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ABSTRACT
The concept of centrality plays an important role in network anal-
ysis. Game theoretic centrality measures have been recently pro-
posed, which are based on computing the Shapley Value (SV) of
each node (agent) in a suitably constructed co-operative network
game (for example see [1]). However, the naive method of exact
computation of SVs takes exponential time in the number of nodes.
In this paper, we develop analytical formulas for computing SVs
of nodes for various kinds of centrality-related co-operative games
played on both weighted and unweighted networks. These formu-
las not only provide an efficient and error-free way of computing
node centralities, but their surprisingly simple closed form expres-
sions also offer intuition into why certain nodes are relatively more
important to a network.

Categories and Subject Descriptors: H.0 [Information Sys-
tems]: General; H.5.3 [Group and Organization Interfaces]: Evalu-
ation/methodology

General Terms: Algorithms, Economics, Game Theory
Keywords: Game Theory, Co-operative Games, Shapley Value,

Social Networks

1. INTRODUCTION
The question of which nodes and edges are most important to a

network arises naturally in many different contexts - such as deter-
mining the most influential people in a social network or the most
important highways in a road network or the most critical func-
tional entities in a protein network. As a result, the concept of cen-
trality has been studied extensively in network analysis [2]. Here
we explore notions of centrality based on game theoretic ideas.

Traditional centrality measures have usually worked by assign-
ing a score to each node of a network, which in some way corre-
sponds to the importance of that node for the application at hand.
For instance, if the application is to design a communications net-
work robust to targeted attacks, a traditional centrality measure
might work by analysing the consequences of failure of each node.
The more adverse the consequences of failure, the higher the node
centrality. Different traditional measures of centrality have been
evolved for different applications. These include degree centrality,
betweenness centrality, closeness centrality, eigenvalue centrality
etc [2].
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However, in many network applications, it is not sufficient to
merely view nodes as stand-alone entities. One would ideally like
to understand the importance of each node in terms of its utility
when combined with other nodes [3]. For instance, in the above
communications network, one would ideally like to assign a cen-
trality score to a node n based on the consequences of failure of
every arbitrary combination of nodes containing n, rather than just
failure of the single node n.

Game theoretic centrality has been proposed as a framework that
embraces the above philosophy [1]. Given the network to be anal-
ysed, the main idea here is to define a co-operative game involving
the agents (nodes) of the network. This involves specifying the
“coalition value” of every arbitrary combination of agents - which
can depend in a highly non-trivial way on the underlying network
structure. The final step is to determine the Shapley Value (SV) of
each agent in this game, which is the required centrality measure.

The chief difficulty in adopting such a game theoretic centrality
measure is that the naive algorithm for computing SVs in a coali-
tional game is of exponential complexity in the number of agents.
For this reason, papers like [1] adopt a Monte-Carlo simulation
based approximate method of evaluating SVs. However, the ac-
curacy of such an approach is open to doubt because the simulator
would only be able to explore a vanishingly small section of the
sample space as the network becomes large.

Our key contribution is to show that it is possible to efficiently
and accurately compute SVs in the context of many co-operative
games of practical interest defined on large networks. Indeed, we
develop exact closed-form formulas to characterise the SVs of agents
in these games, which can be turned into linear and polynomial
time algorithms to efficiently compute node centralities.

2. PRELIMINARIES
We assume that the reader is familiar with common notions of

graph theory including weighted and unweighted graphs, vertex de-
grees, neighbouring nodes and shortest paths. We do not define
these concepts here but suggest the reference [4]. All weighted
graphs considered in this paper are positive weighted. Further, all
graphs are assumed to be undirected. Also, we use deg(ni, G) to
denote the degree of node ni ∈ V (G) in graph G. Lastly, the terms
"graph" and "network" are used interchangeably in this paper, as
are the terms "node" and "vertex".

We also assume that the reader is familiar with notions of co-
operative game theory, including the definition of coalitional games
and the Shapley Value. We do not define these concepts here but
suggest the reference [5].

We now set the notation for a general coalitional game played on
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a graph. Given a graph G(V, E) with vertex set V and edge set E,
we define a coalitional game g(V (G), v) with set of agents V (G)
and characteristic function v. That is, the agents (players) of the
coalitional game are the vertices of the graph G. The characteristic
function v : 2V (G) → R is a map from the powerset of V (G) to the
set of real numbers R. The map v can be any function that depends
on the graph G as long as it satisfies the condition v(∅) = 0. We
use the phrase “value of coalition s” to informally refer to v(s)

where s ∈ 2V (G).

Following the notation above, we now proceed to define and
solve specific coalitional games played on weighted and unweighted
graphs.

3. GAME 1
Given an unweighted graph G. We define fringe(s, G) of a

coalition s ⊆ V (G) as the set {nj ∈ V (G) : nj ∈ s (or) (nj , ni) ∈
E(G) for some ni ∈ s}. We observe that the fringe captures a
“degree-like” intuition since it includes all nodes reachable from
the coalition s in not more than one step.

We now define the coalitional game g1(V (G), v) by the charac-

teristic function v : 2V (G) → R given by

v(∅) = 0

v(s) = size(fringe(s, G)) ∀s �= ∅

This coalitional game has been extensively discussed in [1], where
the authors motivate the game by arguing that the SVs of nodes in
this game constitute a centrality metric that is superior to degree
centrality for some applications. We shall now present an exact
formula for computing these SVs (rather than using Monte-Carlo
simulation as was done in [1]).

To evaluate the SV of node ni ∈ V (G), consider a permutation
p of nodes of G, drawn uniformly at random from the set of all
possible permutations. Let the set of nodes occurring before node
ni in p be denoted Sp(ni, G).

Now we ask the question - what is the necessary and suffi-
cient condition for node ni to marginally contribute node nj ∈
fringe({ni}, G) to fringe(Sp(ni, G), G)? Clearly this happens
if and only if neither nj nor any of its neighbours are already
present in Sp(ni, G). Given that p is chosen uniformly at random,
the probability of this event occurring is given by 1

1+deg(nj ,G)
.

Let Cni,nj denote the Bernoulli random variable that node ni

marginally contributes node nj ∈ fringe({ni}, G) to the value of
coalition Sp(ni, G). Thus we have

E(Cni,nj ) =
1

1 + deg(nj , G)

But the Shapley Value SV (ni) is the expected total marginal
contribution of node ni given by

SV (ni) =
X

nj∈fringe({ni},G)

E(Cni,nj )

Thus we have

SV (ni) =
X

nj∈fringe({ni},G)

1

1 + deg(nj , G)

which gives the required analytical expression for computing
SV of each node.

Algorithm 1: Computing SVs for Game 1

Input: Undirected unweighted graph G
Output: SVs of all nodes in G wrt Game 1

foreach node v ∈ V (G) do
ShapleyValue[v] = 1

1+deg(v,G)
;

foreach neighbour u of v do
ShapleyValue[v] += 1

1+deg(u,G)
;

end
end

Table 1: Other solved games

Graph Characteristic function Complexity

UW
v(s) is the number of nodes that
have atleast k neighbours belonging
to s

V + E

UW
v(s) is the number of nodes at-most
kcutoff degrees of separation away
from some node in s

V E + V 2logV

W
v(s) is the number of nodes whose
distance from some node in s is less
than dcutoff

V E + V 2logV

W

v(s) is an expression of the formP
ni∈V (G) f(minnj∈s d(ni, nj))

where d(ni, nj) is the distance
between nodes ni and nj and f is
an arbitrary decreasing function of
its argument.

V E + V 2logV

UW → Unweighted; W → Weighted

Algorithm 1 computes the exact SVs of all nodes by implement-
ing the above equation in O(V + E) time. By contrast, Monte-
Carlo simulation requires O(V + E) computations for each itera-
tion [1].

The above formula gives the intuition that a node will have high
centrality not only when its degree is high, but also whenever its
degree tends to be higher in comparison to the degree of its neigh-
bouring nodes.

4. OTHER GAMES
The approach described in the previous section is not limited to

game g1 alone. In fact, it has also enabled us to derive analytical
SV formulas for the more general scenarios outlined in the above
table. The actual proofs and algorithms for these additional games
are truly marvelous demonstrations. However, they require a signif-
icant amount of extra discussion and notation which this extended
abstract is too small to contain.
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