
MUSTARD: A coupled, stochastic/deterministic, discrete/continuous

technique for predicting the impact of Random Telegraph Noise on

SRAMs and DRAMs

Karthik .V. Aadithya∗‡, Sriramkumar Venogopalan∗, Alper Demir†, and Jaijeet Roychowdhury∗
∗Department of Electrical Engineering and Computer Science, The University of California, Berkeley, CA, USA

†Department of Electrical and Electronics Engineering, Koç University, Istanbul, Turkey
‡Contact author. Email: aadithya@berkeley.edu

ABSTRACT

With aggressive technology scaling and heightened variability, SRAMs
and DRAMs have become vulnerable to Random Telegraph Noise (RTN).
The bias-dependent, random temporal nature of RTN presents significant
challenges to understanding its effects on circuits. In this paper, we pro-
pose MUSTARD, a technique and tool for predicting the impact of RTN on
SRAMs/DRAMs in the presence of variability. MUSTARD enables accu-
rate, non-stationary, two-way-coupled, discrete stochastic RTN simulation
seamlessly integrated with deterministic, continuous circuit simulation.
Using MUSTARD, we are able to predict experimentally observed RTN-
induced failures in SRAMs, and generate statistical characterisations of
bit errors in SRAMs and DRAMs. We also present MUSTARD-generated
results showing the effect of RTN on DRAM retention times.

Categories and Subject Descriptors

B.3.1 [Semiconductor Memories] SRAM, DRAM
B.3.3 [Performance Analysis and Design Aids] Simulation

General Terms:

Algorithms, Design, Reliability

Keywords:

Random Telegraph Noise, SRAM/DRAM design, Circuit Simulation

1. INTRODUCTION

Static and Dynamic Random Access Memories (SRAMs and DRAMs)
provide high-speed volatile data storage in virtually all electronic systems,
including CPUs, GPUs, cameras, smartphones, etc. Indeed, they are one
of the most important subsystems of modern ICs and SoCs – in multi-core
CPUs, for example, on-chip cache (SRAM) can account for almost half
the total die area [1].

In recent years, aggressive technology scaling has introduced new chal-
lenges for SRAM/DRAM (henceforth “xRAM”) design. In particular, a
phenomenon known as Random Telegraph Noise (RTN1) has become a
serious concern.

Fig. 1 depicts the impact of variability and noise on SRAM design safety
margins as technologies have progressed from 90nm to 22nm. The stacked
bars quantify, in supply voltage (Vdd) terms, how static noise [2], threshold
voltage shifts due to local/global parameter variations [3], NBTI [4] and

1also known as RTS (Random Telegraph Signal) noise.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or dis-
tributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee.
DAC 2011, June 5-10, 2011, San Diego, California, USA.
Copyright 2011 ACM ACM 978-1-4503-0636-2/11/06 ...$10.00.

Figure 1: Impact of RTN on SRAM design margins (data courtesy Yasumasa Tsukamoto, Re-
nesas Electronics Corp., Japan).

RTN [5, 6] reduce SRAM design margin. The dashed line at the top repre-
sents Vdd scaling. It can be seen that the design margin has been shrinking
steadily and that the contribution of RTN to this reduction, though small,
has been growing rapidly. At the 22nm node in particular, increased RTN
is in a position to eliminate the design safety margin entirely and deter-
mine whether an SRAM cell functions correctly or not. Such RTN-induced
read/write failures have been reported and are of urgent concern [5, 7].
RTN is also considered responsible for Variable Retention Time (VRT)
and bit errors in DRAMs [8, 9].

Predicting the impact of RTN and understanding its effects on xRAM oper-
ation presents several challenges. Unlike most other important sources of
uncertainty in xRAMs, RTN is temporally random and can feature a wide
range of time scales (see §2). This makes both measurement2 and pre-
diction much more involved than for, e.g., local and global uncertainties.
Moreover, the magnitude and temporal properties of RTN in a MOS tran-
sistor depend strongly on gate bias and current, large and rapid swings in
which are the norm during xRAM operation. Because of this, the statistics
of generated RTN in xRAMs are strongly non-stationary [10–12], mak-
ing analytical approaches, which rely largely on simple stationarity as-
sumptions, inadequate for analysis and prediction. Additionally, analytical
approaches that rely on statistical averaging over large trap3 populations
are inappropriate for aggressive technologies, since trap populations in
xRAM MOS devices today number roughly 10 [13, 14]. Furthermore, the
continuous-time large-signal operation of xRAMs, and the discrete-event
RTN that affects this operation, are bi-directionally coupled (Fig. 4); in
other words, signal swings in the xRAM affect the generation and statis-
tics of RTN noise, while at the same time, generated RTN can trigger large
changes to these very signal swings. Moreover, as indicated in Fig. 1, other
sources of variability need to be considered together with RTN to properly
account for observed bit errors.

Several physics-based models for predicting the core statistics and current
modulation mechanisms involved in RTN are available [14, 15], although
which model is best suited for a given device in a given technology re-
mains unclear [12]. Simulation approaches for individual traps operating
under stationarity assumptions have been proposed, including a recent at-

2Identical tests carried out on the same SRAM/DRAM chip at different
time points can yield completely different success/failure outcomes.
3Traps are the source of RTN; please see §2.

tempt [16] to apply these approaches to circuits such as SRAMs, but such
approaches do not take non-stationarity, bi-directional coupling, statistical
trap populations and variability properly into account, while also suffering
from inherent computational and accuracy limitations even for single sta-
tionary traps. Recently, the SAMURAI technique [11] has addressed the
problem of accurately generating non-stationary RTN waveforms for sim-
ulation purposes. SAMURAI, however, does not deal with bi-directional
coupling or variability, nor does it fully address the impact of statistical
trap populations in xRAMs.

In this work, we present a new technique and tool, MUSTARD4, which
takes dynamic generation of non-stationary RTN, bi-directional xRAM-
RTN coupling, statistical distributions of trap parameters and variability
into account fully and correctly. The key concept behind MUSTARD is to
run a deterministic, continuous-time simulation of the SRAM circuit at the
SPICE level, which is coupled bi-directionally with a Markov uniformi-
sation based, discrete event, stochastic simulation of non-stationary trap
activity for generating RTN. Variability is modelled as part of the SRAM
circuit and statistical analysis over trap count, trap locations, energies, etc.,
is performed. Another important feature of MUSTARD is that it is well-
suited to small trap populations and does not rely on approximations or
simplifications from large-population averages.

We present experimental results using MUSTARD, detailing how RTN af-
fects SRAM and DRAM cells in the presence (as well as absence) of other
variability. We also depict failure probabilities as a function of supply volt-
age and threshold voltage variability. Following measurement practice [6],
we useMUSTARD to plot failure probabilities as the supply voltage varies,
predicting quantitatively the extent to which RTN increases the probability
of bit errors.

To the best of our knowledge, no existing tool or technique is capable of
conducting RTN analysis for xRAMs under such general and realistic con-
ditions. As such, MUSTARD is suitable for use in real xRAM design situa-
tions, predicting failure probabilities that can be compared directly against
measurements. Moreover, MUSTARD provides “debuggability” and fault-
mechanism tracing capabilities, that can help explain and understand mea-
surements, as well as devise and evaluate design/fabrication techniques for
mitigating RTN generation and impact. MUSTARD can also be used to
evaluate and discriminate between the different core physics-based mod-
els for RTN generation that are available [14, 17, 18], since it provides an
accurate and convenient mechanism for assessing their impact on measure-
ments of real xRAMs.

In §2, we detail the RTN mechanisms used in MUSTARD, while §3 fo-
cusses on MUSTARD’s simulation algorithms and architecture. Results
on SRAM and DRAM cells are presented in §4 and §5, respectively.

2. THEMUSTARDRTNMODEL: TIME-INHOMOGENEOUS

MARKOV CHAINS COUPLED WITH DAES

RTN is produced by the random capture and release of electrons by dan-
gling bonds located in a MOS transistor’s oxide layer [15]. As depicted in
Fig. 2 (left), the oxide layer (especially at the oxide-semiconductor inter-
face) contains silicon (Si) atoms with unsatisfied valences, called dangling
bonds or “traps”. While some traps are passivated by hydrogen, others are
not. And when the transistor is on, each un-passivated trap has a propensity
to randomly (a) capture an electron from the inversion layer, and (b) release
the captured electron back into the inversion layer [15].

Thus, at any given time, each un-passivated trap can be in one of two pos-
sible states: either filled (with an electron) or empty. An empty trap can be-
come filled by capturing an electron, while a filled trap can become empty
by releasing its captured electron.

Also, whenever a trap becomes filled, its captured electron modifies (a) the
electric field inside the transistor, (b) the mobility of electrons in the in-
version layer, and (c) the number density of charge carriers contributing
to the transistor current [17]. As a result, every capture/release event by a

4Markov Uniformisation based Simulation of Trap Activity for RTN-
aware Design. We expect to release the MUSTARD tool under an open
source license in Summer 2011.

Figure 2: Left: Dangling bonds at the Si/SiO2 interface. Right: Trap activity leading to large
signal modulated RTN current under sinusoidal gate bias.

trap brings about a change in the transistor current, which is observed as a
random waveform IRTN(t) that opposes the nominal current Id(t).

Furthermore, the propensity of a trap to capture/release an electron is not
constant, but depends on the instantaneous gate bias Vgs(t). Mathemat-
ically, the probability that an empty (filled) trap tr changes state to be-
come filled (empty), within a short time interval dt, is given by λc,tr(t)dt
(λe,tr(t)dt), where the capture (emission) propensity λc,tr(t) (λe,tr(t)) is a
non-trivial function (whose exact form is specified in [14]) of Vgs(t). This
bias-dependence makes the electron capture/release process non-stationary
[12].

Finally, the formula relating trap states to IRTN(t) exhibits a complicated
dependence on the biasses Id(t) and Vgs(t). For instance, one model pro-
posed for NMOS RTN is the following equation [19]:

IRTN(t) =
N f illed(t) q

WL Cox(Vgs(t)−Vth)
Id(t)

where N f illed denotes the number of filled traps, q is the electronic charge

(∼ 1.6×10−19 Coulomb),W and L are the transistor dimensions and Cox

is the oxide capacitance per unit area. More elaborate models have also
been suggested [18].

Therefore, the net effect IRTN(t) is that of a non-stationary electron cap-
ture/release process, whose resulting trap occupancy function N f illed(t) is
modulated by a bias-dependent large signal waveform.

Fig. 2 (right) illustrates the above for a single trap in an NMOS transistor
whose gate is driven by a sinusoidal voltage source. The figure depicts the
nominal biasses Vgs(t) and Id(t), in addition to the trap occupancy func-
tion (which moves between empty (E) and filled (F)) and the noise current
IRTN(t). The plot brings out an important feature of RTN: because the gate
bias is time-varying, the density of capture/release events is non-uniform;
hence it is common to observe some time intervals with a low event density
and others with a high event density, which provides a visual cue that the
underlying capture/release process is non-stationary.

MUSTARD captures all the above concepts using the mathematical ab-
straction of a time-inhomogeneous Markov chain.

Figure 3: Hypercube Markov state transition graphs that model the RTN produced by
1, 2, and 3 trap systems. For the last case, although the figure does not explicitly show it,
all parallel edges are assigned identical propensities.

Consider a circuit with N active traps, with each trap contributing to the
IRTN of a specific transistor (multiple traps may belong to the same tran-

sistor). Each trap has two possible states; so the system of N traps has
2N possible states, which can be encoded using N bits (with one bit per
trap, where 0 denotes empty and 1 denotes filled). Every time the kth trap
changes state, the kth bit of the N-bit system state is changed to reflect the
RTN event. Mathematically, this corresponds to a state transition graph

that is an N-dimensional hypercube (as shown in Fig. 3 for N = 1, 2 and 3).

Each dimension in the above hypercube corresponds to a unique trap.
Thus, all hypercube edges along a given dimension represent capture/release
events involving a unique trap. Therefore, for every trap tr, all edges along
the tr-dimension are annotated with the propensities λc,tr(t) and λe,tr(t)
(Fig. 3), which results in a time-inhomogeneous Markov chain.

In the context of a circuit, however, the N-trap system is not isolated;
rather, its (discrete) state evolves simultaneously with the underlying cir-
cuit, which has its own (continuous) state vector~x of voltages and currents.
These voltages and currents follow a set of circuit equations (based on Kir-
choff’s laws and branch constitutive relationships). Without loss of gen-
erality, these equations can be cast in the form of a Differential Algebraic
Equation (DAE) system D [20], given by:

D :
d

dt
~q(~x)+~f (~x)+~b(t) =~0

Putting it all together, RTN is produced by an N-dimensional hypercube
Markov chain, whose time-varying propensities are determined by a state
vector~x, which itself evolves according to a DAE system D, whose ~q and
~f functions are in turn determined by the Markov chain’s state. This is
summarised by Fig. 4.

Figure 4: The MUSTARD model for RTN: A non-stationary Markov chain coupled with a
DAE.

Therefore, in order to truly generate non-stationary RTN at the circuit level,
one needs to develop the capability to stochastically simulate the above
two-way-coupled Markov/DAE system. In the next section, we describe
an exact algorithm for carrying out such a simulation.

3. MUSTARD: CORE SIMULATION ALGORITHM AND

ARCHITECTURE

3.1 Simulation of two-way-coupled Markov/DAE systems by
uniformisation

Algorithm 1 describesMUSTARD’s strategy for generating genuinely non-
stationary RTN at the circuit level. Briefly, the algorithm works by first
uniformising the time-inhomogeneous RTN hypercube Markov chain into
a high-rate but time-homogeneous Markov chain, whose events are gen-
erated using the well-known Gillespie’s algorithm [21]. Later in the sim-
ulation, a probabilistic decision is made to discard some of the generated
RTN events, which restores the non-stationary statistics expected of the
original RTN hypercube. This technique can be shown to be stochasti-
cally exactly equivalent to the original non-stationary Markov system (as
proved in [22–24]); in other words, the theory of Markov uniformisation
guarantees that no statistical test will be able to distinguish between the
RTN traces produced by Algorithm 1 and the RTN traces measured on a
fabricated circuit such as an SRAM or DRAM.

Moreover, by ensuring that the effects of RTN on the circuit’s DAE are
incorporated in a coupled manner (i.e., as soon as the RTN events occur),
Algorithm 1 overcomes the main limitation of SAMURAI [11]. Best of
all, Algorithm 1 has the same run time as SAMURAI. Thus, the improved
accuracy of MUSTARD over SAMURAI, is in fact achieved at no extra
computational cost!

Algorithm 1: Circuit simulation with non-stationary RTN in MUSTARD

Input: Circuit DAE D, initial circuit and trap states at time t0, final time t f
Output: Circuit simulation trace with realistic, non-stationary RTN in time [t0, t f]

// uniformise the RTN Markov chain to a high-rate λ ∗

λ ∗ = 0;
foreach trap tr in the circuit do λ ∗+= λc,tr(t0)+λe,tr(t0);

t_curr = t0; x_curr = x0; tr_curr = tr0;

while t_curr < t f do

// generate a candidate time for the next RTN event

t_next_RTN = t_curr + exprand(1/λ ∗);

// simulate the circuit’s DAE D until t_next_RTN

while t_curr < min(t f , t_next_RTN) do

record(t_curr, x_curr, tr_curr);
t_next = min(t_curr + t_step, t_next_RTN, t f);
x_next = LMSSolve(D, t_curr, x_curr, t_next);
// LMSSolve can be any standard DAE solution method

// e.g., Forward Euler, Backward Euler, Trapezoidal etc.

t_curr = t_next; x_curr = x_next;
end

// time to make a probabilistic decision

// to either keep or discard the candidate RTN event

if t_curr < t f then

u = rand(); // u is uniformly distributed in [0,1]

sum = 0;
foreach trap tr in the circuit do

// compute propensity of trap tr to change state

// detailed stochastic models available for this

// by default, MUSTARD uses [14]

λ [tr] = tr_curr[tr] ? λe,tr(x_curr) : λc,tr(x_curr);
if u≥ sum/λ ∗ AND u< (sum+λ [tr])/λ ∗ then

// Keep the RTN event: trap tr changes state!

tr_curr[tr] = !(tr_curr[tr]);

// update circuit’s DAE to reflect RTN event

// many literature models available for this

// by default, MUSTARD uses [17]

x_curr = new_ckt_state_after_RTN_event_at_tr;
D = new_ckt_DAE_after_RTN_event_at_tr;
break;

end

sum += λ [tr];
end

end

end

3.2 MUSTARD’s software architecture

Figure 5: The flowchart (left) describes the functionality required for Algorithm 1, while the
dependency graph (right) illustrates how the functionality is implemented in MUSTARD. An
arrow from u to v indicates that the module for u depends on the module for v. Except ADOLC
[25] and Armadillo [26], all other modules have been programmed by us in C++.

Fig. 5 illustrates the software architecture underlying MUSTARD. As the
figure shows, we have implemented much of the circuit simulation func-
tionality from scratch, in order to integrate RTN simulation more effi-
ciently with circuit simulation. Also, our design for MUSTARD is highly
modular, with the RTN-related modules (highlighted in yellow) maintained
separately from the rest of the simulator. This makes it easy to experiment
with RTN under various trap configurations, statistical parameters, equa-
tions for modulating trap occupancies, etc. Fig. 5 also provides references

for the default RTN models currently used by MUSTARD.

4. SRAM RESULTS

We have applied MUSTARD to conduct coupled, non-stationary analysis
of RTN in 22nm SRAMs. Our simulations accurately reproduce exper-
imentally observed effects, such as RTN-induced SRAM write failures.
Furthermore, in order to characterise the impact of RTN on entire SRAM
arrays in the presence of local and global parameter variations, we have
simulated SRAM cells with varying trap configurations, threshold voltages
and supply voltages. We now present these findings.

4.1 Prediction of RTN-induced SRAM write failures

RTN-induced write failures have been experimentally observed in deep
sub-micron SRAMs [5]. To reproduce these findings, we designed a 22nm
6T SRAM cell (using the BSIM3 model, with parameters obtained from
[27]) and studied its non-stationary RTN patterns using MUSTARD.

Figure 6: Part (a): Writing the bit 1 to a 6T SRAM cell. Black (Red) arrows indicate the
direction of Id (IRTN) in each transistor. Parts (b)-(d): RTN, coming on top of a 100mV Vth shift
due to parameter variations, can produce an SRAM write error.

Fig. 6 illustrates an RTN-induced write failure scenario predicted by MUS-
TARD, for the above SRAM cell. Part (a) shows the biasses under which
this failure occurs. The directions of Id (black arrows) and IRTN (red ar-
rows) are also indicated next to each transistor.

If there is no RTN and no Vth shift, we see from part (b) that the node Q
properly settles to logical 1 (or Vdd).

We now introduce a 100mV shift (to model local and global parameter
variations) to the Vth of pass transistors M1 and M2. Even with this shift,
the SRAM cell, in the absence of RTN, is able to latch on to the correct
value of Q by the end of the clock cycle (part (c)).

Now we bring in a small amount of RTN, by injecting one trap each into
transistors M1, M2, M4 and M5. With the introduction of RTN, we see
that the SRAM cell is no longer able to respond by the end of the clock
cycle (part (d)). This is because RTN currents in transistors M1 and M4
oppose the nominal currents driving Q to 1, while RTN currents in M2 and
M5 oppose the nominal currents driving Q to 0. As a result, the signals Q
and Q are delayed sufficiently to cause a bit error (part (d)).

Thus, MUSTARD can reproduce results previously obtainable only by
measurement. In addition, MUSTARD offers significant “debuggability”
advantages over pure measurement. For example, now that a bit error has
been discovered, the entire simulation trace of RTN events leading up to
the bit error can be examined (Fig. 7). From this, it is possible to precisely
pinpoint which RTN events triggered the failure (Fig. 7(D)). By contrast,
pure measurement can only indicate that the SRAM cell has been compro-
mised due to RTN; it cannot provide further insight into which RTN events
were responsible for the failure, how likely such events are under normal
operating conditions, etc.

Parts (A) and (B) of Fig. 7 show reference simulations (without RTN) of
the SRAM cell with and without Vth shifts. Part (C) shows that RTN cur-
rent spikes that occur in the absence of Vth shifts are unable to cause bit
errors. However, in the presence of Vth shifts, similar spikes do produce bit
errors (Part (D)). Indeed, it is apparent that the RTN events of M1 and M2
(pointed out in the figure), which produce RTN spikes (also pointed out in
the figure) just as the SRAM cell is switching from 0 to 1, must have been
responsible for this particular bit error.

4.2 Statistical inferences about RTN-induced SRAMwrite fail-
ures

SRAM arrays typically contain thousands of cells, spanning a wide range
ofVth values and trap populations. To ascertain the impact of RTN on such
circuits, we have conducted a large number of MUSTARD simulations.

Figure 8: MUSTARD simulations of RTN in 22nm SRAM cells, whereVth,Vdd and N are swept
over appropriate ranges. For each (Vth,Vdd ,N) triple, several random N-traps-per-transistor con-
figurations are sampled and MUSTARD-simulated over a random bit pattern. Black squares
indicate a bit error even in the absence of RTN. Red squares indicate a bit error in the presence
of RTN, which would not have occurred if RTN had been absent. Green squares indicate robust
configurations (i.e., no bit errors even in the presence of RTN).

Fig. 8 shows sample plots generated by sweeping the pass transistor’s
Vth and the supply voltage Vdd over appropriate ranges, for various RTN
strengths (i.e., with 2, 4, 6 and 8 traps per transistor). As seen from the fig-
ure, the (Vth,Vdd) space is roughly banded into 3 regions: (1) a region that
contains bit errors even without RTN (black), (2) a region that contains bit
errors with RTN, but would not contain bit errors had there been no RTN
(red), and (3) a region that does not contain bit errors even in the presence
of RTN (green). The red region, therefore, measures the incremental con-
tribution of RTN towards lowering the SRAM design margin. As expected,
this region becomes bigger as the number of traps increases. On average,
the effect of RTN seems equivalent to a Vth shift of about 0.02V to 0.06V,
which tallies well with measured data [5].

Fig. 9 quantifies the bit-error impact of RTN on SRAM arrays. Using a
normal distribution for Vth and the trap profiling model proposed in [14],
we have computed the probability of an SRAM write failure as Vdd varies
between 0.7V and 1.0V. As expected, the bit error probability decreases
with increasing Vdd , whether or not RTN is present. However, in the pres-

ence of RTN, the bit error probability diminishes with Vdd at a reduced

rate, leading to a higher bit error probability at every value of Vdd .

5. DRAM RESULTS

We have also applied MUSTARD to investigate the impact of RTN on
DRAM refresh time (a.k.a. retention time). Fig. 10 presents our findings.

Fig. 10 (A) shows how the stored value Q of a 22nm DRAM cell evolves
with time as the bit 1 is written to it. The plot illustrates this for two dif-

Figure 7: Examination of MUSTARD’s simulation trace (including trap occupancies and RTN currents of each transistor) during the clock cycles prior to the write failure of Fig. 6. Part (D) pinpoints
the RTN events responsible for the bit error. Part (C) shows that similar events are harmless in the absence of Vth shifts. In all plots, the x-axis denotes time in ns. For the Q/Q plots, the y-axis denotes
voltage (in volts). For trap occupancy plots, the y-axis is discrete, with E meaning empty and F meaning filled. In the IRTN plots, the y-axis denotes current in µA.

Figure 10: RTN analysis of DRAMs using MUSTARD. The three plots on the top show that MUSTARD is capable of simulating non-stationary, coupled RTN within a DRAM cell (circuit shown in
plot A). The three plots on the bottom are statistical results obtained by MUSTARD-simulating hundreds of DRAM cells with different threshold voltages and trap configurations. Details are explained
in the text.

Figure 9: Bit error probabilities as a function of Vdd . For each Vdd , several SRAM cells -
with randomly distributed trap configurations and Vth values - are sampled and MUSTARD-
simulated. Vth is sampled from a normal distribution while trap configurations are sampled
using the trap profile model proposed in [14].

ferent Vth values (0.5V and 0.6V), and for three different RTN strengths
(0 traps, 5 traps and 10 traps). From the figure, it is seen that RTN affects
DRAMs in a manner markedly different from SRAMs. Indeed, whether or
not a Vth shift is present, RTN always has an impact on the stored value
Q of a DRAM cell. By contrast, in an SRAM cell, RTN can affect the
stored value only in the presence of Vth shifts. For the same simulation,
Fig. 10 (B) shows the number of filled traps as a function of time (for
the 5 and 10 trap scenarios), while Fig. 10 (C) shows the RTN currents
IRTN(t) (whose directions are along the blue arrow of Fig. 10 (A)). In all
4 cases, it is seen that IRTN(t) starts at 0, attains a peak value and tapers
off towards the end of the write. This can be explained as follows: in the
beginning, the transistor is off, so there is no RTN and the traps are likely
to be empty [12]. As the gate voltage is increased, the traps start demon-
strating activity, which leads to increased RTN current. As Q rises further,
the propensities are still comparable, but the nominal current Id becomes
smaller and smaller. Therefore, even though the trap activity continues
(as seen from Fig. 10 (B)), the waveform that modulates the trap activity
becomes quite small, thereby causing RTN to taper off.

Fig. 10 (D)-(F) show the impact of RTN on DRAM refresh time – an im-
portant parameter that characterises how long a DRAM cell can retain a
stored value (before leakage currents eventually corrupt it). Fig. 10 (D)
shows that a DRAM cell with higher Vth needs to be refreshed more often.
For two DRAM cells with the same Vth, the one with higher trap count
needs to be refreshed more often (because, on average, the increased RTN
would have weakened its stored value to a greater extent). Fig. 10 (E)
shows that the required refresh frequency decreases asVdd increases; how-
ever, as the number of traps increases, more frequent refreshes are needed.
The final plot (F) shows how the probability of a DRAM bit error depends
on refresh frequency; this plot was generated by MUSTARD-simulating
hundreds of DRAM cells on random bit patterns.

6. SUMMARY AND CONCLUSIONS

In this paper, we have presented MUSTARD, a powerful methodology and
CAD tool for RTN analysis of SRAMs and DRAMs. The MUSTARD
model for RTN is a time-inhomogeneous Markov chain coupled with a
DAE – a generic abstraction that captures all the salient aspects of RTN
generation at the trap-level. Consequently, MUSTARD is capable of gener-
ating genuinely non-stationary RTN at the circuit level (using Markov uni-
formisation). In addition, we have developed a complete software system,
centred around MUSTARD, that enables accurate, non-stationary, two-
way-coupled, stochastic, discrete RTN simulation seamlessly integrated
with deterministic, continuous circuit simulation. Using this system, we
have been able to duplicate experimentally observed RTN-induced failures
in SRAMs. We have also been able to draw statistical inferences about
the impact of RTN on entire SRAM arrays, in the presence of local and
global parameter variations. We have also investigated the effects of RTN
on DRAM retention times.

Acknowledgements: We would like to thank Yasumasa Tsukamoto of
Renesas Electronics Corp. for Fig. 1 (and many useful discussions, be-

sides). Support from the Semiconductor Research Corporation (SRC, task
1836.021) is also gratefully acknowledged. We would like to thank David
Yeh of SRC, in particular, for his encouragement of this work.

7. REFERENCES

[1] M. Golden, S. Arekapudi, G. Dabney, M. Haertel, S. Hale, L. Herlinger, Y. Kim,
K. McGrath, V. Palisetti, and M. Singh. A 2.6GHz Dual-Core 64bx86 microprocessor
with DDR2 memory support. In Proceedings of the IEEE International Solid-State

Circuits Conference, pages 325–332, 2006.

[2] E. Seevinck, F. J. List, and J. Lohstroh. Static-noise margin analysis of MOS SRAM
cells. IEEE Journal of Solid-State Circuits, 22(5):748–754, 1987.

[3] R. Venkatraman, R. Castagnetti, and S. Ramesh. The statistics of device variations and its
impact on SRAM bitcell performance, leakage and stability. In Proceedings of the
Seventh International Symposium on Quality Electronic Design, pages 190–195, 2006.

[4] S. V. Kumar, K. H. Kim, and S. S. Sapatnekar. Impact of NBTI on SRAM read stability
and design for reliability. In Proceedings of the Seventh International Symposium on

Quality Electronic Design, pages 213–218, 2006.

[5] S. O. Toh, Y. Tsukamoto, Z. Guo, L. Jones, T. J. K. Liu, and B. Nikolic. Impact of
random telegraph signals on Vmin in 45nm SRAM. In Proceedings of the IEEE
International Electron Devices Meeting, pages 767–770, 2009.

[6] Y. Tsukamoto, S. O. Toh, C. Shin, A. Mairena, T. J. K. Liu, and B. Nikolic. Analysis of
the relationship between random telegraph signal and negative bias temperature
instability. In Proceedings of the IEEE International Reliability Physics Symposium,
pages 1117–1121, 2010.

[7] K. Takeuchi, T. Nagumo, K. Takeda, S. Asayama, S. Yokogawa, K. Imai, and Y. Hayashi.
Direct observation of RTN-induced SRAM failure by accelerated testing and its
application to product reliability assessment. In Proceedings of the IEEE International

Symposium on VLSI Technology, pages 189–190, 2010.

[8] P. J. Restle, J. W. Park, and B. F. Lloyd. DRAM variable retention time. In Proceedings
of the IEEE International Electron Devices Meeting, pages 807–810, 1992.

[9] T. Umeda, K. Okonogi, K. Ohyu, S. Tsukada, K. Hamada, S. Fujieda, and Y. Mochizuki.
Single silicon vacancy-oxygen complex defect and variable retention time phenomenon
in DRAMs. Applied Physics Letters, 88(25):253504(1–3), 2006.

[10] A. Papoulis, S. U. Pillai, and S. Unnikrishna. Probability, random variables, and

stochastic processes. McGraw-Hill, NY, 2002.

[11] K. V. Aadithya, A. Demir, S. Venugopalan, and J. Roychowdhury. SAMURAI: An
accurate method for modelling and simulating non-stationary Random Telegraph Noise in
SRAMs. In Proceedings of the Design, Automation and Test Conference in Europe, 2011.

[12] H. Tian and A. El Gamal. Analysis of 1/f noise in switched MOSFET circuits. IEEE
Transactions on Circuits and Systems II: Analog and Digital Signal Processing,
48(2):151–157, 2001.

[13] S. Lee, H. J. Cho, Y. Son, D. S. Lee, and H. Shin. Characterisation of oxide traps leading
to RTN in high-K and metal gate MOSFETS. In Proceedings of the IEEE International

Electron Devices Meeting, pages 763–766, 2009.

[14] M. V. Dunga. Nanoscale CMOS modeling. PhD thesis, The University of California,
Berkeley, 2008. http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/
EECS-2008-20.html.

[15] M. J. Kirton and M. J. Uren. Noise in solid-state microstructures: A new perspective on
individual defects, interface states and low-frequency 1/f noise. Advances in Physics,
38(4):367–468, 1989.

[16] Y. Ye, C. C. Wang, and Y. Cao. Simulation of Random Telegraph Noise with 2-stage
equivalent circuit. In Proceedings of the IEEE/ACM International Conference on

Computer Aided Design, 2010.

[17] K. K. Hung, P. K. Ko, C. Hu, and Y. C. Cheng. Random Telegraph Noise of
deep-submicrometer MOSFETs. Electron Device Letters, IEEE, 11(2):90–92, 1990.

[18] K. K. Hung, P. K. Ko, C. Hu, and Y. C. Cheng. A physics-based MOSFET noise model
for circuit simulators. IEEE Transactions on Electron Devices, 37(5):1323–1333, 1990.

[19] A. van der Ziel. Unified presentation of 1/f noise in electron devices: fundamental 1/f
noise sources. Proceedings of the IEEE, 76(3):233–258, 1988.

[20] J. Roychowdhury. Numerical simulation and modelling of electronic and biochemical
systems. Foundations and Trends in Electronic Design Automation, 3(2-3):97–303, 2009.

[21] D. T. Gillespie. A general method for numerically simulating the stochastic time
evolution of coupled chemical reactions. Journal of Computational Physics,
22(4):403–434, 1976.

[22] P. Heidelberger and D. M. Nicol. Conservative parallel simulation of continuous time
Markov chains using uniformisation. IEEE Transactions on Parallel and Distributed

Systems, 4(8):906–921, 1993.

[23] A. P. A. van Moorsel and K. Wolter. Numerical solution of non-homogeneous Markov
processes through uniformisation. In Proceedings of the Twelfth European

Multiconference on Simulation, pages 710–717, 1998.

[24] J. G. Shanthikumar. Uniformisation and hybrid simulation/analytic models of renewal
processes. Operations Research, 34(4):573–580, 1986.

[25] https://projects.coin-or.org/ADOL-C.

[26] http://arma.sourceforge.net/.

[27] http://ptm.asu.edu/modelcard/HP/22nm_HP.pm.

