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Abstract—Abstraction of circuits is desirable for faster simulation and
high-level system verification. In this paper, we present an algorithm
that derives a Mealy machine from differential equations of a circuit by
learning input-output trajectories. The key idea is adapted from Angluin’s
DFA (deterministic finite automata) learning algorithm [1] that learns a
DFA from another DFA. Several key components of Angluin’s algorithm
are modified so that it fits in our problem setting, and the modified
algorithm also provides a reasonable partitioning of the continuous state
space as a by-product. We validate our algorithm on a latch circuit and
an integrator circuit, and demonstrate that the resulting FSMs inherit
important behaviors of original circuits.

I. INTRODUCTION

Circuit simulation and verification usually involve several levels
of abstraction. This is crucial to design automation and large circuit
designs. For examples, transistor-level modeling of circuits leads to
SPICE simulation (solving differential algebraic equations of circuits)
that is much faster than solving underlying PDEs of semiconductor
devices. This abstraction makes SPICE continue being the golden
standard for analog designers. At a higher level, RTL-level modeling
of digital circuits dramatically speeds up simulations (using Verilog)
and changes the design methodology, thus making VLSI designs (of
millions of transistors) possible.

The mappings between different levels of abstraction are highly
desirable. On the one hand, we often hope to extract high-level behav-
iors of a large circuit. This usually requires extensive simulations of
the whole circuit. However, SPICE-level simulation of large circuits
is inappropriate due to its extremely expensive computational cost.
Therefore, low-level circuit models are replaced with their high-level
much simpler models so that simulations can be finished within a
reasonable amount of time. For example, mixed-signal designs (such
as Sigma-Delta ADCs, phase locked loops, high-speed I/O links,
etc.) usually involve close interactions between analog and digital
sub-circuits. However, digital blocks (such as digital filters, phase-
frequency detectors or frequency dividers) can consist of a large
number of transistors – much larger than their analog counterparts.
These digital circuits severely slow down the simulation, while
simulation results may only capture unnecessarily accurate details
of digital blocks. Since for digital circuits, an RTL representation, or
even just a finite state machine model, can describe circuit behaviors
well enough, it is preferable to use these high-level models during
simulations of the whole system.

On the other hand, the ideal high-level block may not exhibit cor-
rect circuit behaviors in many situations. For example, in aggressive
low-power and high-speed designs, the design margin is pushed to
an extreme, and the smallest transistors are used which lead to large
parameter variations that make circuit exhibit unexpected behaviors.
For another example, in communication systems such as high-speed
I/O links, in order to meet the power budget, some components may
be intentionally designed to be erroneous when used stand-alone, but
the errors can be corrected by the error-resilient mechanisms. These
components may exhibit different erroneous behaviors according to
different inputs. In both cases, we desire to derive a high-level model
(such as an FSM) from the low-level model (such as a transistor-level

netlist), hoping that the high-level model captures important details
of the low-level model that affect circuit behaviors.

In this paper, we consider the problem of deriving an FSM model
from a transistor-level circuit description. We present an algorithm
whose key idea is based on an FSM learning algorithm (Angluin’s
DFA learning algorithm [1]) previously developed to learn an FSM
from I/O traces of another FSM. However, we aim to learn an
FSM (a discrete-time discrete-value dynamical system) from a circuit
description (a continuous-time continuous-value nonlinear dynamical
system). To do that, we have made considerable modifications of
Angluin’s algorithm to make it applicable in our problem.

As detailed in Section III, Angluin’s algorithm is essentially a well-
directed search for a DFA (deterministic finite automata, a special
FSM) that matches all I/O traces (simulation trajectories) provided
to the algorithm. However, in the circuit setting, a Mealy machine
or a Moore machine is a more preferable model than a DFA since
a Mealy/Moore machine directly describes how inputs and states
affect the outputs of a circuit. By employing the similar key idea
in Angluin’s algorithm, we revise the original algorithm so that it
directly extracts a Mealy machine.

Two other major modifications of the algorithm deal with two key
subroutines in Angluin’s algorithm, a simulator that generates input-
output trajectories of the original FSM and an equivalence checker
that checks the equivalence between the original and the learned FSM.
We have provided substitutes for these two subroutines that work in
our application. Since our adapted subroutines are based on SPICE
simulation of the circuit, they are able to capture detailed nonlinear
dynamics of the circuit.

With the FSM generated for a circuit, we further interpret the
meaning of each discrete state in the resulting FSM. We establish
connections between the FSM finite state space and the original con-
tinuous state space. As a by-product, we obtain a natural partitioning
of the continuous state space, each region of which corresponds
to a state in the FSM. While not discussed in great detail in this
paper, this partitioning can be utilized in several other macromodel-
ing/abstraction techniques, such as TPWL MOR techniques [2], [3]
and hybrid system abstraction [4].

We demonstrate and validate our algorithm on two circuits. In the
first example, we extract FSM models for an erroneous latch to be
used in a high-speed I/O link circuit. By applying our algorithm,
we obtain several FSMs of the latch with respect to different input
swings, and we have verified that these FSM models are able to re-
produce error behaviors observed in SPICE simulations. The second
example is a non-ideal integrator circuit. We show from this example
some important heuristics when applying our algorithm. The results
are also validated against SPICE simulations, and the FSMs are
shown to be good behavioral models of the integrator.

The rest of the paper is organized as follows. In Section II,
we motivate and define the FSM model abstraction problem, and
review some relevant work. In Section III, we review Angluin’s
DFA learning algorithm, and explain how we modify Angluin’s
algorithm to learn a Mealy machine from another Mealy machine.
In Section IV, we provide two key subroutines that enables learning
from a set of differential equations, and show connections between

978-1-4244-7514-8/11/$26.00 ©2011 IEEE

1A-2

7



FSM states and the continuous state space. In Section V, we present
experimental results of two circuit examples and verify that the FSM
models we extract are able to reproduce qualitative behaviors of
original circuits.

II. PROBLEM DEFINITION AND BACKGROUND

A. Problem Definition

We define the problem of model abstraction to be the extraction
of a high-level (approximate) model from a low-level model.

Choices of low-level and high-level models differ according to
applications. For example, the low-level model can be a SPICE netlist
or the corresponding differential equation; the high-level model can
be a small-signal linear model, a compact model, a smaller set of
differential equations, or a graphical model such as a finite state
machine or a dynamic Bayesian network. Specifically in this paper,
the low-level and high-level models are circuit differential equations
and a finite state machine model.

In the abstraction procedure, we require that the high-level model
retains “important” behaviors of the low-level model so that it can
serve as a substitute for the low-level model in high-level simulations
and verifications. Here, we describe one criterion from an input-
output perspective, and this will be used later in our algorithm.

Consider a circuit modeled by a set of differential equations

d

dt
�q(�x(t)) + �f(�x(t)) + �B�u(t) = 0,

�y(t) = �lT �x(t) + �dT�u(t),
(1)

where �x ∈ R
n are state variables (for example, node voltages in

circuit equations), �u are inputs (for example, voltage and current
sources), and �y are outputs. Therefore, the input-output pair of (1) is
a pair of continuous-time continuous-value waveforms (u(t), y(t)).
(For simplicity, we consider single-input single-output (SISO) sys-
tems, but it is straightforward to extend the idea to MIMO systems.)

Also consider a Mealy FSM defined by a 6-tuple
(Q,Q0,Σ,Λ, δ, G), where Q is a finite set of states, Q0 is
the initial state, Σ is a finite set of input alphabet, Λ is a finite
set of output alphabet, δ : Q × Σ → Q is the transition function
that maps a pair of a state and an input symbol to the next state,
and G : Q × Σ → Λ is the output function that maps a pair of
a state and an input symbol to an output symbol. Therefore, the
input-output pair of an FSM is a pair of discrete-time discrete-value
sequences (ui, yi), i = 0, 1, 2, · · · , where ui ∈ Σ and yi ∈ Λ.

To relate the FSM to differential equations (1), we define a unique
mapping t : {ui} �→ u(t) where u(ih) = ui, so that given an input
sequence {ui} of the FSM, we can obtain a unique specification
of input waveforms u(t) for (1). Using {ui} and u(t) as inputs to
the FSM and (1) respectively, we can then obtain the outputs {yi}
and y(t). Similarly, we relate y(t) to yi by considering sampled
points y(ih) and by noticing that each output symbol corresponds to
a region of outputs defined by a set of inequalities Aiy < bi (e.g.,
“0” corresponds to y ≤ 0 and “1” corresponds to y > 0).

Therefore, we say that an FSM is an abstraction of (1) if given
a set of input sequences {ui} that correspond to input waveforms
u(t), the sampled outputs {y(ih)} of (1) satisfy the inequalities of
yi, i.e., Aiy(ih) < bi. This notion of equivalence between a set of
differential equations and an FSM is also visualized in Fig. 1.

This definition still requires us to choose the set of input sequences
(i.e., also known as the training set in supervised learning literatures
[5]), the sampling time step h, and the mapping function t : {ui} �→
u(t). For the training set, we can use the inputs that are commonly
encountered in applications such as square waveforms and sinusoidal
waveforms. For the sampling time step h, it may be the clock
period in clocked circuits, or an appropriate value that can capture
system dynamics (e.g., making the sampling frequency larger than
the Nyquist rate). For the mapping function t, it is straightforward in

Fig. 1. Equivalence between an FSM and a set of differential equations.

digital applications since input waveforms basically switch between
“0” and “1”. In analog applications, we can implement the output of
the mapping function to be a quantized piece-wise linear waveform.

B. A Motivating Example

We introduce a simplified latch model to illustrate the need for
model abstraction and to demonstrate our approach in Section V.
Latches are extensively used in mixed-signal designs, and deserve
efforts to derive a good model.

Despite the fact that most latches are viewed as an ideal latch
that has an ideal FSM representation shown in Fig. 2, we encounter
non-ideal/erroneous latches in aggressive low-power designs due to
large parameter variations and reduced signal voltages. In these cases,
the corresponding FSM is no longer the one in Fig. 2, but more
complicated in order to model the non-ideality.

0

0 / 0

1
1 / 0
0 / 1

1 / 1

Fig. 2. The FSM of an ideal latch.

We consider a simplified latch circuit shown in Fig. 3. The
latch is composed of a sampler (consisting of a multiplexer) and a
regenerator (consisting of two cross-coupled inverters). Each output
of the multiplexer and inverters is followed by an RC circuit that
is not shown in Fig. 3. The latch samples the DATA input when
CLK is “1”. When CLK is “0”, two inverters are cross-coupled,
and re-generate the output (QBB).

INV

INV

MUX
CLK

DATA

Q QB

QBB

Fig. 3. A simplified latch model.

The differential equations for this latch are

RC
dx1

dt
+ (x1 − fMUX (u1, u2, x3)) =0,

RC
dx2

dt
+ (x2 − fINV (x1)) =0,

RC
dx3

dt
+ (x3 − fINV (x2)) =0,

(2)

where state variables x1, x2, x3 are node voltages vQ, vQB , vQBB ,
respectively; inputs u1, u2 are CLK and DATA, respectively; fINV

and fMUX are I/O functions defined by

fINV (x) =− tanh(10x),

fMUX(C,A,B) =
A+B

2
+

B −A

2
tanh (10C) ,

(3)

for the inverter and the multiplexer shown in Fig. 4.
One important erroneous behavior of this latch (also seen in

practical CMOS latches [6]) is that when the input swing is reduced
due to power budget, the latch needs several consecutive “1”s or “0”s
at the input in order to make a successful transition. For example, Fig.
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Fig. 4. An inverter and a multiplexer.

5 shows the result of a transient simulation of the simplified model
when Vsw = 1.6V and the input sequence is “010001100011100”.
When a single “1” is present at the input, it is not strong enough to
turn the output to “1” at the end of the cycle. However, when two or
more consecutive “1”s arrive, the output transits from “0” to “1”. We
show in Section V that the FSM we derive captures this behavior.

Fig. 5. Response of the latch when Vsw = 1.6V and the input sequence is
“10011000001001100000”.

C. Relevant Work

There have been some studies on model abstraction in analog ver-
ification and hybrid system community. Many researches have been
focusing on deriving models useful for verifying system properties
such as safety property or probabilistic properties. This leads to the
abstraction of non-deterministic FSMs [7] and probabilistic models
such as dynamic Bayesian networks [8], [9]. These models are useful
in verification, but have little use in simulation since they are not
deterministic. The non-deterministicity may also be awkward in this
situation since the original low-level model is a set of differential
equations that have a unique solution, and are deterministic.

On the other hand, the main idea in most previous approaches
is first choosing a good discretization/partitioning of the original
continuous state space, and then building up a state machine based
on this partitioning. This is indeed one of the main reasons that the
resulting model is non-deterministic or probabilistic because under
the same input, states within a region can move to several different
neighboring regions. Besides, the explicit discretization in these
methods also suffers from curse of dimensionality which restricts
its application to only small-size problems.

In contrast, the FSM we derive is deterministic, and the algorithm
avoids the curse of dimensionality caused by discretization of the
continuous state space because it does not perform an explicit
discretization. While this model may not be a completely sound
model and may be inappropriate for formal verification, it is good
for simulation, and is certainly useful if the input signals are well
included in the training set.

III. ADAPTATION OF ANGLUIN’S DFA LEARNING ALGORITHM

TO LEARNING MEALY MACHINES

In this section, we review Angluin’s DFA learning algorithm, and
show how the algorithm can be adapted to learn a Mealy machine
from another Mealy machine.

A. Review of Angluin’s DFA Learning Algorithm [1]

A DFA is a machine consisting of a 5-tuple: (Q,Σ, δ,Q0, F ),
where Q is a finite set of states, Σ is a finite set of input alphabet,
δ : Q × Σ → Q is the transition function, Q0 is the start state,
F ⊂ Q is a set of accept states. Under the input sequence w, if the

final state is in the set of accept states, the machine is said to accept
w. Otherwise, it rejects w.

Given a DFA, Angluin’s algorithm aims to learn the exact DFA
from I/O traces of the DFA. The basic idea is to repeatedly conjecture
machines according to I/O traces until an equivalent machine is
obtained. The key data structure of the algorithm is an observation
table which keeps track of necessary simulation results from which
a machine can be conjectured.

An example of the observation table T is shown Table I, where λ
means “empty”, the set of row labels is called S and the set of column
labels is called E, according to Angluin’s notation. To fill in each
cell of the table, we concatenate the row label with the column label,
use that as the input sequence to the DFA to perform a membership
query (simulation), and fill in the yes/no answer (to whether the
DFA accepts this input sequence) in the cell. The observation table is
further split into the top part and the bottom part, where row labels
of the bottom part are obtained by concatenating row labels of the
top part with all input alphabets. We will regard each row in the top
part of the table as one state in the state machine, and therefore for
each state in the top table, there must exist a row in the table that
corresponds to its next state.

With the observation table, the key idea is then to differentiate
different states by experiments, i.e., we regard two rows as the same
state if entries of the two rows are the same. For example, row “1”
has the same entries as row “110” in Table I, and therefore represent
the same state. However, to conjecture a DFA from an observation
table, we need to place two constraints on the table:

1) The table is closed, i.e., every row in the bottom part of the
table has a corresponding row in the top part with identical
results in all columns. This guarantees that none of the rows
in the bottom part corresponds to a new state.

2) The table is consistent, i.e., every pair of rows in the top part of
the table with identical results in all columns also has identical
results when any alphabet symbol is added. Mathematically,
∀s1, s2 ∈ S, if row(s1) = row(s2), then ∀a ∈ Σ, row(s1 ·a) =
row(s2 · a). This guarantees that any pair of states that we
think are the same are still the same if the experiment string is
extended by one input alphabet symbol.

The procedures to make the observation table closed and consistent
are simple, and can be found in [1].

Given a closed and consistent observation table (S,E, T ), we can
then conjecture a DFA (Q,Σ, δ,Q0, F ) defined by

Q = {row(s) : s ∈ S of top table},

Q0 = row(λ),

δ(row(s), a) = row(s · a), a ∈ Σ,

F = {row(s) : T (s, λ) = 1}.

(4)

Using this DFA, we can feed it to an “equivalence checker” to
check if the DFA is equivalent to the original one. If equivalence
checker returns “yes”, we terminate the algorithm. Otherwise, it
returns an counter-example. In that case, we add the counter-example
into the observation table, and repeat the procedure of conjecturing
a new DFA until convergence.

Summarizing the above procedure, the Angluin’s algorithm is
sketched in Algorithm 1.

B. Learning Mealy Machines

As defined in Section II, a Mealy machine is similar to a DFA,
but not exactly the same. It does not have accept states in DFA, but
has an output function. This difference requires us to re-define the
meaning of the observation table.

In Angluin’s algorithm, each cell in the table is filled in by
yes/no answers to whether the DFA accepts an input sequence. This
can be viewed as the “output” of the DFA. Similarly, for Mealy
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Algorithm 1 Angluin’s DFA learning algorithm

1: Construct the initial observation table (S,E, T ) with S = {λ}
and E = {λ}.

2: repeat
3: Make the observation table (S,E, T ) closed and consistent.
4: Conjecture a DFA according to (4).
5: Check the equivalence between the conjectured DFA and the

original DFA.
6: if not equivalent then
7: Add the counter-example in the observation table.
8: end if
9: until Equivalence checker returns “yes”.

machines, we can fill in each cell in the table by the output of the
Mealy machine. It turns out that using this new definition of the
observation table, the concepts of closed-ness and consistence of the
observation table still holds [10], and we can conjecture a Mealy
machine (Q,Q0,Σ,Λ, δ, G) from this new observation table by

Q = {row(s) : s ∈ S of top table},

Q0 = row(λ),

δ(row(s), a) = row(s · a), a ∈ Σ,

G(row(s), a) = T (s, a), a ∈ Σ.

(5)

Therefore, in order to learn a Mealy machine from another Mealy
machine using Angluin’s idea, we just need to use the new observa-
tion table, and replace step 4 in Algorithm 1 by “Conjecture a Mealy
machine according to (5)”.

IV. LEARNING MEALY MACHINES FROM DIFFERENTIAL

EQUATIONS

In this section, we describe adaptations of Angluin’s algorithm
to learn Mealy machines from differential equations. We show how
we implement two key subroutines repeatedly called by Angluin’s
algorithm, and we interpret the states in the resulting Mealy machine
in terms of regions in the original continuous state space. This
connection also leads to a partitioning of the continuous state space.

In Angluin’s algorithm, there are two subroutines that are repeat-
edly called:

1) The simulator. When building the observation table, the table
entries are obtained by making membership queries (i.e., is w
accepted by the DFA?). In the case of learning Mealy machines,
this corresponds to a simulation of the Mealy machine to obtain
the output. Therefore, we need a simulator that can produce I/O
traces of a machine/system.

2) The equivalence checker. The algorithm decides whether to
terminate by making equivalence queries (i.e., is the new
machine M equivalent to the original machine?).

A. Implementation of the Simulator

The simulation of circuit differential equations is straightforwardly
implemented by SPICE transient analysis. However, three problems
remain to initiate the simulation and interpret the results:

1) To start the simulation, we need to specify an initial condition
that corresponds to the initial state of the Mealy machine;

2) We need to transform the input sequence {ui} (to the FSM) to
the input waveform u(t) (to differential equations).

3) After the simulation, we need to translate the continuous output
waveforms to discrete outputs of the FSM.

To determine the initial condition, we propose to use the DC
solution of the circuit. This is usually an important state for circuits
since circuits typically settle down to this state when the input is
fixed (except for special cases like oscillators).

The transformation from the input sequence {ui} to to the input
waveform u(t) and the transformation from the output waveform y(t)
to output sequences {yi} are implemented by standard interpolation
and quantization. However, one can define arbitrary transformations
according to different applications. For example, the input sequence
can specify phases of the input waveform at different time points, and
the input waveforms are obtained by a transformation from the phase-
domain to the voltage-domain. We can also specify binary values in
the input sequence to be corresponding voltage levels of a digital
square waveform during each clock cycle.

B. Implementation of the Equivalence Checker

While the equivalence between two FSMs are well-defined, the
equivalence between an FSM and a continuous dynamical system
is not entirely clear. Strictly speaking, a continuous dynamical
system may not be represented by an FSM, since a continuous-
time continuous-value system cannot be equivalent to a discrete-time
discrete-value system. By sampling and quantizing the waveforms
in continuous systems, however, there are situations that continuous
dynamical system can be exactly represented by an FSM. The ideal
latch is one such example.

In our case, we use the notion of equivalence defined in Section II.
That is, we call the SPICE simulator to perform a set of simulations
of circuit differential equations using u(t) derived from {ui}. If
the sampled outputs {y(ih)} lie in the corresponding quantization
regions defined for {yi} (the output of the FSM to input sequence
{ui}), then we return “yes”, i.e., the FSM is equivalent to the
differential equations. Otherwise, the input sequence is reported as
an counter-example, and is added into the observation table to refine
the FSM.

The training set used in the equivalence check is important.
One common implementation is to use a Monte-Carlo sampling
of input signals if a priori statistics of inputs are known. Another
implementation useful in digital applications is to try out all digital
sequences of a fixed length N . Although this leads to 2N possible
sequences, it is expected that for practical circuits with small number
of I/O ports, short sequences are enough to characterize behaviors of
the circuit. Furthermore, we can add/remove some special sequences
into the training set to ensure some desirable properties of the system.
For example, we may say that we want to capture results by applying
five “1”s at the input, and therefore we add the input sequence of
five “1”s into the training set. For another example, we may have a
constraint on the input signal that it is not possible to have inputs
of six or more consecutive “1”s (due to properties of the circuit
generating the input signal), and then the training set can be pruned
to speedup the equivalence checking procedure.

C. Connections between FSM States and the Continuous State Space

The Mealy machine extracted from differential equations has a
finite set of states. Since the FSM is sometimes extracted in order to
understand system behaviors, it poses a question of what these states
actually mean in the original system.

The answer to this question traces back to one of the key ideas in
Angluin’s algorithm, i.e., the algorithm differentiates different states
by experiments. This idea leads to the fact that each row in the
observation table represents a state in the FSM. On the other hand,
each row is associated with a row label, and the initial state is
associated with the row label λ. Suppose that a state corresponds
to the row with row label s, then in order to tune the state of the
FSM from the initial state to the state corresponding to row label s,
we can apply the input sequence s to the FSM.

Based on this idea, we can therefore assign a point in the
continuous state space for each state s in the FSM, by numerically
solving differential equations using the continuous input waveform
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converted from the input sequence s. Suppose the time-interval
of the input is Tinput, the solution of differential equations at
time Tinput then corresponds to a state in the FSM. Since the
resulting FSM is supposed to be a good abstraction of the original
system, transitions among these points are representative of system
transitions/trajectories. However, they are still not satisfactory since
discrete points in continuous state space have measure zero. It is
therefore preferable to assign a region in the continuous state space
to each state in the FSM.

To do this, we use the discrete points obtained above to construct
a Voronoi tessellation/decomposition/diagram [11] which partitions a
space with n points into convex polygons such that each polygon
contains exactly one generating point and every point in a given
polygon is closer to the generating point than to any other. These
polygons, known as Voronoi polygons, are then associated with states
in the FSM. As an example, a 3D Voronoi diagram with 4 points is
shown in Fig. 7 in Section V.

Due to properties of the Voronoi tessellation, it can be viewed as
a natural partitioning of the continuous state space given that the
n points are obtained by definition of each conjectured state in the
algorithm. With this partitioning, it is then possible to apply other
techniques to further exploit low-level dynamics of the circuit. For
example, we can construct simple nonlinear/linear systems for each
partition, and this is very similar to ideas in hybrid system abstraction
of continuous dynamical systems [4], and TPWL MOR techniques
[2], [3].

Note that there is one key difference between this approach and
many previous methods (described in Section II) on partitioning the
continuous state space – while previous methods often suffer from
curse of dimensionality, our approach avoids this problem as long as
the original system can be represented by a small FSM. The number
of partitions we obtain is the same as the size of the FSM, and we
just need to store one point for each state to store the partitioning.

V. VALIDATION

In this section, we apply our algorithm to a latch circuit and
an integrator circuit. We derive Mealy machines for these circuits,
and compare simulation results of Mealy machines to those of
transient analysis. We show that the FSMs are able to capture
qualitative behaviors of these circuits, and help to understand high-
level properties of circuits.

A. Latch

The first example is the latch circuit introduced in Section II. As
mentioned before, to obtain a power-performance trade-off, we hope
to reduce the input swing as low as possible. However, as input swing
is reduced, erroneous behaviors exhibit, and we want to extract these
behaviors automatically.

To apply our algorithm, we set the training set to be all input
sequences of length 7 (7 clock cycles); the t : {ui} → u(t) function
is implemented to transform zero/one sequence to square waveforms
of fixed duty cycle; the sampling time step h is chosen to be the
clock cycle; and we set yi = 1 if y(ih) > 0 and yi = 0 otherwise.

Using this setting, we extract Mealy machines for this latch circuit
with respect to input swing being 2V , 1.6V and 1.3V , as depicted
in Fig. 61. The numbers shown in each state are not arbitrary. They
are values of rows in the observation table, i.e., the quantized output
with respect to corresponding input sequences. As an example, the
observation table of the latch with input swing 0.8 is shown in Table
I. We see that the state “0,0,0,0” corresponds to row λ, the state

1Note that Mealy machines shown in Fig. 6 are indeed Moore machines,
simply due to the fact that the output y is just the output voltage which
corresponds to a state variable x3. This is very common in circuit simulations,
and a simple post-processing can be performed to obtain a Moore machine.

TABLE I
OBSERVATION TABLE FOR Vsw = 1.6V .

S \ E 0 1 10 00
λ 0 0 0 0
1 0 0 1 0

11 1 1 1 0
110 0 0 1 0
111 1 1 1 1

1110 1 1 1 0
11100 0 0 1 0

0 0 0 0 0
10 0 0 0 0

1100 0 0 0 0
1101 1 1 1 0
1111 1 1 1 1
11101 1 1 1 1
111000 0 0 0 0
111001 1 1 1 0

“0,0,1,0” corresponds to row “1”, etc.. From Table I, we can derive
the FSM in Fig. 6(b) using (5).

0,0

0 / 0

1,1
1 / 0
0 / 1

1 / 1

(a) Vsw = 2V .

0,0,0,0

0 / 0

0,0,1,0
1 / 0
0 / 0

1,1,1,0
1 / 0

0 / 1
1,1,1,1

1 / 1
0 / 1

1 / 1

(b) Vsw = 1.6V .

0,0,0,0,0,0

0 / 0

0,0,0,1,0,01 / 0

0,0,1,1,0,0
0 / 0

1,1,1,1,0,0
1 / 0

0 / 1

1,1,1,1,1,1

1 / 1

0 / 0
1 / 0

1,1,1,1,1,0

0 / 1

1 / 1

0 / 1

1 / 1

(c) Vsw = 1.3V .

Fig. 6. FSMs of the latch in Fig. 3.

Based on the Mealy machines in Fig. 6(a), we can claim that
when input swing is 2V , the latch behaves like an ideal latch;
when input swing is 1.6V , the input signal must persist for two
consecutive cycles to avoid errors; when input swing is 1.3V , the
input signal must persist for three consecutive cycles to avoid errors.
These properties can either be directly observed in simple FSMs,
or be checked by model checking tools. To validate these claims,
we also perform many SPICE simulations, and the same qualitative
behaviors are observed.

Using these Mealy machines, we then construct Voronoi diagrams
using discrete points corresponding to each state (Section IV-C). For
example, the Voronoi diagram of the Mealy machine in Fig. 6(b)
is shown in Fig. 7. The four points correspond to four states in
Fig. 6(b), and the (blue) trajectories in Fig. 7 are simulation traces
that leads to the discrete points of different states, and show typical
transition dynamics of the latch. This partitioning of the state space
also provides direct intuition on how circuit behave : the two states
at two corners represent solid “0” and solid “1” states, and the two
states in the middle capture dynamics in the metastable region, and
can be viewed as weak “0” and weak “1” states.

Fig. 7. Interpretation of states in the FSM (Vsw = 1.6V ).
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B. Integrator

The second example is an integrator circuit shown in Fig. 8, where
R = 1, C = 1, and the opamp is approximated by a controlled
voltage source which clips at ±1V and has gain 10 and resistance
0.1. The input is a binary sequence where “1” and “0” are at voltage
level +Vin and −Vin, respectively, and each bit lasts for 1 second.

−

+

Vin

Vout

R C

Fig. 8. Circuit diagram of an integrator circuit.

To initiate the algorithm, the step size h is chosen to be 1 second,
i.e., the period for each bit. The training set are all input sequences of
length 8. The output is quantized by setting yi = 1 when y(ih) > 0
and yi = 0 otherwise. The initial state is chosen as the DC solution
when the input is at the “0” level.

We first extract the FSM when the input level Vin = 2/3V . As
shown in Fig. 9(a), the resulting FSM has 4 states. The “1,1,1,1”
state corresponds to the state where the output is saturated at 1V
and the “0,0,0,0” state corresponds to the state where the output is
saturated at −1V . From this state machine, we immediately see how
the integrator charges and discharges as different inputs are applied.

We stress that the initial condition/state in the learning algorithm
is extremely important. Choosing a different initial condition may
lead to FSMs with unnecessarily more states. For example, if the
initial state is at a strange point which is almost never visited by
the normally operating circuit, then this state is not representative
of original circuit trajectories, and it makes the algorithm harder to
explore important states by performing experiments. The heuristic
we have used is to choose the initial state to be a DC solution. The
DC state is always important in almost all circuits, and therefore
is always good to be modeled in the FSM. Experiments also show
that this heuristic leads to better FSMs (FSMs with less states and
meaningful transitions).

However, in cases where the exact DC solution is not available or
a random initial condition is chosen, we also have a simple heuristic
to reduce the number of transient states in the FSM. The key idea is
that since some transient states are never visited from other states,
we may well discard these states. Equivalently, we should look for
the strongly connected components of the DAG (Directed Acyclic
Graph) of the FSM, and this typically filters out a lot of transient
states. Therefore, to discard useless transient states, we just need
to apply algorithms for finding strongly connected components, and
fortunately, linear-time (with respect to the number of states) are
available, such as [12].

1,1,1,1

0 / 1

1,1,1,0
1 / 1
0 / 1

1,1,0,0
1 / 1

0 / 1
0,0,0,0

1 / 1
0 / 0
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(a) Vin = 2/3V .
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0 / 1
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0 / 1
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1 / 1
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(b) Vin = 1/2V .

Fig. 9. FSMs of the integrator circuit.

We also extract the FSM of the integrator when the input level
Vin = 1/2V . The FSM is shown in Fig. 9(b). (Since the number of
states is relatively large, the labels are not shown clearly.) This state

machine, however, is much more complicated than what we would
imagine of an ideal integrator – we may think that this machine
should have 5 states that are connected like the one in Fig. 9(a).
This wrong intuition stems from the fact that the circuit is not an
ideal integrator – the amount output increases/decreases depends not
only on the input, but also on the current state, and this behavior
is exhibited when the input level is relatively small. To capture the
non-idealities, more states are used by the algorithm.

While the FSM in Fig. 9(b) does not give direct intuition to
designers, it does capture qualitative dynamics of the integrator.
Therefore, we can simply apply model checking techniques to this
FSM to check high-level properties of the system. For example, we
may check “whether there exists an input sequence of length 4 so
that we can change the output of the integrator from −1V to 1V ”.
When the FSM is a good approximation of the continuous system,
we can trust the result returned by the model checker, or we can use
that result as a guidance to check circuit properties by simulations.

VI. CONCLUSION

FSM model abstraction of analog/mixed-signal circuits is desirable
for high-level system simulation and verification. In this paper, we
present an algorithm, based on ideas of Angluin’s DFA learning
algorithm, that automatically extracts a Mealy machine from circuit
differential equations according to simulation trajectories. We validate
the algorithm using two illustrative circuits. The extracted FSMs are
able to reproduce important behaviors of original circuits, and can be
used to check other circuit properties.
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