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Abstract—We present a new manifold construction and parameteriza-
tion algorithm for model reduction approaches based on projection on
manifolds. The new algorithm employs two key ideas: (1) we define an
ideal manifold for nonlinear model reduction to be the solution of a set
of differential equations with the property that the tangent space at any
point on the manifold spans the same subspace as the low-order subspace
(e.g., Krylov subspace generated by moment-matching techniques) of
the linearized system; (2) we propose the concept of normalized integral
curve equations, which are repeatedly solved to identify an almost-ideal
manifold.
The manifold constructed by our algorithm inherits the important

property in [1] that it covers important system responses such as DC
and AC responses. It also preserves better local distance metrics on
the manifold, thanks to the employment of normalized integral curve
equations. To gauge the quality of the resulting manifold, we also derive
an error bound of the moments of linearized systems, assuming moment-
matching techniques are employed to generate low-order subspaces
for linearized systems. The algorithm is also more systematic and
generalizable to higher dimensions than the ad hoc procedure in [1].
We illustrate the key ideas through a simple 2-D example. We also

combine this new manifold construction and parameterization algorithm
with maniMOR [1] to generate reduced models for a quadratic nonlinear
system and a CMOS circuit. Simulation results are provided, together
with comparisons to full models as well as TPWL reduced models [2].

I. INTRODUCTION

Dynamical systems are established as models in many disciplines,
including electronic circuits, mechanical systems, chemical kinetics,
ecosystems, economics, and so forth. Mathematically, they are ex-
pressed as differential equations, and various computer programs
(such as SPICE [3] for circuits, COPASI [4] for bio-chemical
pathways, etc.) have been developed to simulate these systems.
A key challenge is that the number of these differential equations

can be very large, making simulation extremely slow. For example,
a full-SPICE simulation for a circuit with millions of transistors can
take days or weeks. As another example, bio-chemical reactions that
involve a large number of molecules and reactions also result in a
large number of equations.
In this context, model order reduction (MOR) methods become

important for simulating large scale dynamical systems. They macro-
model a large system into a much smaller one which preserves
important input-output responses of the original system. This am-
bitious objective makes MOR an extremely hard problem, but also
an extremely useful technique to simulate large scale systems that
are otherwise not affordable to simulate.
MOR for linear systems (especially LTI systems) has witnessed

many advances [5]–[8], thanks to elegant linear system theories
and wide applicability to real problems, such as RLC networks
(in transmission lines and power grids), LTI systems derived from
discretization of partial differential equations, etc..
In contrast, MOR for nonlinear systems is much more difficult.

One class of methods is based on linearization of nonlinear systems
around steady state (DC or periodic) solutions. For example, linear
reduced models [9], bilinear reduced models [10] and polynomial
reduced models [11]–[13] are based on linearization around the DC
operating point of the circuit; linear time-varying reduced models
[12], [14] are based on linearization around the periodic steady state
of the circuit. Because of the linearization, they are only valid for
small signal inputs superimposed on the steady state solution. They
also fail to capture many important behaviors of the original nonlinear
systems, such as high-order nonlinear harmonic distortions, nonlinear
DC responses, oscillatory behaviors, etc..
To address shortcomings of linearization, another class of nonlinear

MOR methods, known as trajectory-based methods [2], [15], [16]
has been proposed. They generally employ a two-step procedure:
(1) training the system and sampling trajectories; (2) building up
a low-order subspace, and projecting the original system onto that
subspace to generate the reduced order model. Several important
issues regarding efficiency, stability and passivity have been studied
[17]–[20], and considerable reduction on some practical examples
has been reported. However, it still remains unclear how important
dynamics, such as DC and AC responses, are preserved in the reduced
model.

Recently, a promising variant of trajectory-based methods, man-
iMOR [1], has been proposed. It consists of three steps: (1) con-
struction of the manifold; (2) parameterization of the manifold; (3)
projection of the state space to the manifold. Because it projects the
original state space onto a nonlinear manifold, it achieves greater
reduction than linear projection. Moreover, it has the important
property that it explicitly tries to replicate nonlinear DC responses
across a range of inputs, which is achieved by constructing a manifold
on which the DC and AC responses lie. Therefore, the key steps in
maniMOR are to construct a “good” manifold, and parameterize it.
However, the manifold construction and parameterization proposed in
[1] are more ad hoc than systematic, and potentially computationally
expensive, as detailed in the following sections.
In this paper, we present a new method to systematically construct

the manifold and to parameterize it. The key insight of our manifold
construction scheme is to make sure that the tangent space at any
point on the manifold spans the same subspace as the low-order
subspace (such as Krylov subspace) of the linearized system at that
point. Following this key idea, we define an ideal manifold as the
solution of a set of differential equations, each of which corresponds
to integral curves on the manifold.
However, we show that such an ideal manifold may not exist, and

that only an “optimal” manifold can be constructed, in the sense
that the local tangent space at any point on the manifold spans the
low-order subspace of the linearized system as much as possible.
As a result, we propose a heuristic algorithm to efficiently identify
an almost-ideal manifold by finding integral curves, the concept of
which is drawn from differential geometry.
The manifold constructed in our algorithm inherits the important

property of covering of DC and AC responses. This is achieved by
tracing integral curves corresponding to DC and AC responses, which
is more efficient and elegant than performing a series of brute-force
DC and AC analyses to the system, as is done in maniMOR [1].
Since integral curves are defined by a set of differential equations,
various numerical integration methods used in transient simulation
can be readily applied.
Besides capturing important responses correctly, another important

guideline for constructing and parameterizing the manifold is to pre-
serve local distance metrics, i.e., the local distance between two points
on the manifold should be the same as that in the original state space.
To preserve local distance metrics, we construct normalized integral
curve equations for integral curves, and prove that the solutions of
normalized integral curve equations overlap with those of regular
integral curve equations. Thus, integration of normalized integral
curve equations naturally gives an almost perfect parameterization
on the manifold that preserves local distance metrics, rather than the
ad hoc approach in maniMOR [1].
Since the conditions for an ideal manifold are usually not satisfied,

a metric to define the “quality” of the manifold is desired. Assuming
moment-matching methods are used to generate low-order subspaces
at each point on the manifold, we derive an error bound for the
moments of impulse responses of linearized systems of the reduced
model. This error bound is then used as a metric to assess the
“quality” of the manifold.
We verify our manifold construction and parameterization method

on a simple example where all the equations for the manifold can be
written analytically. We then combine the manifold construction and
parameterization method in this paper with maniMOR, and apply it
to reduce two systems, including a quadratic nonlinear system and a
CMOS circuit. Simulation results are compared with full models as
well as TPWL reduced order models.
The remainder of the paper is organized as follows. In Section II,

we review the nonlinear projection framework for nonlinear model
order reduction, the concept of a manifold, and the manifold con-
struction and parameterization scheme in maniMOR. In Section III,
we describe the manifold construction and parameterization method
by finding integral curves. In Section IV, we show two examples
of application of our method, and compare simulation results to full
models and TPWL reduced order models.
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II. BACKGROUND

In this section, we first summarize the nonlinear projection frame-
work, which is the core of many existing MOR methods. Then we
briefly review the concepts about manifold as well as the manifold
construction and parameterization in maniMOR [1].

A. Nonlinear Projection Framework for Nonlinear Model Reduction

Consider a system described by ordinary differential equations1

d

dt
x+ f (x)+Bu(t) = 0, (1)

where x ∈ R
n are state variables2, and u(t) are the inputs.

The nonlinear projection framework for reducing (1) consists of
three main steps: [1]

1) Construction of the nonlinear manifold
2) Parameterization of the manifold
3) Projection from original state space to the manifold

Given this nonlinear projection framework, the question is how to
construct a “good” manifold and parameterize it appropriately.

B. Manifold and its Parameterization

In this subsection, we introduce some concepts that are related to
this work from differential geometry [21], in a rather intuitive manner.
Readers are recommended to refer to textbooks on this subject for
more rigorous definitions and details.
Roughly speaking, manifolds are locally vector spaces and globally

curved surfaces. The tangent space at a point on the manifold is a
linear space which locally approximates the manifold. The dimension
of the tangent space is the same as the dimension of the manifold.
For example, Fig. 1(a) shows a helix, which is defined by

x = cos(t), y = sin(t), z = t. (2)

It is locally a 1-D line, and globally a 1-D manifold (curve). For
another example, Fig. 1(b) shows a sphere, which is defined by

x = sinθ + cosφ , y = sinθ + sinφ , z = cosθ . (3)

It is locally a 2-D plane, and globally a 2-D manifold (sphere).
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Fig. 1. Examples of 1-D manifold and 2-D manifold.

To be formal, a subset M ⊂ R
n is called a smooth manifold of

dimension m if for each x ∈M there is a neighborhood W
⋂
M (W ⊂

R
n), that is diffeomorphic to an open set U ⊂ R

m. [21]
Accordingly, a diffeomorphism ψ from U to W

⋂
M is called a

parameterization, and and its inverse ψ−1 is called a system of
coordinates on W

⋂
M. [21] Therefore, suppose x ∈ R

n is on the
manifold, and z ∈ R

m is the global coordinates on the manifold, then
z = ψ−1(x) and x = ψ(z). Note that ψ(·) is exactly the v(·) function
in maniMOR.
With a parameterization ψ :U ⊂R

m �→M ⊂R
n of a neighborhood

ψ(U) of x on manifold M, the tangent space to M at x = ψ(z) (de-
noted by TMx) is defined to be the image of the map Dψu :R

m �→R
n,

where Dψu is defined as

Dψu(h) = lim
t→0

ψ(u+ th)−ψ(u)

t
. (4)

In other words, a manifold can be defined as a pair (X ,TMX ) where
X are the points on the manifold and TMX are the tangent spaces for
all x ∈ X . This definition also validates the usage of piecewise linear
approximation to the manifold in maniMOR [1].

1A more general form is differential algebraic equations d
dt
q(x)+ f (x)+

Bu(t) = 0. However, for simplicity, we consider only ordinary differential
equations in this paper.

2Specifically, x represent node voltages and branch currents in modified
nodal analysis equations for the circuit.

C. Manifold Construction and Parameterization in maniMOR [1]

ManiMOR [1] uses two insights to identify the manifold. (1) After
the transient behavior is over, the state variable should converge
to its DC operating point (DC steady state), if the circuit is not
oscillatory or chaotic; (2) Operating at each DC steady state, the
local linear subspace around the DC solution can be approximated
by a low-order Krylov subspace of the LTI system linearized at that
DC operating point. Based on these two insights, maniMOR first
performs a series of DC analyses to the circuit, and build up a 1-
D manifold by connecting all the DC solutions. Then at each point
on the 1-D manifold, the nonlinear system is linearized and Krylov
subspace for the linearized system is generated. Finally, the manifold
is obtained by stitching together all these Krylov subspaces.
For example, Fig. 2 shows a 2-D manifold for a nonlinear system,

where the red curve is composed of all the DC solutions, the green
arrows represent the second Krylov basis vector, and the yellow
surface is obtained by connecting together all the local tangent spaces.

Fig. 2. Illustration of manifold construction in maniMOR.

Based on this manifold, maniMOR parameterizes the manifold by
trying to preserve the local distances in the original state space. Given
two the coordinates of points xi,x j ∈ R

n, and the coordinate of xi on
the manifold (zi), maniMOR calculates the coordinate of x j on the
manifold to be z j such that

||zi− z j||2 = ||xi− x j||2. (5)

There are two main issues associated with the manifold construc-
tion and parameterization in maniMOR.
Firstly, the manifold is nonlinear only along the first dimension,

which captures system responses mainly around DC operating points.
The generalization to make higher dimensions of the manifold to be
nonlinear is not straightforward.
Secondly, when computing the DC manifold, the step size for

DC sweep analysis is hard to set since two close DC inputs can
lead to two DC solutions far apart. In this case, the parameterization
procedure can incur large errors. For example, if we perform a DC
sweep analysis to an inverter, and want to approximate the DC curve
by five points, it is undesirable to have a uniform sampling of the
input voltage, as shown in Fig. 3(a). Instead, we want to automatically
choose the points equally spaced on the curve, as shown in Fig. 3(b).
It is also obvious that the parameterization in the latter case better
preserves the distance metric.

(a) Uniform sampling of the
input.

(b) Uniform sampling on the
DC curve.

Fig. 3. DC manifold of a single inverter.

III. MANIFOLD CONSTRUCTION AND PARAMETERIZATION BY

FINDING INTEGRAL CURVES

In this section, we first give a brief introduction to the concept
of integral curve. We then show that the DC manifold constructed
in maniMOR can in fact be solved by finding an integral curve.
By normalizing the RHS of differential equations for the integral
curve, we obtain normalized integral curve equations, which are more
appropriate for the manifold parameterization application.
By generalizing the idea for finding the DC manifold, we define

an ideal manifold by the solution of a set of differential equations.
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This manifold has the property that at each point on the manifold, the
tangent space is defined by the low-order subspace of the linearized
system at that point. As an example, we use Krylov-subspace based
moment-matching methods to solve for the low-order subspace for
each linearized system. However, other subspaces may also be used
for the tangent space.
Unfortunately, we show that such an ideal manifold may not exist.

Therefore, instead of finding this ideal manifold, we give a heuristic
method to find an almost-ideal manifold, which can be solved
efficiently by repeatedly finding integral curves. Since the tangent
space of this almost-ideal manifold does not span the right Krylov
subspace of linearized systems, the moments of the reduced systems
linearized at the same points on the manifold are not matched. To
assess how well the moments are matched, we also provide an error
bound for the moments of the reduced linearized systems.

A. Integral Curve

Integral curve is an important concept in differential geometry. To
define an integral curve, a vector field V on the manifold M must be
defined first. A vector field V essentially defines a vector v(x)∈ TMx
at each point x ∈M. An integral curve of a vector field V is then the
curve γ ≡ x(t) on M, such that

dx

dt
= v(x). (6)

Intuitively, the integral curve can be viewed as the path of a point
mass in the state space, and on any point on this path, the velocity
of the point mass is determined by the vector field V , as shown in
Fig. 4.

Fig. 4. Integral curve.

Therefore, the solution to (6) gives a construction of a curve
consisting of points on x(t) and a parameterization of the curve γ
by parameter t.

B. DC Manifold

In maniMOR [1], the DC manifold is defined by the DC equations
of the circuit

f (x)+Bu = 0. (7)

Differentiating (7) with respect to the input u (assuming u is a
single input), we obtain

d f

dx

dx

du
+B = G(x)

dx

du
+B = 0. (8)

where G(x) = d f
dx is the Jacobian matrix of f (x).

Thus, if G(x) is non-singular, we have

d

du
x = −[G(x)]−1B. (9)

which defines an integral curve x(u), parameterized by the input u.
We call (9) the regular integral curve equation. Note that the RHS
defines a vector whose direction is the same as the first Krylov basis
vector for systems linearized at x. With (9), theorem 3.1 follows:
Theorem 3.1: Suppose [G(x)]−1B satisfies the Lipschitz condi-

tion. Then there exists a unique solution to (9), x(u), which corre-
sponds to DC solutions to (7), if the initial condition is chosen to be
a DC solution x0 when u = u0.

Proof: According to the existence and uniqueness theorem for
ordinary differential equations [21], since [G(x)]−1B satisfies the
Lipschitz condition, (9) has a unique solution.
Depending on the initial condition, the solutions to (9) have the

general form of
f (x)+Bu+�c = 0, (10)

where �c is a constant vector.
Since the initial condition is x0, which is the DC solution when

u = u0, we have
f (x0)+Bu0 +�c =�c = 0. (11)

Therefore, x(u) satisfies DC equations (7).
As an illustration, we consider the following 2-D nonlinear system

d

dt
x1 = −x1 + x2−u(t),

d

dt
x2 = x21− x2. (12)

Therefore, the equation for the DC integral curve is

dx

du
= −[G(x)]−1B =

1

2x1−1

[
1
2x1

]
. (13)

In order to solve for the DC curve, we set the initial condition
to be a DC solution. Without loss of generality, we choose the DC
solution when u= 0, which is x1 = 0,x2 = 0. The DC manifold solved
by integrating the integral curve equation is shown in Fig. 5. Fig. 5(a)
shows the trajectories of x1 and x2 with respect to input u, and Fig.
5(b) shows the DC curve in the state space. It is easily verified that all
the points on this integral curve are indeed the DC operating points.
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Fig. 5. Constructing the DC manifold by tracing the integral curve.

C. Normalized Integral Curve Equation

There is one major drawback in the above naı̈ve manifold con-
struction and parameterization method: the local distance metric in
the original state space is not preserved. Since u is the parameter that
parameterizes the DC manifold, we require |du|= ||dx||2, in order to
preserve the local Euclidean distance (defined by 2-norm). However,
||[G(x)]−1B||2 = 1 is not satisfied for almost all the cases.
Moreover, in Krylov subspace methods, usually only the normal-

ized basis vectors are calculated for each linearized system, in order to
retain the numerical stability in generating the projection matrix. This
is especially the case when Krylov subspace algorithms are called
as a black-box sub-routine. Therefore, the RHS in (9) may not be
available.
To circumvent these problems, we build up a normalized integral

curve equation
dx

du
=

[G(x)]−1B

||[G(x)]−1B||2
(14)

where the RHS is normalized (divided by the 2-norm of the RHS).
In (14), the 2-norm of the RHS is constantly 1, and therefore, the
local distance is preserved on the manifold parameterized by u.
It still remains to show that the solutions to (14) cover the same

state space as the solutions to (9), i.e., the DC manifold remains
the same, and only parameterization changes. The following theorem
gives a way to prove this property:
Theorem 3.2: Suppose x(t) and x̂(τ) are the solutions to

d

dt
x(t) = g(x(t)) (15)

and
d

dτ
x̂(τ) = σ ′(τ)g(x̂(τ)), (16)

respectively, where t = σ(τ) is a function of τ . Then x(t) and x̂(t)
span the same state space, i.e.∀t,∃t̂,such that x̂(t̂) = x(t).

Proof: Since t = σ(τ), we have

dt = σ ′(τ)dτ (17)

Define
x̂(τ) ≡ x(t) = x̂(σ(t)). (18)

Therefore,

d

dτ
x̂(τ) =

dx̂(τ)

dt

dt

dτ
= g(x(t))σ ′(τ) = g(x̂(τ))σ ′(τ), (19)

i.e.,
d

dτ
x̂(τ) = σ ′(τ)g(x̂(τ)). (20)
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According to the existence and uniqueness theorem for ordinary
differential equations, x(t) and x̂(τ) are the unique solutions to (15)
and (20), respectively.
So x(t) and x̂(t) span the same state space.
Based on theorem 3.2, we can prove the following corollary,
Corollary 3.3: The solutions to the normalized integral curve

equation (14) span the same space as the solutions to the regular
integral curve equation (9).

Proof: Suppose the solutions to (9) and (14) are is x(u) and x̂(û),
respectively. Let

u = σ(û) =
∫ û

0

1

||[G(x̂(μ))]−1B||2
dμ. (21)

By theorem 3.2, x(t) and x̂(û) span the same state space.
To validate the above theorem and corollary, we perform the

integration of (14) for the same 2-D example, and compare the results
to those of (9), as shown in Fig. 6. Fig. 6(a) plots trajectories of
x1 and x2 for both regular integral curve equations and normalized
integral curve equations, and we observe that two integral curves give
different parameterizations. Fig. 6(b) plots the integral curves in the
state space, and it is clear that two integral curves overlap perfectly
in the state space.
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Fig. 6. Comparison of regular integral curve and normalized integral curve.

The normalized integral curve equation, together with theorem 3.2
and corollary 3.3, are of great value in two aspects:
Firstly, integrating normalized integral curve equations has a much

better numerical behavior than integrating regular integral curve
equations. For the simplest scalar equation ẋ = x, we know that
the solution x(t) grows exponentially – which is a bad news for
parameterization use since as t increases, |x(t + Δt) − x(t)| also
increases exponentially. However, the solution x̂(t) to the normalized
integral curve equation increases only at a constant rate, and thus the
points on the integral curve are well spaced.
Secondly, it gives rise to generalization of this integral curve

based manifold construction and parameterization method to higher
dimensions. Viewing Krylov subspace methods as a black box, the
input is an LTI system, and the output is a projection matrix, whose
columns are ortho-normalized basis vectors. Therefore, it is natural
to explore the manifold by integrating along directions other than the
DC direction.

D. Ideal Nonlinear Manifold

Inspired by the idea of parameterizing the DC manifold by finding
an integral curve, we further propose an ideal nonlinear manifold
defined by a set of differential equations.
The ideal nonlinear manifold is derived by the following intuition:

For a nonlinear system, if the current state is x∗, then the local
behavior of the nonlinear system is determined by the linearized
system (at x∗), and the behavior of the linearized system can be
efficiently approximated by its reduced order model, by projecting
the original state space to a low-order subspace (such as Krylov
subspace). On the other hand, by definition, the manifold around
x∗ (which is on the manifold) is well-approximated by the tangent
space at x∗. Therefore, it is desirable for the tangent space at x∗ to
span the low-order subspace generated for the linearized system (at
x∗).
For example, if we use Arnoldi algorithm to generate the q-th order

Krylov subspace V (x) = [v1(x), · · · ,vq(x)] for linearized systems, it
is desirable for the tangent space at x to span the subspace defined
by V (x). Let x ∈ R

n be the state variable in the original state space,
and z ∈ R

q be the state variable on the parameterized manifold, then

the tangent space is defined by the span of ∂x
∂ z
. Therefore, we have

∂x

∂ z1
= v1(x),

∂x

∂ z2
= v2(x), · · · ,

∂x

∂ zq
= vq(x). (22)

Unfortunately, these differential equations are over-determined, and
the solution may not exist. (In (22), the number of unknown variables
x is n, and the number of equations is n× q.) As an example, we
discuss the existence of the 2-dimensional ideal manifold, which we
call AC manifold.

E. AC Manifold

As just shown, the equations defining the AC manifold are

∂x

∂ z1
= v1(x),

∂x

∂ z2
= v2(x). (23)

Suppose the DC manifold is already constructed and parameterized
by integrating the first equation. The AC manifold is constructed and
parameterized starting from this DC manifold, i.e., when integrating
the second equation in (23), the initial condition is set to the points
on the DC manifold.
As an example, assume Krylov subspace

[
[G(x)]−1B, [G(x)]−2B

]
is used as tangent spaces. Then the AC manifold is defined by

∂x

∂ z1
= w1(x),

∂x

∂ z2
= w2(x), (24)

where w1(x) = [G(x)]−1B and w2(x) = [G(x)]−2B.
As shown in Section III-C, the RHS should be normalized to obtain

better parameterization of the manifold. Furthermore, we ortho-
normalize W (x) = [w1(x),w2(x)] to obtain V (x) = [v1(x),v2(x)] so
that the output of Arnoldi algorithm can be directly used.
Therefore, for the same 2-D example in Section III-B, the man-

ifold identified by solving (23) is plotted in Fig. 7, where the red
curve is the DC manifold, the blue curves are AC integral curves
integrated using different DC operating points as initial conditions.
In Fig. 7, the region plotted correspond to z1 ∈ [0,2] and z2 ∈ [−2,1].
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Fig. 7. AC manifold.

However, is this manifold an ideal manifold? To examine this
question, we present a test (necessary condition) for ideal manifolds.
In an ideal manifold, there are at least two paths to integrate from

one point to another point on the manifold. For example, Fig. 8(a)
shows two paths from point A to point D: A→B→D and A→C→D,
where A,B,C,D have coordinates on the manifold being (z1,z2), (z1+
h,z2), (z1,z2 + h), (z1 + h,z2 + h), respectively. (A→ B and C → D
are on DC integral curves; A → C and B → D are on AC integral
curves.) In other words, no matter what path is used for integration,
the same point should be reached.

(a) Two paths from A to D. (b) Test for ideal manifold.

Fig. 8. Test for ideal manifold.

Alternatively, this can be restated as follows: if we parameterize
the manifold along the path A→ B→D→C→ A′, A and A′ should
be identical, as illustrated in Fig. 8(b). This serves as a simple test
criterion for ideal manifolds.
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Since this is generally not the case, we conclude that the ideal
manifold may not exist for most cases. (The proof is omitted due to
page constraints.)

F. Manifold Construction by Finding Integral Curves

Since an ideal manifold may not exist, we present an algorithm
to build an almost-ideal manifold, as shown in algorithm 1. This
algorithm starts with an DC operating point in the state space.
Using this DC solution as the initial condition, the DC manifold
is calculated by integrating DC integral curve equations. Using
the DC manifold as initial conditions, the AC manifold is then
calculated by integrating AC integral curve equations. Accordingly,
using the (i− 1)-th manifold obtained from previous iterations as
initial conditions, the i-th manifold is calculated by integrating the i-
th integral curve equations. Finally, a set of points X on the manifold
and their parameterizations Z are exported to maniMOR to generate
the reduced order model.

Algorithm 1 Manifold Construction by Finding Integral Curves

1: Given the region to be parameterized (zi,min,zi,max), i ∈ [1,q];
2: Let x0(0, · · · ,0) = xDC, where xDC is the DC solution when u= 0;

3: X ←{x0}, Z ← (0, · · · ,0);
4: for i = 1 to q do

5: for all x ∈ X do

6: Integrate the integral curve equation

∂x

∂ zi
= vi(x) (25)

with initial condition x;

7: X ←{x(z)}, Z ← z;

8: end for

9: end for

10: Output X as the set of points on the manifold;

11: Output Z as the parameterization of the manifold for each point

x ∈ X .

Notice that this manifold does not satisfy the condition for ideal
manifolds, and therefore we need to derive the tangent space at
each point on the manifold, rather than using the low-order Krylov
subspace for the linearized system.
For example, consider the AC manifold where two AC integral

curves are integrated using two close initial conditions on the DC
manifold x(z10,0) and x(z10 + Δz1,0). By integrating AC integral
equations, we obtain two points x(z10,z2) and x(z10+Δz1,z2). There-
fore, the basis vector along the first dimension is

v1 = lim
Δz1→0

x(z10 +Δz1,z2)− x(z10,z2)

Δz1
=

∂x(z1,z2)

∂ z1
. (26)

According to the chain rule, we have

v1(z1,z2) =
∂x(z1,z2)

∂ z1
=

∂x

∂x0

∂x0
∂ z1

. (27)

where ∂x
∂x0

is the sensitivity of the state transition function Φ(z2;x0,0)

with respect to the initial condition x0 = x(z10,0)
3 and ∂x0

∂ z1
is the first

basis vector along the DC manifold at x0.
This notion is easily generalized into higher-dimensions. For

example, if the dimensionality of the manifold q is 3, assume at
any point x on the 3-D manifold but not on the 2-D AC manifold,
the basis vector for the tangent space is [v1,v2,v3], where v3 is the
third Krylov basis for the linearized system at that point. Accordingly
vi,(i = 1,2) is calculated by

vi = lim
Δzi→0

x(zi +Δzi)− x(zi)

Δzi
=

∂x

∂x0

∂x0
∂ zi

(28)

where ∂x
∂x0

is calculated by performing a transient sensitivity analysis,

and ∂x0
∂ zi

is already calculated in previous iterations.

Intuitively speaking, this heuristic is reasonable, since when the
state variable is far from its DC solution, the fast dynamics are

3 The routine to calculate this sensitivity is commonly used in shooting
methods which are available in RF simulators.

dominant over slow dynamics. Therefore, it is more desirable for
the tangent space to span the basis vectors corresponding to fast
dynamics (e.g., which correspond to last few Krylov basis vectors).
Indeed, we may reasonably assume that the variables corresponding
to slow dynamics do not change.
When the state variables are driven close to the operating point,

then the slow dynamics dominate and is also well-modeled by the
manifold. These facts make the manifold constructed in algorithm 1
a reasonable one to project onto.

G. Error Bound for the Moments

Since the basis for the tangent space V = [v1, · · · ,vq] do not span
the low-order Krylov subspace generated by Arnoldi algorithm, not
all the moments are matched to the original linearized system.
Since the moments of the linearized system are

mi−1 = (VTGV )−iVTB, (29)

which is equivalent to the following iterative definition

m0 = (VTGV )−1VTB, mi = (VTGV )−1mi−1, ∀i≥ 1. (30)

Denote A=VTGV , and b=VTB, then the moments are calculated
by a series of Ax = b problems:

Am0 = b, Ami = mi−1, ∀i≥ 1 (31)

Assuming the projection matrix constructed in algorithm 1 is V̂ =
V +ΔV , then we obtain a perturbed problem

(A+ΔA)x = b+Δb, (32)

where ΔA = ΔVTGV +VTGΔV +ΔVTGΔV and Δb = ΔVTB.
On the other hand, for the perturbed system (32), an upper bound

[22] for the relative error
||Δx||
||x|| is

||Δx||

||x||
≤ εκ(A)

(
||b||

||A|| · ||x||
+

||y||

||x||

)
(33)

where ||ΔA|| ≤ ε||A|| and ||Δb≤ ε||b||. Therefore, the error bounds
for all the moments can be calculated iteratively, and can be used to
assess how “good” the manifold is.

IV. VALIDATION

In this section, we replace the manifold construction and pa-
rameterization steps in maniMOR [1] with our method, and apply
the resulting new maniMOR method to two examples. We validate
our approach by comparing the simulation results using this new
maniMOR model against the full model and TPWL model.

A. Illustrative 3-D Nonlinear System

We consider an illustrative 3-D nonlinear system

d

dt

[
x1
x2
x3

]
=

[
−10 1 1
1 −1 0
1 0 −1

][
x1
x2
x3

]
−

[
0
0
x21

]
+

[
1
0
0

]
u(t) (34)

which has a simple quadratic nonlinearity.
We apply our method to construct and parameterize the manifold,

as shown in Fig. 9. In Fig. 9, the red curve is the DC manifold, the
blue curves constitute the AC manifold. The black trajectory is the
trajectory of a transient simulation of (34) – it lies almost on the
manifold we construct.
Using the manifold, we apply maniMOR algorithm to generate

a size 2 model for this system, and perform transient simulations.
Fig. 10(a) and Fig. 10(b) show simulation results when the system
is excited by a multiple-step function u(t) that jump among several
DC values. It is observed that maniMOR model tracks the trajectory
of the full model better than TPWL. The maximum absolute mean
square error of maniMOR model and TPWL model, compared to
full model, are 0.0534 and 0.0627, respectively. Although the TPWL
model only lead to an error that is slightly larger than maniMOR,
its trajectory fails to converge to the right DC operating point, which
makes the model unacceptable.
The largest error of maniMOR model happens near time t = 5,

as shown in Fig. 10(b). This is not desired in the reduced order
model – it predicts wrong dynamics of the system. However, although
maniMOR captures wrong dynamics of the system in some region
due to the reduction, its robustness is also exhibited. After the fast
transient behavior is over, the trajectory matches that of the full
model, and finally converges to the correct DC solution – the long
term DC behavior is correct in maniMOR.
Similar results are observed in Fig. 10(c) and Fig. 10(d), where we

apply a two tone sinusoidal input u(t) = 2.5+sin(0.1πt)+cos(0.4πt).
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Fig. 9. 2-D manifold for (34).
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Fig. 10. Comparison of maniMOR and TPWL model. (multiple-step input
and sinusoidal input) Red, green and blue trajectories represent simulation
results of maniMOR, TPWL and full model, respectively.

B. CMOS Ring Mixer

The second example, a simple CMOS ring mixer [23] is highly
nonlinear – this can also be seen in Fig. 11(a) that the manifold we
constructed is quite twisted.
Again, maniMOR is applied to generate the reduced model. To

inspect how well the reduced model captures dynamics and non-
linearities, we apply a step input, and simulate the circuit using full
model and maniMOR model. The simulation results are shown in Fig.
11, where we see that the trajectory goes out of the manifold, and
finally converges back to another DC operating point. The maximum
absolute and relative mean square error in this case is 0.1293 and
0.0492, respectively.

(a) state space
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projection on manifold (full model)

(b) x3(t)

Fig. 11. Simulation of maniMOR and full model for the CMOS ring mixer.

V. CONCLUSION

In this paper, we have presented a new manifold construction and
parameterization procedure for nonlinear model order reduction based
on projection on manifolds. The manifold we construct inherits good
properties of the manifold in maniMOR [1] such as covering DC and
AC responses. It also preserves better local distance on the manifold
by parameterizing the manifold by integrating normalized integral
curve equations, which is a modified version of regular integral curve
equations. To gauge the quality of the manifold, we also derive an

error bound of the moments for linearized systems when moment-
matching MOR methods are used to reduce each linearized system.
We have combined this method with maniMOR approach, and applied
it to several examples. The resulting reduced models are validated by
comparing to full models and TPWL reduced models.

REFERENCES

[1] C. Gu and J. Roychowdhury. ManiMOR: Model Reduction via Pro-
jection onto Nonlinear Manifolds, with Applications to Analog Circuits
and Biochemical Systems. In Computer-Aided Design, 2008. ICCAD
2008. IEEE/ACM International Conference on, pages 85–92, 10-13 Nov.
2008.

[2] M. Rewienski and J. White. A Trajectory Piecewise-Linear Approach
to Model Order Reduction and Fast Simulation of Nonlinear Circuits
and Micromachined Devices. IEEE Transactions on Computer-Aided
Design, 22(2), February 2003.

[3] L.W. Nagel. SPICE2: a Computer Program to Simulate Semiconductor
Circuits. PhD thesis, EECS department, University of California,
Berkeley, Electronics Research Laboratory, 1975. Memorandum no.
ERL-M520.

[4] S. Sahle et al. Simulation of biochemical networks ssing copasi: a
complex pathway simulator. In Proceedings of the 37th conference
on Winter simulation, pages 1698–1706. Winter Simulation Conference,
2006.

[5] E. Chiprout and M.S. Nakhla. Asymptotic Waveform Evaluation.
Kluwer, Norwell, MA, 1994.

[6] P. Feldmann and R.W. Freund. Efficient Linear Circuit Analysis by
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