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Analytical solution of dispersion in rapidly oscillating flows becomes infeasible in complex geometries. Simulation over
long durations can be prohibitively expensive when there is a wide separation between the oscillation and dispersion time
scales. Here, we present a methodology based on an implicit envelope-tracking scheme coupled with telescopic projections.
A test problem, with a known analytical solution, was simulated, and the effect of Péclet number on the dispersivities was
investigated. The solution was unaffected by the time steps for telescopic projections while increasing Péclet numbers
introduced errors. The error was found to decrease with mesh refinement, but a small inherent error was observed. The
method was also applied to a practical problem of interest to us: drug dispersion due to sloshing in the vitreous humor of
the eye. Relative to single-scale solution, the method, when applied to the vitreous sloshing problem, produced speedup
values of up to 100. VVC 2011 American Institute of Chemical Engineers AIChE J, 58: 1987–1997, 2012
Keywords: saccadic motion, envelope tracking, vitreous liquefaction

Introduction

Alteration of molecular transport in the presence of fluid
flow has been studied for decades. The effect of convection
on diffusional transport of molecules was famously studied
by Taylor,1 who showed that mass transport is enhanced in
the presence of a steady Poiseuille flow in a pipe. Since
then, numerous studies2–7 have been performed on the topic
of enhanced diffusion/dispersion induced by variety of
flows on different geometries. Analytical solutions for
many simple geometries are available in literature. Aris8

considered the effect of pulsations in the flow and eval-
uated the effective dispersion coefficient in pulsatile flow
through a circular tube. Dispersion was due to a periodic
velocity field induced by pulsating pressure gradients. The
work by Aris laid the foundation for subsequent work by
Horn,9 who evaluated the effective dispersion coefficient
for a solute diffusing between two parallel plates, infinite in
extent, with fluid between them. The lower plate was held
fixed and the upper plate was oscillated sinusoidally. A
detailed explanation of the relevance of Horn’s results for
our work is given in the article.

The theory of enhanced dispersion in an oscillating ve-
locity field has been used to study, among other topics,
transport of gases in bronchial airways10,11 and methods for
separation of gases.12 High-frequency ventilation, com-
monly used during acute respiratory failure to ensure con-
tinuous O2 to CO2 exchange in the lungs, is an important
example. Slutsky et al.13 showed that due to augmented dif-
fusion in the central airways, significant gas transport can
be achieved during high-frequency ventilation even with a
very small tidal volume. Since then, numerous studies, both
experimental and theoretical, have been conducted to evalu-
ate the effective dispersivity for gas transport in bronchial
airways during mechanical ventilation. Some studies14–16

then used the experimentally measured dispersion to create
a computational model for gas transport during high-fre-
quency ventilation.

Augmented diffusion in oscillatory flow has also been
used to separate molecules and isotopes on a large scale.
Dispersion has shown to increase mass transfer by up to six
orders of magnitude in the case of liquids and four to five
orders for gases.12 Jaeger et al.17 have combined the effects
of increased mass transfer in oscillatory flow with counter-
current flow to improve separation greatly.

Despite the aforementioned successes, there remain signif-
icant challenges. In particular, complex geometries can
render analytical solution impossible, and numerical methods
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must be used. As will be described in the subsequent para-
graphs, a number of impediments to direct numerical simula-
tion exist, but certain advances now enable practical compu-
tational simulation of complex dispersion problems.

Convection–diffusion problems become numerically chal-
lenging when convection dominates diffusion to the point
that the spatial discretization is unable to resolve the mass
transport boundary layer. The upwind scheme, one of the
numerous remedies available to tackle the problem, was
developed by Christie et al.18 for one-dimensional (1-D)
problems and later generalized to the two-dimensional case
by Heinrich et al.19 The method was extended by Brooks
et al.,20 who eliminated the crosswind diffusion introduced
by the upwind scheme and modified the method so that the
upwind effect acts along the streamlines. The work was one
of the seminal articles published, and we refer the readers to
a more recent review by the same author for further informa-
tion.21 The method amounts to adding an artificial diffusion
coefficient along the streamlines to balance out the strength
of convection. For 1-D problem, the optimal amount of arti-
ficial diffusion balances the numerical inhibition of diffusion
inherent in central difference schemes, or the Galerkin finite
element method (GFEM) with piecewise linear basis func-
tions, resulting in exact nodal solutions.

Simulation of dispersion in rapidly oscillating flows over

long durations, using conventional methods, becomes compu-

tationally infeasible when the time scales involved are widely

separated. As the frequency of oscillation is often high for

such flows, and diffusion is generally slow, the time scale for

diffusion can be very large compared to the time period of os-

cillation. It is not conceptually difficult to simulate long dura-

tions with very small time steps, but it would require a pro-

hibitive amount of time even with the use of advanced hard-

ware. Hence, a strategy that makes use of the information

provided by both time scales but is not computationally

demanding is needed. There is considerable literature avail-

able, in domains ranging from circuit simulation to molecular

dynamics, on numerical techniques for speeding up oscillatory

problems with widely separated time scales. Without provid-

ing any detailed review, we refer the interested reader to the

following selected works which are directly relevant to the

technique we use here.22–24 The basic idea is to extrapolate

slow trends (the ‘‘envelope’’), obtained via detailed local sim-

ulation of a few fast cycles of oscillation, and skip over many

fast cycles of oscillation. Finding the next point of the enve-

lope, while skipping cycles of the fast oscillations on which it

rides, can be achieved using explicit or implicit numerical

methods. A key insight enabling this work, borrowed from

the circuit simulation domain,25 is that implicit schemes for

envelope following can provide robustness and efficiency

when solving the oscillatory fluid flow problem—even though

they require Jacobian information and nonlinear solution at

each envelope step and hence are more complicated to imple-

ment than explicit schemes. The major objectives of this work

were therefore as follows:
• To develop an implicit envelope-tracking methodology

to deal with multiscale transport problems in the time do-
main.
• To compare the numerical solution to the analytical

solution for a model problem that involves the essential phe-
nomena of interest, but exists in a simpler geometry, and
• To apply the method to a demonstrative problem involv-

ing a complex geometry. Owing to our interest in ophthal-

mic drug delivery,26,27 we choose the problem of drug dis-
persion in the vitreous humor (henceforth ‘‘vitreous’’) of the
eye. Saccadic (left-right, as in reading) motion of the eye
causes sloshing of the vitreous28–30 which may affect biodis-
tribution of injected or implanted drugs. The presence of the
lens introduces geometric complexity, and the time-scale
difference between saccades (�ms) and dispersion (�h) is
significant.

Methods

Solution to the flow problem

We consider a system in which a rapidly oscillating flow
of velocity v occurs in an arbitrary geometry, and a species
of interest is dispersed within the domain by a combination
of convection and diffusion. The first step is to solve the
flow problem, given by the incompressible Navier–Stokes
equations,

q
@v

@t
þ v � rv

8>: 9>; ¼ r �pIþ l rvþ ðrvÞT
� �� �

(1)

r � v ¼ 0 (2)

and the appropriate boundary conditions (the effect of gravity
is absorbed into the pressure term). Many methods, based on
the finite element method, exist to solve the flow problem,31,32

each with various advantages and disadvantages, but our
preference is the standard GFEM, which is well-suited to
complex geometries and highly successful for low-to-moder-
ate Reynolds numbers. To account for the LBB condition,
quadratic and linear interpolation functions were used for the
velocity and pressure approximation respectively.33 For time
integration, we use implicit Euler and solve the linearized
forms of Eqs. 1 and 2 simultaneously via Multifrontal
Massively Parallel Solver (MUMPS).34

Solution of the species transport problem

Species transport was modeled using the convection–diffu-
sion equation:

@c

@t
þ v � rC� Dr2C ¼ 0; (3)

where c represents concentration, D is the diffusion coeffi-
cient, and v is the velocity of oscillating flow calculated from
Eqs. 1 and 2.

A multimodule C code, based on the GFEM, was devel-
oped to solve the fluid-flow problem for velocity and pres-
sure and solve the mass transport problem for concentration.
The same geometry and mesh were used for both problems.
The periodic motion velocities were calculated beforehand
and were used as inputs for the transport problem. Hence,
there exists only a one-way coupling between the momentum
and species balance equations. Implicit Euler was used for
time integration, and MUMPS was used to solve the result-
ing linear algebraic equations.

The Péclet numbers (Pé; defined as the ratio of convective
to diffusive time scales) of interest to us (drug transport in
the vitreous) are of the order of 106. At such high Péclet
numbers, the Galerkin finite element scheme becomes highly
unstable, and spurious oscillations in time and space cloud
the actual solution unless a highly refined mesh is used.20

For the method to be stable on its own, there must be a bal-
ance between convection and diffusion at the length scale of
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an element (i.e., the mesh Péclet number should be order 1).
Such refinement would be prohibitive for Péclet numbers as
large as ours. To overcome this problem, we used the
streamline upwinding method discussed by Brooks et al.20

The method amounts to adding a balancing/artificial diffusiv-
ity to the natural diffusivity, along the streamlines to coun-
terbalance convection, and thereby provide stability.

The optimum amount of artificial diffusion, which results in
the exact solution for a 1-D problem solved using the central
difference scheme, was calculated by Hughes et al.35 to be

Dbal ¼ vh

2
b; (4)

where b is given by

b ¼ cothðaÞ � 1=a: (5)

a in Eq. 5 is given by

a ¼ vh=2D: (6)

Dbal is the balancing diffusivity, v is the velocity, h is the
length of the 1-D element, and a is the mesh Péclet number in
the above equations. It should be noted that the above
calculations for the balancing diffusivity would also hold good
for a 1-D Galerkin finite element discretization using
piecewise linear basis functions as such a discretization
scheme would result in the same set of equations as the
central difference scheme.20 Our problem of interest was
three-dimensional in nature and used Galerkin discretization.
Hence, we set the net diffusivity (true plus balancing) for our
problem to be

D ¼ DIþ Dbal

v� v

jvj2 ; (7)

where ? denotes dyadic product, and D is the net diffusivity
tensor. Dbal is given by the following expression:

Dbal ¼
bnvnhn þ bgvghg þ bfvfhf

2
(8)

where bn, bg, and bf are given by

bn ¼ cothðanÞ � 1=an; bg ¼ cothðagÞ � 1=ag;

and bf ¼ cothðafÞ � 1=af: ð9Þ
an, ag, and af in Eq. 9 are given by

an ¼ vnhn=2D; ag ¼ vghg=2D and af ¼ vfhf=2D: (10)

The quantities hn, hg, and hf are the dimensions of the element
in the three isoparametric directions. Similarly, vn, vg, and vf
and an, ag, and af are the components of the velocity and the
mesh Péclet number in the three isoparametric directions. The
balancing diffusivity was calculated at the integration points
(Gauss points) for each element based on the velocity at the
integration point and the element dimensions according to Eqs.
8–10. To assess the error introduced by the artificial diffusivity
for a multidimensional discretization with piecewise quadratic
basis functions, we simulated the problem discussed by Horn9

and compared the numerical solution to the analytical solution.
A detailed discussion of the test problem is provided toward
the end of the section.

The treatment described in the above paragraph was not
implemented for the fluid flow problem. The Reynolds num-
ber (Re; defined as the ratio of the diffusive to convective
time scale for momentum transport) for the flow problem in
the vitreous was around 600. At the length scale of a finite
element, Re was small enough to allow use of the standard
Galerkin method. The Reynolds number stated above was
calculated based on a vitreous viscosity of 0.001 Pa�s
(viscosity of water). For the simulations of interest, the vis-
cosity of vitreous was varied up to three orders of magnitude
higher than that of water and hence the associated Reynolds
numbers were small enough that standard Galerkin was
sufficient.

Telescopic implicit envelope-tracking scheme

The telescopic implicit envelope-tracking scheme was
used to tackle the multiscale nature of the species transport
problem. The convective time scale and the time period of
oscillation were much smaller than the diffusive time scale.
The time period for the rapid oscillations (T) was typically
0.25 s for our problem of interest. The diffusion time scale
(sd) is given by

sd ¼ L2

D
; (11)

where L is the diffusion length scale. For transport of a small
molecule in vitreous humor (L � 0.85 cm; D � 6 � 10�6 cm2

s�1), sd is on the order of 30 h. Also, for our problem of
interest the convective time scale (sc) given by L/v, is of the
order of 0.2 s. Conventional time integration schemes would
necessitate using time steps on the order of T or sc, for which
simulating long periods of drug dispersion would be
impractical. Hence, there is a need to use effectively the
information provided by all the time scales, and at the same
time speed up the simulation process.

The concentration, solved from Eq. 3, is expected to oscil-
late in time as the velocity is periodic in time. As the oscil-
lation is expected to be fast compared to the underlying
slow diffusive process, the envelope of these oscillations
will be a slowly varying function of time.22 Hence, the natu-
ral strategy would be to track the envelope of the oscillations
rather than the fine details of the solution. The envelope for
our problem was the path traced by points at the start and
end of each period of oscillation. Petzold22 suggested a
method whereby the knowledge of the solution over a few
periods is used to estimate the solution at a time point many
periods away. The method is illustrated in Figure 1. The so-
lution procedure involves

1. Solving Eq. 3 for c(t) over K periods (K ¼ 3 or 4)
using the fast time-scale information.

2. Based on the information available over the first K
periods, projecting c(t)—forward to a point P, M periods
away (M[[ K).

3. Using the value at P as the initial condition, solving
Eq. 3 again over K periods, and repeating steps 2 and 3 to
simulate over long durations.

The procedure allowed simulation of transport for up to M
þ K periods by solving the finite element method (FEM)
problem over K periods giving a speedup of 1 þ (M/K). The
extent of M, however, is limited by stability.36 A fully
implicit envelope-tracking method to project to point P
(step 2) stabilizes the code better and extends the upper
bound of M.
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A fully implicit envelope tracking scheme was used to
implement step 2. The scheme was previously applied to
oscillators in circuits by Mei et al.25 The goal of the implicit
envelope-tracking scheme was to evaluate the concentration
c(n) at the time step n using known information, i.e., c(0) and
the concentration at the previous time steps. The slope of the
envelope at time step n was used to approximate the slope
of the projection step at c(0) as follows:

cðnÞ � cð0Þ

MT
¼ cðnþ1Þ � cðnÞ

T
: (12)

As c(nþ1) can be evaluated by solving Eq. 3 over one period
with c(n) as the initial condition we can write

cðnþ1Þ ¼ f ðcðnÞ; tðnÞÞ: (13)

As the original PDE, Eq. 3, is linear in c, f is a linear function.
The initial guess for c(n) was obtained by using an explicit
projection, i.e., the slope of the envelope at c(0) was used to
approximate the slope of the projection step at c(0) to obtain
c(n). Eq. 12 can be rewritten as:

R ¼ AcðnÞ � cð0Þ ¼ 0; (14)

where

A ¼ ðM þ 1ÞI �M
@cðnþ1Þ

@cðnÞ
: (15)

Equation 14 was then solved for c(n). I in the above equations
is the identity matrix and R is the residual.

If m time steps are used to evaluate c(nþ1) from Eq. 3
(see Figure 2), with c(n) as the initial condition, then
constructing A would involve m inverse operations and
2m � 1 matrix–matrix products (details in the Appendix).
As the matrices are large, constructing A would be a
computationally arduous task, slowing down the projection
step and eliminating the speedup possibly obtained from
the multiscale strategy. To overcome this problem, we
adopted a matrix-free method, taking advantage of the
fact that when iterative methods are used to solve the set
of linear equations, they require only a matrix–vector
product and not the matrix itself. As the matrix A in our
problem is a Jacobian, the matrix–vector product can be
approximated by

Av ¼ @R

@c

�����
cðnÞ

8>>>>:
9>>>>;v ¼ RðcðnÞ þ evÞ � RðcðnÞÞ

e
; (16)

where e is a small number. Thus the product is evaluated by
evaluating the residual, resulting in a substantial reduction in
memory required and more importantly computation time. The
generalized minimal residual method (GMRES) with reverse
communication, developed by Saad et al.,37 was used for the
linear solve. As f represents change over one period, qc(nþ1)/
qc(n) is close to the identity, making the spectral radius of A
small. Thus, GMRES converges without preconditioning—a
feature that is attractive from a computational, as well as ease-
of-implementation, perspective.

To achieve better speedups without compromising on
stability, implicit envelope-tracking was combined with
telescopic projective methods to push forward in time. Tel-
escopic methods were developed by Gear et al.38 for stiff
differential equations with gaps in their eigenvalue spec-
trum. Figure 3 illustrates a three-layered projection method
that was used in our simulations. As explained in the pre-
vious paragraphs, the first (bottom) layer involves solving
for the fast time scale solution over K periods and then
projecting the solution forward in time over M periods.
The procedure is repeated n times and the n solution val-
ues (indicated using red dots in Figure 3) calculated are
used to take a bigger projection step at the second level.
The third level of projections can be calculated in a similar
manner. The strategy ensures higher speedup and better
stability. The stability of the multilevel telescopic projec-
tive method has been shown to be better than single-level
projection methods.39 The procedure results in a maximum
speedup of

Speedup ¼ 1þM

K

8>: 9>; 1þM

n

8>: 9>; 1þM

n

8>: 9>;; (17)

where n is the number of solution values used for projection
from the previous level (Figure 3).

Although the telescopic implicit envelope-tracking scheme
provides better stability and speedup, there still exists an
upper bound on the value of M. At each level different M
values were used to maximize the advantage of the tech-
nique without compromising on stability. For simulating
drug transport in the vitreous the highest value used for M
was 20 (at the third level) and the lowest was 1 (at the first

Figure 2. Schematic of the fully implicit envelope-
tracking scheme.

Figure 1. Schematic of the multiscale method pro-
posed by Petzold22 to bridge the time scales.

[Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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level). Generally, lower values were used initially as steep
changes in concentration were observed. Typical K
values used in our simulations were 3 and 4, and n was set
equal to K.

Test Problem

A test problem with a known analytical solution was
solved to assess the error introduced by the telescopic
implicit envelope-tracking and the artificial diffusion.
Horn’s work on mass transport under oscillatory flow con-
ditions9 provides an ideal test case. The system consists of
fluid contained between two infinite, parallel plates sepa-
rated by a distance H (Figure 4). A Cartesian coordinate
system is fixed on the lower plate, with the x direction
pointing in the direction of flow and the y direction point-
ing between the two plates. The upper plate was oscillated
with a velocity V0sin(2pxt), where V0 is the characteristic
value of the speed and x is the frequency of oscillation. At
low Reynolds number, the velocity profile can be assumed
to be linear, and hence U ¼ Uex, with the magnitude of
flow being

U ¼ V0 sinð2pxtÞ y

H

8: 9;: (18)

The spread of a tracer, introduced over a small interval
of x over the entire y–z-plane at t ¼ 0, can be described
by a dispersion coefficient (D*). Horn determined D*

to be

D�

D
¼ 1þ f ðkÞPe2: (19)

where

f ðkÞ ¼ kðcos kþ cosh kÞ � ðsin kþ sinh kÞ
8k5ðcos kþ cosh kÞ ; (20)

k � H

ffiffiffiffiffiffiffi
px
D

r
; (21)

and D is the diffusivity of the tracer in the fluid. The Péclet
number for transport (Pé) is defined as

Pe � V0H

D
: (22)

The initial spread of the tracer was assumed to be a Gaussian
of the form

c0 ¼ M0

2
ffiffiffiffiffiffiffiffiffiffi
pDt0

p e
� x2

4 Dt0

8: 9;
; (23)

where c0 is the initial concentration at t ¼ 0, M0 is the total
amount of tracer in the volume initially, and t0 is a constant.
The spread of the tracer as a function of time can be expressed
as

Figure 4. Schematic of the geometry used to model
mass transport under oscillatory flow condi-
tions solved by Horn.9

Figure 3. Illustration explaining the telescopic projection technique that was developed by Gear et al.36

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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c ¼ M0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pD�ðtþ t0Þ

p e
� x2

4D�ðtþt0Þ; (24)

where c represents the concentration averaged over 0 � y � H
at the start of each time period. The fluxes on all the
boundaries were assumed to be zero. The dimensions of the
domain were such that the assumptions were deemed
acceptable. This was ensured by choosing simulation times
that was long compared to diffusion in the y direction but short
compared to diffusion in the x-direction.

The test problem was solved over a 10 � 0.01 � 0.6 m3

(H ¼ 0.01 m) box (Figure 4) with D ¼ 1 � 10�7 m2 s�1,
and x ¼ 2 � 10�3 s�1 and hence, k ¼ 2.5. Velocity was
adjusted based on the Péclet number. The telescopic implicit
envelope-tracking method, described in the previous section,
was used to simulate the transport of a tracer, and the com-
putationally evaluated dispersion coefficient was compared
with the analytical value for varying test cases to validate
the method. The dispersion coefficient was evaluated based
on Eqs. 25 and 26. The first (x0) and second moments (r2)
of the spread of the tracer, with respect to time were eval-
uated, and the dispersion coefficient was set to be half the
slope of the second moment as follows:

D� ¼ 1

2

dðr2Þ
dt

; (25)

where

r2 ¼
R
cðx� x0Þ2dxR

cdx
: (26)

x0, which was also the mean of the distribution was calculated
to be approximately zero.

Drug dispersion in the vitreous humor

A brief discussion of the drug dispersion problem in the
vitreous is presented here. The practical problem has been
dealt with in greater detail in Ref. 40. The vitreous under-
goes progressive liquefaction with age and hence sloshes
readily during saccadic motion of the eye.28 The solution
methodology involves solving for the sloshing velocity due
to saccadic eye movements and using the velocities to

solve the drug transport problem. The fluid flow problem
and the species transport problem were solved separately
(as in the test problem) with the telescopic implicit enve-
lope-tracking scheme applied only to the species transport
problem. The vitreous in its native state is a viscoelastic
material,41 but liquid vitreous loses its elastic properties
and hence was assumed to be a purely viscous Newtonian
fluid. The viscosity values were varied to simulate various
physiological vitreous states. Equations 1 and 2 were modi-
fied because the problem was solved in a frame of refer-
ence rotating along with the eye. The momentum balance
equation was modified by adding additional terms to
account for the oscillation of the computational domain
with respect to a stationary frame of reference. The modi-
fied equation is as follows:

q
@v

@t
þðv � rÞvþX� ðX� rÞ þ 2X� r þ a� r

8>: 9>;
¼ r �pIþ lðrvþ ðrvÞTÞ

� �
: ð27Þ

In our model, small-amplitude saccades were assumed to
cause negligible drug dispersion when compared to the large-
amplitude saccades and were neglected. Sloshing caused by
continuous saccades of 40	 amplitude (modeled using
sinusoids) was simulated. Saccade parameters such as
amplitude, duration, and peak angular velocity were deter-
mined using empirical relationships developed by Becker.42

The velocities converged to the periodic solution within 4
periods. Drug distribution in the vitreous was modeled using
the species balance equation (Eq. 3). The flux of the drug into
and out of the vitreous through the retina and the hyaloid (see
Figure 7) was calculated based on previously estimated
transport properties of the posterior tissues27 and used as the
boundary condition for the model. The details of the
calculation involved in the boundary conditions are presented
in Ref. 40.

The three-dimensional model, developed based on the ge-
ometry of the human eye, was divided into 12,285 hexahe-
dral 27-noded elements with a total of 104,725 nodes. Tri-
quadratic basis functions were used for velocity and concen-
tration, and trilinear basis functions were used for the
pressure. To demonstrate the utility of the numerical scheme,

Figure 5. Plot of the effect of mesh refinement on the
computed dispersion coefficient for Péclet
numbers of 10, 50, and 100 for the test
problem.

[Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]

Figure 6. Plot showing the effect of Péclet number
(Pe) on the computationally and analytically
evaluated dispersion coefficient for the test
problem.

[Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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discussed earlier, for complex geometries, we compare
simulation results for drug dispersion in static vs. sloshing
vitreous.

Results

Evaluation of the test problem

To assess the performance of the numerical scheme, the
dispersion coefficient was evaluated for the test problem,
and was compared with the analytical value obtained from
Eq. 19. The accuracy of the telescoping time stepping
scheme was assessed by varying the values of M at each tel-
escopic layer. As noted before, three layers of projections
were used and at each layer the projection step is repre-
sented as an integral multiple of the time period of oscilla-
tion. For the sake of brevity, we represent the schemes as
m1-m2-m3, where

m1 ¼ MT

T
; m2 ¼ Mh1

T
; m3 ¼ Mh2

T
; (28)

and h1, and h2 are as illustrated in Figure 3.
Schemes 1-2-2, 1-4-16, and 3-12-60 were used to perform

the calculations; very little change in the dispersion coefficient
was observed for the three cases when Pé values of 10, 50,
and 100 were used. The variation in the dispersion coeffi-
cients were less than 0.028% of each other. The simulations
were performed on a mesh with 10,000 elements (element
dimension along X ¼ 0.10). The result shows that changing
the projection steps does not affect the solution adversely.
The speedup for the test problem for the 3-12-60 case is 5.56.
It should be noted that as the goal was only to assess the
scheme for the test problem, the speedups were much lower
than those obtained for the vitreous sloshing problem (�100).

The effect of incorporating an artificial diffusion coefficient
on the solution was tested by refining the mesh and compar-
ing the computational D* to the analytical D* for varying Péc-
let numbers. Flow velocities and hence the artificial diffusivity
for the test problem were along the X direction (Figure 4).
Mesh refinement was done along X and number of elements
along Y and Z directions was kept the same. Figures 5 and 6
show the variations. The numerical scheme was always
observed to overpredict the dispersivity when compared to the
analytical solution, and the error was observed to decrease
with mesh refinement especially for high Pé. The mesh Péclet

number decreases with mesh refinement, and hence the
amount of artificial diffusivity added to balance convective
effects is also reduced, reducing the dispersivity. However, at
Pé ¼ 10, mesh refinement was not observed to reduce the
error of about 5% between computational and analytical D*

any further, thereby indicating an inherent error in the numeri-
cal scheme. Some possible reasons for the error are given in
the discussion section of the article.

Drug dispersion in the vitreous

The model was used to simulate drug delivery to the pos-
terior eye from a constant concentration surface (transscleral)
source and from a point (intravitreal) source in the vitreous.
The results from the simulations have been discussed in
detail elsewhere.40 Vitreous viscosity was varied from 0.01
to 1.0 Pa s for the simulations. Here, we only present simu-
lation results for a vitreous viscosity of 1.0 Pa s to highlight
the practical importance of the results, while the other cases
are only discussed briefly. The results for the sloshing vitre-
ous were compared with those for a static vitreous for both
types of sources. It should be noted that the static vitreous
case is the limiting case when the vitreous viscosity is infin-
ity. Figures 7a, b show the concentration plots for the two
cases for a transscleral source. As the species balance

Figure 8. Plot showing the relative differences in drug
clearance, retention, and intake for the static
and sloshing vitreous after transscleral
administration.

[Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]

Figure 7. Concentration profile for (a) static and (b) sloshing vitreous after transscleral drug administration.

The figure also highlights the key clearance routes namely, hyaloid and retina and the direction of drug transport for the two

cases. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

AIChE Journal July 2012 Vol. 58, No. 7 Published on behalf of the AIChE DOI 10.1002/aic 1993



equations were linear equations in concentration (c), arbi-
trary transscleral source strength of 1 � 10�4 was picked for
the simulations. Hence, the plots in Figure 7 are for com-
parative purposes only. With a constant concentration trans-
scleral source, simulations were run until steady state was
reached (�48 h). Peak vitreous concentration, which was
observed directly under the drug source, was higher for the
static case when compared to the sloshing case. Also, steep
concentration gradients were observed for the static case
resulting in lower drug intake for the static case compared to
the sloshing case (Figure 8). This also suggests that there
is increased mixing of the drug in the sloshing vitreous, as
the fluid flow washes away any drug accumulation under the
source, resulting in more uniform spreading of drug in
the vitreous. The extent of mixing significantly impacted the
time scale for transport for sloshing cases where vitreous
viscosities were two orders of magnitude lower than that
considered here. The time to reach 95% of the steady state
value was lower by a factor of 1.5 for the case when the vit-
reous viscosity was 0.01 Pa s. Increased mixing for the
sloshing case resulted in easier access to the clearance routes
through the retina and hyaloid. At the hyaloid, the increase
in clearance is significantly high due to the flow mixing pat-
tern and the proximity of the drug source to the hyaloid. The
flow under the drug source results in spreading of the drug
in the tangential direction along the wall as opposed to radial
transport for the static vitreous (Figure 7). This effect
coupled with the proximity of the drug source to the hyaloid
results in high concentrations at the hyaloid, resulting in
increased clearance. The increased clearance through the
hyaloid and retina outweighed the increase in drug intake,
resulting in lower concentrations in the sloshing vitreous.
More importantly, the concentration at the macula, which is
critical for treating age-related macular degeneration,
was observed to be up to nine times higher (not shown in
the figures).

The time of retention for the drug delivered through an
intravitreal injection (simulated using a Gaussian point
source) was also evaluated. Simulations were run for �13 h,
by which time the vitreous levels were almost zero. Three
source locations were considered, all on the equator of the
globe (Figure 9) to take advantage of symmetry. Figure 10
shows the half-life of the drug source at each location for
the static and sloshing vitreous. Retinal clearance accounted
for 95% of all drug eliminated from the eye and hence had

the biggest impact on the residual vitreous concentrations.
Retinal clearance was high for all the sloshing cases result-
ing in lower vitreous concentrations when compared to the
static case. Sloshing did not have a significant impact on
half-life for injections placed closer to the retina as mixing
did not result in a significant difference in retinal clearance.
For a centrally placed injection, however, mixing due to
sloshing resulted in the half-life of drug decreasing by 14%.
The effect of sloshing was higher for some of the lower vis-
cosity cases (0.01 Pa s and 0.1 Pa s) that were simulated.
For the lower viscosities half-life was found to be independ-
ent of location and was �42% lower than that for the static
vitreous for locations 1 and 2, and 63% lower for location 3.

Discussion

Dispersion in rapidly oscillating flows is frequently
encountered in a variety of engineering applications. The
problem is difficult to handle when complex geometries pro-
hibit the use of analytical techniques and when widely sepa-
rated time scales present challenges for numerical solvers.
The methodology discussed in this article was designed to
address such problems.

The numerical scheme was assessed using a test problem
with a known analytical solution, and the results were com-
pared for varying Péclet numbers, element size, and time
steps for telescopic projections. The time steps used for tele-
scopic projections were observed to have no effect on the
evaluated dispersion coefficients. This suggests that the accu-
racy of the multiscale strategy is not limited by the extent of
the time steps and hence, long time simulations are possible
at relatively low computational cost. Although not limited by
accuracy concerns, the extent of the time steps could be lim-
ited by stability. For example, the speedup during the initial
part of the simulation of drug dispersion in the vitreous was
limited due to steep change in concentration with respect to
time. However, once the initial transients stabilized speedups
up to 100 were achieved. This was not a concern in the test
problem, because of its simplicity. Hence, care should be
taken when using large time steps for complex problems,
particularly those in which steep changes in concentration
can be expected.

The numerical scheme predicts a higher dispersivity for
the test problem when compared to the analytically

Figure 9. Schematic showing the location of the intravi-
treal point sources in the equator of the eye.

[Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]

Figure 10. Comparison of half-life values for the static
and sloshing vitreous for drug injections at
three different locations in the vitreous.

[Color figure can be viewed in the online issue, which

is available at wileyonlinelibrary.com.]
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evaluated dispersion coefficient as shown in Figures 5 and 6.
The method was observed to match the analytical solution
within 10% at Pé ¼ 10 and within 40% at Pé ¼ 100. Some
of the potential causes for the error are discussed below.
Mesh refinement was found to decrease the error but further
refinement beyond an element dimension of 0.067 was not
attempted. The decrease in error with element size could be
partly attributed to the artificial diffusivity. Mesh refinement
reduces the mesh Péclet number and hence reduces the
amount of artificial diffusivity required to balance the effect
of convection. For low Péclet numbers, however, the reduc-
tion in error with the size of the element is insignificant,
suggesting the presence of an inherent disagreement between
the numerical scheme and the analytical solution. The inher-
ent error, observed to be in the 5–10% range, could be due
to multiple sources. One possible source of error is the finite
size of the computational domain, in contrast to the infinite
domain for the analytical solution. At high Péclet numbers,
due to increased dispersivity, mass accumulation is possible
at the domain edges. Hence, the zero-flux condition that was
applied at the domain edges could contribute to an error in
the dispersion coefficient calculation. The problem is exacer-
bated by the x2 term in Eq. 25 as minor disturbances in con-
centration at the domain edges contribute greatly to the
error. The effect of side walls was examined by Pagistas
et al.43 for Taylor dispersion of a solute accompanying Pois-
euille-like laminar flow through a rectangular duct of small
aspect ratio. It was shown that in the limit of vanishing as-
pect ratio, the long-time Taylor dispersivity is nearly eight
times larger than that which exists for the comparable 1-D
Poiseuille flow between parallel plates in the absence of side
walls. This would imply that the effect of the side walls
could result in significant overprediction of the dispersivities.
The analytical solution is a limiting approximation as well,
so the baseline for comparison, which is the analytical solu-
tion in this case, is not entirely accurate. Given the above
limitations of the test method, even though the errors were
high at high Pé, for complex problems such as drug disper-
sion in the sloshing vitreous, the error was deemed accepta-
ble in exchange for the speedup.

Intravitreal transport

One of the main physiological functions of the vitreous is
to act as a barrier for heat and mass transport between the
anterior and the posterior eye. With the breakdown of the
vitreous from its gel state, the barrier is breached. Hence,
vitreous liquefaction could potentially affect intravitreal drug
transport heavily.44,45 The problem becomes doubly impor-
tant given that a majority of patients with certain posterior-
segment diseases, e.g., age-related macular degeneration,
have a partially or totally liquefied vitreous because of their
age. Many drug delivery systems are based on controlled
release mechanisms, intended to deliver the drug over a long
period of time.46 Hence, long-time simulation of drug trans-
port in the vitreous is important to determine drug concentra-
tions at the target tissues. The numerical scheme developed
for simulating transport in this article is ideally suited for
this problem given the complex geometry of the posterior
eye, high Péclet number transport (�106), time-scale separa-
tion between the convective and diffusive component of
transport, and the oscillatory nature of flow involved.

Our results suggest that there are significant differences in
drug transport between the sloshing and static vitreous.

Increased mixing of the drug resulted in easier access to the
clearance routes (retina and hyaloid) resulting in reduced
half-lives for the drug in the vitreous. The timescale for
transport determines the dosing frequency. For invasive pro-
cedures such as intravitreal injections, where patient toleran-
ces are typically low and side-effect risk is considerable,
knowing the transport timescale would allow better manage-
ment of the therapy. The following references highlight the
time scale for transport of drugs for different disease
states.47–51 Time scales are also critical factors in the design
of controlled release drug sources. From a clinical perspec-
tive, increased clearance through the retina and the hyaloid
could be significant as well. This would suggest significant
drug accumulation in those areas resulting in possible side
effects. Also, increased macular concentrations for the slosh-
ing case could cause a supposedly nontoxic dosage of drug
to treat macular degeneration to become toxic when the vit-
reous is liquefied and sloshing.

The results discussed above highlight the importance of
the model for a complex problem like drug dispersion in the
sloshing vitreous. The method used to develop the model is
highly useful for our problem of interest, as it can help
understand the balance in transport rates for drug in the
sloshing eye. The limitations of the method, that have been
highlighted, should be kept in mind while interpreting the
results. The model might overpredict diffusion and hence
underestimate the time scale for transport. In its current
state, the model is more of a guiding tool for design, and is
less of a predictive tool. Hence, it should be used purely to
gauge trends in drug distribution with the ultimate goal
being, to assess efficacy and toxicity for various drug deliv-
ery systems for design optimization purposes. The method
proposed in this article helps to achieve that goal.

In conclusion, a numerical scheme was developed to simu-
late dispersion induced by a rapidly oscillating velocity field,
in complex geometries, when the convection and diffusion
time scales are widely separated. The performance of the
method was assessed by comparing numerical results with
the analytical solution for a test problem. The implicit tele-
scopic envelope-tracking scheme was found to be effective
in bridging the time scales, and the results show that useful
speedups (�100-fold for intravitreal drug transport) can be
achieved with minimal compromise on accuracy, once the
initial transients stabilize. The method, when used to simu-
late the test problem, produced overdispersive solutions at
high Péclet numbers. However, it should be noted that exter-
nal factors, other than the method itself, could contribute to
the errors observed. The performance of the method was
deemed to be satisfactory for our problem of interest. Also,
as better methods for high-Pé simulations evolve, they could
be combined with the telescopic approach. When extending
the method to other problems though, one should be mindful
of the limitations of the method, which is best suited for
moderate Péclet numbers, rapid oscillations, and large differ-
ences in time scale. It is critical to consider how the method
would fare when answering specific problem objectives
before utilizing it.
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Appendix A

Cost of calculating A explicitly

Matrix A is derived from Eq. 15 in the text. For the sake
of convenience, we rename cn as y0 and cnþ1 as ym for the
derivation (Figure 2).

ym � cnþ1 and y0 � cn (A1)
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We also define

G � @ym
@y0

(A2)

and

Pi � @yi
@yi�1

(A3)

Then

A ¼ ðM þ 1ÞI �MG (A4)

G can then be written as a product of Pi’s

G ¼ @ym
@ym�1

@ym�1

@ym�2

� � � @y2
@y1

@y1
@y0

¼ PmPm�1 � � �P2P1 (A5)

GFEM discretization of Eq. 3 yields a system of equations
of the form

Siyi ¼ bþ Kyi�1 i ¼ 1; 2;…;m (A6)

where Si’s and K are matrices of size 105 � 105 and yi’s and
b are vectors of size 105 � 1.
Differentiating (A5) with respect to yi-1

SiPi ¼ K i ¼ 1; 2;…;m (A7)

Evaluating Pi would involve calculating Si
�1 and the product

of Si
�1 and K. Evaluating G from Pi’s would involve m-1

matrix-matrix products. Hence, to compute A (Eq. A4), a
total of m inverse operations and 2m-1 matrix-matrix prod-
ucts have to be performed.
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