also prove that vi1 ⊗ vj1 is orthogonal to vi2 ⊗ vj2 if

i1 �= i2 or j1 �= j2 (by definition of Kronecker product). Hence, the
starting vectors have better numerical properties than [1]. However,
it is not always the case that G−1

1 G2vi1 ⊗ vj1 is orthogonal to
G−1

1 G2vi2 ⊗ vj2 , even if vi1 ⊗ vj1 is orthogonal to vi2 ⊗ vj2 .
Therefore, one further improvement of this algorithm is to perform
an orthonormalization of the starting vector to the basis already
generated.
Proofs are omitted here due to page limits.

Algorithm 1 Generation of basis for subspace in Theorem 5.1
1: Generate matrix V = [v0, · · · , vq ] forKq+1(A, R1)

2: for i = 0 to q do
3: Generate matrixW = [w0, · · · , wq−i]

for Kq−i+1(A, G−1
1 D1vi); {subspace for moments of the bilinear sys-

tem}
4: V = qr([V, W ]);
5: end for
6: for i = 0 to q do
7: for j = 0 tomin(q − i, i) do
8: Generate matrix W = [w0, · · · , wq−i−j ] for

Kq−i−j+1(A, G−1
1 G2vi ⊗ vj) {subspace for moments of the

quadratic system}
9: V = qr([V, W ]);
10: end for
11: end for
12: V span the subspace that matches up to q-th order moments ofH2(s1, s2)

5.4 Local Passivity Preservation
The loss of passivity in [2, 3, 1] are mainly caused by Taylor

approximation. QLMOR alleviates this problem. In the following
proof, we show that the reduced system linearized at any z0 ∈ q ,
is a congruence transformation of the original system linearized
at x0 = V z0 ∈ n. Therefore, from [9], the passivity of the
linearized system is preserved if C and Jx (in equation (26)) are
positive semi-definite.PROOF. Let f(x) = G1x+G2x⊗x+D1xu+D2(x⊗x)u+

Bu, and f̂(z) = Ĝ1z + Ĝ2z ⊗ z + D̂1zu + D̂2(z ⊗ z)u + B̂u.
Denote that the original system linearized at x0 is in the form of

Cẋ = Jxx + Juu, (26)

and the reduced system linearized at z0 = V T x0 is in the form of

Ĉẋ = Ĵzx + Ĵuu. (27)

In (26) and (27), Jx, Ju, Ĵz , Ĵu are Jacobian matrices of the lin-
earized systems.
So the Jacobian matrix Jx of the original system at x0 is

Jx = G1 + G2(I ⊗ x0 + x0 ⊗ I) + D1u + D2(I ⊗ x0 + x0 ⊗ I)u. (28)

The Jacobian matrix Ĵz of reduced QLDAEs at z0 = V T x0 is

Ĵz =V
T

G1V + V
T

G2(V ⊗ V )(I ⊗ z0 + z0 ⊗ I)

+ V
T

D1V u + V
T

D2(V ⊗ V )(I ⊗ z0 + z0 ⊗ I)u

=V
T

G1V + V
T

[G2(I ⊗ x0 + x0 ⊗ I)]V

+ V
T

D1V u + V
T

[D2(I ⊗ x0 + x0 ⊗ I)]V

=V
T

JxV.

(29)

Similarly,
Ju =D1x0 + D2x0 ⊗ x0 + B,

Ĵu =V
T

D1V z0 + V
T

D2(V ⊗ V )(z0 ⊗ z0) + V
T

B

=V
T

D1x0 + V
T

D2x0 ⊗ x0 + V
T

B

=V
T

Ju.

(30)

Therefore, the linearized reduced system (27) is a congruence
transformation of the original linearized system (26).

5.5 Multi-Point Expansion
The multi-point Krylov subspace method [23] can be directly

applied in QLMOR, and it potentially leads to a smaller and more
accurate model for a specified frequency range of interest.
Also note that the quadratic-linearization procedure in Section 4

might render a QLDAE system where G1 is singular. This can
be a potential problem for generating Krylov subspaces at s = 0.
The current workaround for this problem is to generate Krylov sub-
spaces at s = s0, s0 � 0.

6. EXPERIMENTAL RESULTS
In this section, we illustrate the applicability of the QLMOR

method presented in the previous sections, demonstrating its effi-
ciency and accuracy on example circuits and systems.

6.1 A System with a x
1+x
Nonlinearity

As noted in Section 4, x, x⊗x and x
K+x

are common nonlinear-
ities in biochemical rate equations. To test how QLMOR works, a
random second-order polynomial system with a x

1+x
function was

generated to mimic a biochemical reaction system:
d

dt
x + G1x + G2x ⊗ x + e1

10x1

1 + x1

+ Bu = 0. (31)

The size of (31) is 10, hence G1 ∈ 10×10, G2 ∈ 10×100, B ∈
10×1, e1 ∈ 10×1 = [1, 0, · · · , 0]T . Notice that we manually
make G1 dense, non-symmetric, and make its eigenvalues uni-
formly distributed. Those factors all make MOR for this system
more difficult than for many real systems that are normally sparse
and symmetric.
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Figure 2: Polynomial approximations of 1/(1 + x). Fig. 2(a)
shows the interval x ∈ [0, 1]. Fig. 2(b) shows the interval x ∈
[0, 2].

To compare with the QLMORmethod, we first show that Taylor-
expansion based methods [3, 1] are not applicable. The Taylor se-
ries of the function 1

1+x
is

1

1 + x
=

∞

i=0

(−x)
i

= 1− x + x
2 − x

3
+ x

4 − x
5

+ · · · , (|x| < 1). (32)

Notice that (32) converges only when |x| < 1 (also clearly seen
in Fig. 2), making the Taylor approximation irrelevant and highly
inaccurate for |x| ≥ 1; as a result, any reduced model derived from
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this approximation cannot be accurate for |x| ≥ 1. Indeed, the
Taylor approximation model turns out to be an unstable system for
polynomial orders from 2 to 7, i.e., the polynomial model has a
finite escape time[24]. As mentioned in [3], such approximations
do not preserve properties such as stability and passivity, except by
chance.
To apply the QLMORmethod, we first perform quadratic-linearization

of the original system by making the variable change y = x1
1+x1

.
Following the procedure in Section 4, we obtain a QLDAE system
equivalent to (31):

d

dt
x + G1x + G2x ⊗ x + e110y + Bu = 0,

−x1 + y + x1y = 0.

(33)

Notice that the size of (33) is 11, only one more than the original
system.
Applying QLMOR on (33), a size 6 reduced model is generated

that matches 4 moments of H1(s) and 2 moments of H2(s1, s2).
We then apply a “small” and “fast” input signal u(t) = cos(4πt)
so that small higher-order harmonic distortions are generated in the
output waveform, as plotted in Fig. 3(a). To assess the accuracy
of the reduced order model, we also plot the first few Fourier co-
efficients of x1(t) in Fig. 3(b). (Because x1(t) exhibits the largest
nonlinearities compared to the other state variables, we focus on
its waveforms to evaluate the accuracy of the reduced model.) We
also excite this system by a “large” and “slow” input signal u(t) =
10 cos(2πt), so that large higher-order harmonic distortions are
generated in the output waveform, as plotted in Fig. 3(c). The
speedup of the transient simulation of the reduced model over the
original model is about 1.5× – although the model size is nearly
halved, the reduced Ĝ2 matrix becomes dense, and therefore, the
speedup is not huge. However, considering that the original model
size is very small, a speedup of 1.5× is, in fact, not inconsiderable.
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Figure 3: Fig. 3(a), Fig. 3(b) show the time-domain wave-
forms of x1, x2 and Fourier coefficients of x1, respectively,
when u(t) = cos(4πt). Fig. 3(c), Fig. 3(d) show the time-
domain waveforms of x1, x2 and Fourier coefficients of x1, re-
spectively, when u(t) = 10 cos(2πt).

We further manipulate the system (31) to make it more nonlinear,
and see how QLMOR behaves. In this case, we simply change the
nonlinear term to be a function of x2

4, i.e.,

d

dt
x + G1x + G2x ⊗ x + e1

10x2

1 + x2

+ Bu = 0. (34)

The same model reduction procedure is repeated. Results are plot-
ted in Fig. 4 for inputs u(t) = 8 cos(3πt) and u(t) = 10 cos(3πt).
In this case, strong nonlinearities are present in the waveforms, but
the QLMOR-reduced model still produces quite accurate results.
An interesting point to note is that at time t � 0.5, the reduced
model does not quite capture a fast transient well. This is only to be
4We observe in simulations that the outputs of this system exhibit
larger high-order harmonic distortions than (33).

expected, however, since MOR based on moment matching tends
to reduce size by eliminating fast components in the system, while
maintaining fidelity for slower components: observe that once the
fast transient dies out, the QLMOR-reduced model is far more ac-
curate. This inaccuracy at higher frequencies is also apparent from
the harmonics shown in Fig. 4(d).
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(b) Frequency domain.
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Figure 4: Fig. 4(a), Fig. 4(b) show the time-domain wave-
forms of x1, x2 and Fourier coefficients of x1, respectively,
when u(t) = 8 cos(3πt). Fig. 4(c), Fig. 4(d) show the time-
domain waveforms of x1, x2 and Fourier coefficients of x1, re-
spectively, when u(t) = 10 cos(3πt).

6.2 Nonlinear Transmission Line Circuit
The nonlinear transmission line circuit shown in Fig. 5 [4] is

possibly the most widely used circuit for testing and evaluating any
new, experimental nonlinear model reduction technique. All resis-
tors and capacitors are set to 1 and the diode I-V characteristic is
iD = e40vD − 1. The input is set to the current source i = u(t);
the output is the voltage at node 1.

......
1 2 3 NN-1

Figure 5: Nonlinear transmission line circuit [4].
The modified nodal equations for this circuit are

v̇1 = − 2v1 + v2 + 2 − e
40v1 − e

40(v1−v2)
+ u(t),

v̇i = − 2vi + vi−1 + vi+1 + e
40(vi−1−vi) − e

40(vi−vi+1)
, 2 ≤ i ≤ N − 1,

˙vN = − vN + vN−1 − 1 + e
40(vN−1−vN )

.
(35)

To perform quadratic-linearization of (35), if we define new vari-
ables to be uni-variable functions, we have to at least make the
variable changes yi1 = e40vi and yi2 = e−40vi , which results in
a third-order polynomial system – the expanded system is at least
of size 3N . However, note that if the state variables are set to be
v1, vi,i+1, 1 ≤ i ≤ N − 1 (vi,i+1 = vi − vi+1), we obtain

v̇1 = − v1 − v12 + 2 − e
40v1 − e

40v12 + u(t),

˙v12 = − v1 − 2v12 + v23 + 2 − e
40v1 − 2e

40v12 + e
40v23 + u(t),

˙vi,i+1 = − 2vi,i+1 + vi−1,i + vi+1,i+2 + e
40vi−1,i − 2e

40vi,i+1

+ e
40vi+1,i+2 , (2 ≤ i ≤ N − 2),

˙vN−1,N = − 2vN−1,N + vN−2,N−1 + 1 + e
40vN−2,N−1 − 2e

40vN−1,N .
(36)

Now, making the variable change y1 = e40v1 − 1 and yi =
e40vi−1,i − 1, 2 ≤ i ≤ N , the differential equations for the yis can
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be written as
ẏ1 = 40(y1 + 1)(−v1 − v12 − y1 − y2 + u(t)),

ẏ2 = 40(y2 + 1)(−v1 − 2v12 + v23 − y1 − 2y2 + y3 + u(t))a,

ẏi = 40(yi + 1)(−2vi−1,i + vi−2,i−1 + vi,i+1 + yi−1 − 2yi + yi+1),

˙yN = 40(yN + 1)(−2vN−1,N + vN−2,N−1 + yN−1 − 2yN ).
(37)

Therefore, (36) and (37) together are already in QLDAE form
with size 2N . This size is far less than the system size that would
result from a second-order Carleman bilinearization [3] (i.e., N +
N2). This example illustrates that if we use branch voltages as
state variables, a much smaller QLDAE system can result. Intu-
itively speaking, this is reasonable since the device models are usu-
ally defined in terms of branch voltages and branch currents. This
suggests that sparse tableau like circuit equation formulations [25],
where the state variables are branch voltages and currents, can be
useful for quadratic-linearization.
We apply QLMOR on this nonlinear transmission line circuit

withN = 10 and compare against weakly-nonlinear Taylor-expansion-
based MOR methods, setting the reduced size to 7.5 To drive the
circuit sufficiently hard to produce large harmonic distortions, we
apply u(t) = 1.8 cos(2π × 0.1t) and plot waveforms in Fig. 6.
As expected, the Taylor-based weakly nonlinear reduced model
matches the Taylor approximation of the original systemwell; how-
ever, the original Taylor approximation itself does of course not
match the full model, because of its validity is limited to “small”
inputs. QLMOR, on the other hand, produces a reduced model
which matches the original system well, the relative error being
about 1%.
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reduced quadratic−linear model
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Figure 6: Time-domain waveforms (x1) of full model,
quadratic-linear reduced model, 3rd-order polynomial re-
duced model and 3rd-order polynomial model.
To illustrate that QLMOR scales to larger system sizes, we apply

QLMOR to nonlinear transmission line circuits of 50,100,150,200
stages. Tomake a fair comparison, we tune QLMOR-reduced model
sizes such that in several simulations, the ratio of the maximum ab-
solute error of the time-domain waveform to its amplitude is within
1%. As a result, we produce reduced models of size 11, 15, 18,
20 corresponding to 50,100,150,200 stages, respectively. Again,
we excite large harmonic distortions in the simulation, and a typi-
cal transient waveform is shown in Fig. 7 (for the circuit with 50
stages).
As comparison, Taylor-based weakly nonlinear MOR did not

succeed in producing a reduced model on account of shortage of
memory for computing V T G3(V ⊗ V ⊗ V ). For example, when
N = 50, q = 11, V ∈ 50×11, we have V ⊗V ⊗V ∈ (50×11)3 .
Hence, suppose the size of a double-precision number is 8 bytes,
V ⊗V ⊗V requires a minimum memory of (50× 11)3 × 8 Bytes,
which is 1.2396 GB.

7. CONCLUSION
Prior polynomial-expansion-based nonlinear model reduction meth-

ods, which rely on Taylor approximations, are limited in applicabil-
ity because they scale poorly with the number of polynomial terms,
destroy passivity, and can suffer from numerical stability during
subspace basis generation. We have developed a novel polynomial-
based reduction technique, QLMOR, that alleviates these problems
by (1) rewriting strongly nonlinear systems in quadratic-linear (QL-
DAE) form without any approximation, (2) bounding the compu-
tational cost by O(q3) by using a QLDAE form for the reduced
5The size q = 7 is obtained by trial-and-error. With q larger than
7, QLMOR gives almost the same result as that of q = 7.
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(a) Time domain.
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(b) Frequency domain.
Figure 7: Fig. 7(a), Fig. 7(b) show the time-domain wave-
forms and Fourier coefficients of x1, respectively, when u(t) =
1.8 cos(2π × 0.1t). The size of the full model is 50; the size of
the reduced model is 11.

model, (3) employing congruence transformations to preserve lo-
cal passivity, and (4) using a numerically stable basis generation
algorithm. Initial validation demonstrates good matches between
QLMOR-reduced models and the originals, including in cases where
Taylor approximation based weakly nonlinear methods fail or are
very inaccurate.
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